I like arithmetic geometry, especially in and around the *p*-adic numbers. My current research is concerned with leveraging connections between the classical and geometric Langlands correspondences to say more about the cohomology of Shimura varieties and related spaces.

I am a Benjamin Pierce Fellow at Harvard. Last year I was a NSF Postdoc at Stanford working with Xinwen Zhu. I received my PhD from Princeton in 2023, advised by David Hansen and Chris Skinner.

Science Center Room 239

1 Oxford Street

Cambridge, MA 02138 USA

E-mail:hamann(at)math(point)harvard(point)edu

„Eine falsche Note zu spielen ist unbedeutend, aber ohne Leidenschaft zu spielen, ist unverzeihlich.“

**Geometric Eisenstein Series I: Finiteness Theorems**with David Hansen and Peter Scholze**Dualizing Complexes on the Moduli of Parabolic Bundles**with Naoki Imai (arXiv)**Torsion Vanishing for Some Shimura Varieties**with Si-Ying Lee (arXiv)**Geometric Eisenstein Series, Intertwining Operators, and Shin's Averaging Formula**with an Appendix by Alexander Bertoloni-Meli (arXiv)**Compatibility of the Fargues-Scholze Correspondence for Unitary Groups***To Appear in Mathematische Annalen*with Alexander Bertoloni-Meli and Kieu-Hieu Nguyen (arXiv)**Compatibility of the Gan-Takeda and Fargues-Scholze local Langlands***To Appear in Compositio Math (pending revision)*(arXiv)**Zelevinsky Duality on Basic Local Shimura Varieties***To Appear in Mathematical Research Letters*(arXiv)**A Jacobian Criterion for Artin v-stacks**(arXiv)

**Non-left-orderable surgeries on twisted torus knots**with K. Christianson, R. Goluboff, and S. Varadaraj.*Proceedings of the American Math Society*144.6 (2016): 2683-2696 (arXiv)