Even More on Valued Fields
(featuring Hensel’s lemma)

Siyan Daniel Li-Huerta

September 22, 2020
Let F be a field complete with respect to a discretely valued norm $|\cdot|$. Let e be the smallest value > 1 that $|\cdot|$ takes, let v be the normalized valuation, and let π be a uniformizer.

Proposition

The natural map $\mathcal{O} \to \lim_{\leftarrow m} \mathcal{O}/\pi^m\mathcal{O}$ is an isomorphism of topological rings.

Proof.

The kernel is $\bigcap_{m=1}^{\infty} \pi^m\mathcal{O} = \{0\}$, so the map is injective. For surjectivity, let $(y_m)_{m=1}^{\infty}$ be in $\lim_{\leftarrow m} \mathcal{O}/\pi^m\mathcal{O}$, and choose representatives \tilde{y}_m of y_m in \mathcal{O}. For $m' \geq m \geq N$, we have $\tilde{y}_m \equiv y_N \equiv \tilde{y}_{m'} \mod \pi^N$, so $\{\tilde{y}_m\}_{m=1}^{\infty}$ is a Cauchy sequence in \mathcal{O}. By completeness, it has a limit y in \mathcal{O}. For sufficiently large M, we have $y \equiv y_M \mod \pi^M$, so y maps to $(y_m)_{m=1}^{\infty}$.

To check that the map is continuous and open, it suffices to check that it preserves neighborhoods of 0. The image of $\{x \in \mathcal{O} | |x| \leq 1/e^N\}$ is the intersection of $\lim_{\leftarrow m} \mathcal{O}/\pi^m\mathcal{O}$ with $(\prod_{m=N+1}^{\infty} \mathcal{O}/\pi^m\mathcal{O}) \times \{0\}^N$, and as N varies, both of these sets form a basis of neighborhoods of 0.
Let’s generalize p-adic expansions to F. Let R be a set of representatives of $\mathcal{O}/\pi \mathcal{O}$ that contains 0.

Example

As $\mathbb{Z}_p/p\mathbb{Z}_p = \mathbb{F}_p$, here we can take $R = \{0, 1, \ldots, p - 1\}$.

Proposition

Nonzero elements of F can be uniquely written as

$$a_N \pi^N + a_{N+1} \pi^{N+1} + \cdots,$$

where N is an integer, the a_N, a_{N+1}, \ldots lie in R, and $a_N \neq 0$.

Proof.

Let x be in F^\times, and set $N = v(x)$. Then x/π^N lies in \mathcal{O}^\times, so its image in $\mathcal{O}/\pi \mathcal{O}$ is nonzero. Thus $x/\pi^N - a_N = \pi y$ for a unique nonzero a_N in R and y in \mathcal{O}. If $y = 0$, we’re done. Otherwise, we’ve only found the leading digit of x. Replace x with y and repeat this process to find the next digit.
Definition

Let \(f = c_0 + c_1 t + \cdots + c_d t^d \) be in \(F[t] \). The Gauss norm of \(f \), denoted by \(|f| \), is \(\max\{|c_0|, \ldots, |c_d|\} \). We say \(f \) is primitive if \(|f| = 1 \).

The following lemma is extraordinarily useful. Recall that \(\mathfrak{m} = \pi \mathcal{O} \) is the unique maximal ideal of \(\mathcal{O} \). We call \(\kappa = \mathcal{O}/\mathfrak{m} \) the residue field.

Lemma (Hensel)

Let \(f \) in \(\mathcal{O}[t] \) be primitive. If \(f \equiv gh \mod \pi \) for some relatively prime \(g \) and \(h \) in \(\kappa[t] \), then there exist \(\tilde{g} \) and \(\tilde{h} \) in \(\mathcal{O}[t] \) such that \(\tilde{g} \equiv g \mod \pi \), \(\tilde{h} \equiv h \mod \pi \), \(\deg \tilde{g} = \deg g \), and \(f = \tilde{g}\tilde{h} \).

Example

Consider \(f = t^2 + 5 \) in \(\mathbb{Z}_7[t] \). Then \(f \equiv (t - 3)(t - 4) \mod 7 \), so there exist \(\tilde{g} \) and \(\tilde{h} \) in \(\mathbb{Z}_7[t] \) such that \(\tilde{g} \equiv t - 3 \mod 7 \), \(\tilde{h} \equiv t - 4 \mod 7 \), and \(\deg \tilde{g} = \deg g = 1 \). Therefore we must have \(\deg \tilde{h} = 1 \), and we see the leading coefficients of \(\tilde{g} \) and \(\tilde{h} \) lie in \(\mathbb{Z}_7^\times \). This yields two square roots of \(-5\) in \(\mathbb{Z}_7 \), which are representatives of 3 and 4 in \(\mathbb{F}_7 \). Indeed, one can check that their first two digits are \(3 + 2 \cdot 7 + \cdots \) and \(4 + 4 \cdot 7 + \cdots \).
Lemma (Hensel)

Let f in $\mathcal{O}[t]$ be primitive. If $f \equiv gh \mod \pi$ for some relatively prime g and h in $\kappa[t]$, then there exist \tilde{g} and \tilde{h} in $\mathcal{O}[t]$ such that $\tilde{g} \equiv g \mod \pi$, $\tilde{h} \equiv h \mod \pi$, $\deg \tilde{g} = \deg g$, and $f = \tilde{g}\tilde{h}$.

