More on Pontryagin Duals

Siyan Daniel Li-Huerta

October 6, 2020
Let G be an abelian topological group. Write $\varphi : \mathbb{R} \to S^1$ for the map $x \mapsto \exp(2\pi ix)$. Note φ realizes \mathbb{R} as the universal cover of S^1, sending the base-point 0 to 1.

Example

Let $G = S^1$. Let $\chi : S^1 \to S^1$ be in \hat{G}. Because \mathbb{R} is simply connected, we can lift $\chi \circ \varphi : \mathbb{R} \to S^1$ uniquely to a continuous map $\tilde{\chi} : \mathbb{R} \to \mathbb{R}$ satisfying $\tilde{\chi}(0) = 0$. Thus we have a commutative diagram

$$
\begin{array}{ccc}
(\mathbb{R}, 0) & \xrightarrow{\tilde{\chi}} & (\mathbb{R}, 0) \\
\downarrow \varphi & & \downarrow \varphi \\
(S^1, 1) & \xrightarrow{\chi} & (S^1, 1).
\end{array}
$$

One can use the fact that $\chi \circ \varphi$ is a homomorphism to show $\tilde{\chi}$ is too, and $\tilde{\chi}$ preserves $\varphi^{-1}(0) = \mathbb{Z}$. Thus $\tilde{\chi}$ equals multiplication-by-k for some k in \mathbb{Z}, so χ equals $z \mapsto z^k$. This identifies \hat{G} with \mathbb{Z} as a group. The neighborhoods $W(G, 1, \varepsilon)$ show that \hat{G} is discrete.
Let t be in $(0,1]$, and write $N(t)$ for $\varphi((-\frac{t}{3}, \frac{t}{3}))$. As $t \to 0$, note the $N(t)$ form a basis of neighborhoods of 1. Write $U^{(m)}$ for $\underbrace{U \cdots U}_{m \text{ times}}$, where $U \subseteq G$.

Lemma

Let z be in S^1, and suppose z, z^2, \ldots, z^m lie in $N(1)$. Then z lies in $N(\frac{1}{m})$.

In particular, let $\chi : G \to S^1$ be a group homomorphism, and let U be a subset of G containing 1. If $\chi(U^{(m)}) \subseteq N(1)$, then $\chi(U) \subseteq N(\frac{1}{m})$.

Proof.

We induct on m, where the $m = 1$ case is immediate. Assume now that z, \ldots, z^{m+1} lie in $N(1)$. By induction, we know z lies in $N(\frac{1}{m})$. Since z^{m+1} lies in $N(1)$, there exists y in $N(\frac{1}{m+1})$ such that $y^{m+1} = z^{m+1}$. This implies z/y is an $(m+1)$-th root of unity, so $z = y \cdot (z/y)$ lies in $N(\frac{1}{m+1})\varphi(\frac{q}{m+1})$ for an integer $0 \leq q \leq m$.

I claim that $N(\frac{1}{m})$ and $N(\frac{1}{m+1})\varphi(\frac{q}{m+1})$ intersect if and only if $q = 0$. To see this, note that $N(\frac{1}{m})$ and $N(\frac{1}{m+1})\varphi(\frac{q}{m+1})$ are the homeomorphic images of $(-\frac{1}{3m}, \frac{1}{3m})$ and $(-\frac{3q-1}{3(m+1)}, \frac{3q+1}{3(m+1)})$, respectively.
Lemma

Let z be in S^1, and suppose z, z^2, \ldots, z^m lie in $N(1)$. Then z lies in $N(\frac{1}{m})$.

Proof (continued).

These images intersect if and only if

$$\frac{1}{3m} > \frac{3q-1}{3(m+1)} \iff m + 1 > 3qm - m \iff 2r + 1 > 3qr \iff q = 0.$$

Because z lies in $N(\frac{1}{m})$, we have $q = 0$ and hence z lies in $N(\frac{1}{m+1})$. □

Drawing a picture and using the law of cosines shows that

$$N(t) = \{z \in S^1 \mid |z - 1| < \sqrt{2 - 2 \cos(2\pi t / 3)}\}.$$

Therefore $W(K, 1, \sqrt{2 - 2 \cos(2\pi t / 3)})$ equals the set of χ in \hat{G} such that $\chi(K) \subseteq N(t)$. As $t \to 0$, we see $\sqrt{2 - 2 \cos(2\pi t / 3)} \to 0$, so these form a basis of neighborhoods of 1.
Proposition

Let \(G \) be an abelian topological group.

1. Let \(\chi : G \to S^1 \) be a group homomorphism. Then \(\chi \) is continuous if and only if \(\chi^{-1}(N(1)) \) is open.

2. As \(K \) ranges over compact subsets of \(G \), the \(W(K, 1, \sqrt{3}) \) form a basis of neighborhoods of 1.

3. If \(G \) is discrete, then \(\hat{G} \) is compact.

4. If \(G \) is compact, then \(\hat{G} \) is discrete.

Proof.

