MATH 137: PROBLEM SET 3

Due Friday, February 17

(1) [Ha] Ch.I: 1.9
(2) Let \(U \) be a nonempty open subset in the affine variety \(X \). Then

\[\dim U = \dim X. \]

(3) Let \(X \subset \mathbb{A}^m \) and \(Y \subset \mathbb{A}^n \) be affine algebraic sets. Show that \(X \times Y \subset \mathbb{A}^{m+n} \) is an algebraic set, and if \(X \) and \(Y \) are irreducible then \(X \times Y \) is so.

Extra credit: Show that the affine coordinate ring of the product satisfies

\[A(X \times Y) \cong A(X) \otimes_k A(Y), \]

and show the formula \(\dim X \times Y = \dim X + \dim Y \).

(4) (i) Let \(X \subset \mathbb{A}^n \) be an affine variety, and let \(f \in k[X_1, \ldots, X_n] \) such that \(X \not\subset Z(f) \). Show that the *distinguished open set* \(X_f := X \setminus Z(f) \) is isomorphic to an affine subvariety in \(\mathbb{A}^{n+1} \), whose coordinate algebra satisfies

\[A(X_f) \cong A(X)[X_{n+1}]/(X_{n+1}f - 1). \]

(ii) Show that if we consider all such \(f \), the open sets \(X_f \) form a basis for the topology of \(X \).

(5) Let \(R \subseteq S \subseteq T \) be ring extensions of integral domains. Show that:

(a) If \(S \) is module-finite over \(R \), and \(T \) is module-finite over \(S \), then \(T \) is module finite over \(R \).

(b) If \(S \) is integral over \(R \), and \(T \) is integral over \(S \), then \(T \) is integral over \(R \).

(6) If \(k \) is an algebraically closed field, and \(I \) is an ideal in \(R = k[X_1, \ldots, X_n] \), show that \(Z = Z(I) \subset \mathbb{A}^n \) is a finite set if and only if \(\dim_k R/I < \infty \), i.e. the coordinate algebra \(A(Z) \) is finite dimensional as a \(k \)-vector space.

Note that knowing \(\dim_k R/I \) (usually called the *length of the scheme* defined by \(I \)) is more refined than just knowing \(Z \). For instance, compare \(\dim_k R/I \) with \(R = k[X,Y] \), for

(a) \(I = (X,Y) \) versus \(I = (X^2,Y) \).

(b) \(I = (Y - X, X^2 + Y^2 - 1) \) versus \(I = (Y - X^2, Y^2 - X^3) \).

\(^1\)This is the same as the localization \(A(X)_f = A(X)[1/f] \) of \(A(X) \) at \(f \); note that we continue to use the notation \(f \) for its image in \(A(X) \), for simplicity.