Proof.

Write $d = \deg f$ and $n = \deg g$. So $\deg h \leq d - n$. Choose representatives g_0 and h_0 in $\mathcal{O}[t]$ of g and h such that $\deg g_0 = n$ and $\deg h_0 \leq d - n$. As g and h are relatively prime, we can find a and b in $\mathcal{O}[t]$ such that $ag + bh \equiv 1 \mod \pi$.

By inducting on m, we will find in $\mathcal{O}[t]$ elements p_1, p_2, \ldots of degree $\leq n - 1$ and elements q_1, q_2, \ldots of degree $\leq d - n$ such that

$$g_{m-1} = g_0 + p_1 \pi + \cdots + p_{m-1} \pi^{m-1}, \quad h_{m-1} = h_0 + q_1 \pi + \cdots + q_{m-1} \pi^{m-1}$$

satisfy $f \equiv g_{m-1}h_{m-1} \mod \pi^m$. Note the $\{g_m\}_{m=1}^{\infty}$ and $\{h_m\}_{m=1}^{\infty}$ are Cauchy sequences. Thus they have limits \tilde{g} and \tilde{h}, which fulfill the desired properties.
Lemma (Hensel)

Let \(f \) in \(\mathcal{O}[t] \) be primitive. If \(f \equiv gh \mod \pi \) for some relatively prime \(g \) and \(h \) in \(\kappa[t] \), then there exist \(\tilde{g} \) and \(\tilde{h} \) in \(\mathcal{O}[t] \) such that \(\tilde{g} \equiv g \mod \pi \), \(\tilde{h} \equiv h \mod \pi \), \(\deg \tilde{g} = \deg g \), and \(f = \tilde{g} \tilde{h} \).

Proof (continued).

The \(m = 1 \) case holds by assumption. Assuming we found satisfactory \(p_1, \ldots, p_{m-1} \) and \(q_1, \ldots, q_{m-1} \), we want to choose \(p_m \) and \(q_m \) such that

\[
\begin{align*}
 f & \equiv g_m h_m = (g_{m-1} + p_m \pi^m)(h_{m-1} + q_m \pi^m) \mod \pi^{m+1} \\
 f - g_{m-1} h_{m-1} & \equiv (g_{m-1} q_m + h_{m-1} p_m) \pi^m \mod \pi^{m+1} \\
 f_m & \equiv g_{m-1} q_m + h_{m-1} p_m \equiv g_0 q_m + h_0 p_m \mod \pi,
\end{align*}
\]

where \(f_m = \pi^{-m}(f - g_{m-1} h_{m-1}) \) lies in \(\mathcal{O}[t] \). Note that \(\deg f_m \leq d \).

Because \(1 \equiv a g_0 + b h_0 \mod \pi \), we have \(f_m \equiv g_0 a f_m + h_0 b f_m \mod \pi \). So \(q_m = a f_m \) and \(p_m = b f_m \) look good, except their degrees might be too big.
Lemma (Hensel)

Let f in $\mathcal{O}[t]$ be primitive. If $f \equiv gh \mod \pi$ for some relatively prime g and h in $\kappa[t]$, then there exist \tilde{g} and \tilde{h} in $\mathcal{O}[t]$ such that $\tilde{g} \equiv g \mod \pi$, $\tilde{h} \equiv h \mod \pi$, $\deg \tilde{g} = \deg g$, and $f = \tilde{g}\tilde{h}$.

Proof (continued).

What do we do instead? First, note that $g_0 \equiv g \mod \pi$ and $\deg g_0 = \deg g$, so the leading coefficient of g_0 lies in \mathcal{O}^\times. Thus polynomial division yields $bf_m = qg_0 + p_m$ for some q and p_m in $\mathcal{O}[t]$ with $\deg p_m \leq n - 1$. Now we have

$$f_m \equiv g_0af_m + h_0bf_m = g_0(af_m + h_0q) + h_0p_m \mod \pi.$$

Let q_m be the element in $\mathcal{O}[t]$ obtained from removing every term in $af_m + h_0q$ divisible by π. Then its degree can be checked mod π, and we still have $f_m \equiv g_0q_m + h_0p_m \mod \pi$. Since $\deg f_m \leq d$, $\deg h_0p_m \leq (d - n) + (n - 1) = d - 1$, and $\deg g_0 = n$, we must have $\deg q_m \leq d - n$. \qed
Example

Consider \(f = t^{p-1} - 1 \) in \(\mathbb{Z}_p[t] \). Then \(f \equiv \prod_{i=1}^{p-1}(t - i) \mod p \), so repeatedly applying Hensel’s lemma shows that \(f \) completely factors into degree 1 elements of \(\mathbb{Z}_p[t] \) with leading coefficients in \(\mathbb{Z}_p^\times \). Hence \(\mathbb{Z}_p \) contains all \((p - 1)\)-th roots of unity, and \(R = \{ x \in \mathbb{Z}_p^\times \mid x^{p-1} = 1 \} \cup \{ 0 \} \) forms a set of representatives of \(\mathbb{F}_p \) that’s closed under multiplication. These are called Teichmüller representatives.