1. If \(\chi \) is continuous, then \(\chi^{-1}(N(1)) \) is open since \(N(1) \) is. Conversely, suppose \(\chi^{-1}(N(1)) \) is open. Let \(x \) be in \(G \), and consider the neighborhood \(N(t)\chi(x) \) of \(\chi(x) \). There exists an integer \(m \geq 1 \) such that \(\frac{1}{m} \leq t \), and \(\chi^{-1}(N(1)) \) contains a neighborhood \(V \) of 1 such that \(V^{(m)} \subseteq \chi^{-1}(N(1)) \). Therefore \(\chi(V)^{(m)} \subseteq N(1) \), so \(\chi(V) \subseteq N(\frac{1}{m}) \). Hence \(V \subseteq \chi^{-1}(N(\frac{1}{m})) \), so the image of \(V \chi \) under \(\chi \) lies in \(N(t)\chi(x) \).
Proposition

Let G be an abelian topological group.

1. Let $\chi : G \to S^1$ be a group homomorphism. Then χ is continuous if and only if $\chi^{-1}(N(1))$ is open.

2. As K ranges over compact subsets of G, the $W(K, 1, \sqrt{3})$ form a basis of neighborhoods of 1.

3. If G is discrete, then \hat{G} is compact.

4. If G is compact, then \hat{G} is discrete.

Proof (continued).

2. Consider a neighborhood $W(K', 1, \sqrt{2 - 2 \cos(2\pi/3m)})$ of 1. Let $K = K'^{(m)}$, which is compact. If χ lies in $W(K, 1, \sqrt{3})$, then $\chi(K'^{(m)}) \subseteq N(1)$ and thus $\chi(K') \subseteq N(\frac{1}{m})$. Thus we see $W(K, 1, \sqrt{3})$ is a neighborhood of 1 contained in $W(K', 1, \sqrt{2 - 2 \cos(2\pi/3m)})$.

3. Homework problem.

4. Let χ be in \hat{G}. Then $\chi(G)$ is a subgroup of S^1, but $N(1)$ contains no nontrivial subgroups. Thus $W(G, 1, \sqrt{3}) = \{1\}$.
Proposition

If G is locally compact, then \hat{G} is too.

Proof.

Suppose χ in \hat{G} is nontrivial. Then $\chi(g) \neq 1$ for some g in G, so the open subset $W(\{g\}, \chi, \frac{1}{2}|\chi(g) - 1|)$ does not contain 1. Taking unions over all such χ shows that $\{1\}$ is closed in \hat{G}.

Next, we have a neighborhood O of 1 whose closure is compact. I claim that $W(O, 1, \sqrt{2 - 2\cos(2\pi/12)})$ has compact closure. To see this, note it suffices to prove

$$W = \{\chi \in \hat{G} \mid \chi(O) \subseteq N(\frac{1}{4})\}$$

is compact. Write G_0 for the group G with the discrete topology. Then \hat{G}_0 is compact, and we view \hat{G} as a subgroup of $\text{Hom}(G, S^1) = \hat{G}_0$.
Proposition

If G is locally compact, then \hat{G} is too.

Proof (continued).

Write $W_0 = \{\chi \in \hat{G}_0 \mid \chi(O) \subseteq N(\frac{1}{4})\}$. Then W_0 is an intersection of closed subsets of \hat{G}_0 and hence is closed in \hat{G}_0. Thus W_0 is compact. Next, we immediately have $W \subseteq W_0$, and because O is a neighborhood of 1 and $N(\frac{1}{4}) \subseteq N(1)$, we have $W_0 \subseteq W$.

So we just have to show the topology on W_0 from \hat{G}_0 is finer than the topology on W from \hat{G}. Let χ be in W, and consider

$$U = W \cap W(K, \chi, \sqrt{2 - 2 \cos(2\pi/6m)})$$. Now O contains a neighborhood V of 1 such that $V^{(2m)} \subseteq O$. As K is compact, we have $K \subseteq FV$ for some finite subset F of G.

Form $U_0 = W_0 \cap W_0(F, \chi, \sqrt{2 - 2 \cos(2\pi/6m)})$, and suppose ρ lies in U_0. Since $\overline{N(1/4)}^{-1} = \overline{N(1/4)}$, we see $\xi = \chi^{-1}\rho$ sends \overline{O} to $\overline{N(1/2)} \subseteq N(1)$.
Proposition

If G is locally compact, then \hat{G} is too.

Proof (continued).

Therefore ξ is continuous, and since $V^{(2m)} \subseteq O$, we get $\xi(V) \subseteq N(\frac{1}{2m})$. Because we translated by χ^{-1}, we also see that ξ lies in $W_0(F, 1, \sqrt{2 - 2\cos(2\pi/6m)})$, so $\xi(F) \subseteq N(\frac{1}{2m})$. Hence $\xi(K) \subseteq \xi(F)\xi(O) \subseteq N(\frac{1}{m})$, so ξ lies in $W(K, 1, \sqrt{2 - 2\cos(2\pi/3m)})$. Multiplying by χ shows ρ lies in U, so altogether U_0 is a neighborhood of χ in W_0 contained in U. Hence we obtain the desired fineness statement.