Corollary

Let \(f = c_0 + \cdots + c_d t^d \) in \(F[t] \) be irreducible, and suppose \(c_d c_0 \neq 0 \). Then \(|f| = \max\{|c_0|, |c_d|\} \).

Proof.

By replacing \(f \) with a scalar multiple, we may assume \(|f| = 1 \) and \(f \) hence lies in \(O[t] \). Let \(r \) be the smallest such that \(|c_r| = 1 \). Then
\[
f \equiv t^r (c_r + \cdots + c_d t^{d-r}) \mod \pi,
\]
where \(c_r \neq 0 \mod \pi \). If \(\max\{|c_0|, |c_d|\} < 1 \), then we must have \(1 \leq r \leq d - 1 \). Hensel’s lemma then provides a nontrivial factorization of \(f \), which cannot exist.
Corollary

Let E/F be a finite extension of degree d. Then $| \cdot |' = | \text{Nm}_{E/F} \cdot |^{1/d}$ yields an extension of $| \cdot |$ to an absolute value on E, and it is the unique extension up to isomorphism.

Proof.

Write \mathcal{O}' for the integral closure of \mathcal{O}_F in E. For nonzero x in E, its characteristic polynomial over F is a power of its minimal polynomial $f = c_0 + \cdots + t^m$ over F. Thus $\text{Nm}_{E/F} x = \pm c_0^{d/m}$. If x lies in \mathcal{O}', then c_0 and hence $\text{Nm}_{E/F} x$ lies in \mathcal{O}_F. Conversely, if $\text{Nm}_{E/F} x$ lies in \mathcal{O}_F, then the previous lemma shows $|f| = \max\{|c_0|, |1|\} = 1$. Thus f lies in $\mathcal{O}_F[t]$, so x lies in \mathcal{O}'.

When x is in F, we have $\text{Nm}_{E/F} x = x^d$, so $| \cdot |'$ extends $| \cdot |$. Let’s show $| \cdot |'$ is a norm. Evidently $|x|' = 0$ if and only if $x = 0$, and $| \cdot |'$ also commutes with multiplication. As for the strong triangle inequality, let x and y be in E^\times, and say $|x|' \leq |y|'$ without loss of generality. Then $|x + y|' \leq \max\{|x|', |y|'|$ is equivalent to $|x/y + 1|' \leq \max\{|x/y|', 1\} = 1$. 9 / 10
Corollary

Let E/F be a finite extension of degree d. Then $|·|' = |\text{Nm}_{E/F} ·|^1/d$ yields an extension of $|·|$ to an absolute value on E, and it is the unique extension up to isomorphism.

Proof (continued).

Since $|x/y|^' \leq 1$, then we have $|\text{Nm}_{E/F}(x/y)| \leq 1$, i.e. $\text{Nm}_{E/F}(x/y)$ lies in \mathcal{O}_F. Hence x/y lies in \mathcal{O}'. Because \mathcal{O}' is a subring, so does $x/y + 1$, which implies $|\text{Nm}_{E/F}(x/y + 1)| \leq 1$ and hence $|x/y + 1|^' \leq 1$, as desired. So $|·|^'$ is a nonarchimedean norm on E, and its valuation ring is \mathcal{O}'. Write \mathfrak{m}' for its maximal ideal.

For uniqueness, let $|·|^''$ be another norm on E extending $|·|$. Then $|·|^''$ must be nontrivial and nonarchimedean. Write \mathcal{O}'' and \mathfrak{m}'' for its valuation ring and maximal ideal. If we had some x in $\mathcal{O}' \setminus \mathcal{O}''$, then the coefficients c_0, \ldots, c_{m-1} of its minimal polynomial lie in \mathcal{O}_F and hence \mathcal{O}''. Yet x^{-1} must lie in \mathfrak{m}'', so $1 = -c_{m-1}x^{-1} - \cdots - c_0x^{-m}$ does too, which is false. Therefore $\mathcal{O}' \subseteq \mathcal{O}''$, so $|x|^'' > 1$ implies $|x|^' > 1$. Taking inverses shows that $|x|^'' < 1$ implies $|x|^' < 1$, so $|·|^''$ and $|·|^'$ are isomorphic.