The Adams Spectral Sequence (Lecture 8)

April 27, 2010

Recall that our goal this week is to prove the following result:

Theorem 1 (Quillen). The universal complex orientation of the complex bordism spectrum MU determines a formal group law over π_* MU. This formal group law is classified by an isomorphism of commutative rings $L \to \pi_*$ MU.

To prove this theorem, we need a method for calculating the homotopy groups π_* MU. In the last lecture, we computed the homology groups $H_*(MU; \mathbb{Z}) \simeq \mathbb{Z}[b_1, b_2, \ldots]$. The universal coefficient theorem then gives $H_*(MU; R) \simeq R[b_1, b_2, \ldots]$ for any commutative ring R. In this lecture, we review a general method for passing from information about the homology of a spectrum to information about its homotopy groups: the Adams spectral sequence.

Fix a prime number p, and let R denote the Eilenberg-MacLane spectrum $H\mathbf{F}_p$. Then E admits a coherently associative multiplication. In particular, we can define a functor \overline{R}^{\bullet} from finite linearly ordered sets to spectra, given by $\{0, 1, \ldots, n\} \mapsto R \otimes \cdots \otimes R \simeq R^{\otimes n+1}$. In other words, we can view \overline{R}^{\bullet} as an augmented cosimplicial spectrum. Restricting to nonempty finite linearly ordered sets, we get a cosimplicial spectrum which we will denote by R^{\bullet} . If X is any other spectrum, we can define an augmented cosimplicial spectrum $\overline{X}^{\bullet} = X \otimes \overline{R}^{\bullet}$; let X^{\bullet} denote the underlying cosimplicial spectrum. The augmented cosimplicial spectrum \overline{X}^{\bullet} determines a map

$$X \simeq X \otimes S \simeq X \otimes \overline{R}^{-1} = \overline{X}^{-1} \to \operatorname{Tot} X^{\bullet}.$$

Put more concretely, we have the canonical Adams resolution of X, which is a chain complex of spectra

$$X \to X \otimes R \stackrel{d^0 - d^1}{\to} X \otimes R \otimes R \stackrel{d^0 - d^1 + d^2}{\to} X \otimes R \otimes R \otimes R \to \cdots$$

Any cosimplicial spectrum X^{\bullet} determines a spectral sequence $\{E_r^{a,b}\}$. Here $E_1^{a,b} = \pi_a X^b$, and the differential on the first page is the differential in the chain complex

$$\pi_a X^0 \stackrel{d^0 - d^1}{\longrightarrow} \pi_a X^1 \stackrel{d^0 - d^1 + d^2}{\longrightarrow} \pi_a X^2 \to \cdots$$

In good cases, this spectral sequence will converge to information about the totalization Tot X^{\bullet} . In our case, we have the following result:

Theorem 2 (Adams). Let X be a connective spectrum whose homotopy groups $\pi_n X$ are finitely generated for every integer n. Fix a prime number p and let $R = H\mathbf{F}_p$, and let $X \to \text{Tot } X^{\bullet}$ be the map constructed above. Then:

(1) For every integer n, we have a canonical decreasing filtration

 $\dots \subseteq F^2 \pi_n X \to F^1 \pi_n X \to F^0 \pi_n X = \pi_n X$

where $F^i \pi_n X$ is the kernel of the map $\pi_n X \to \pi_n \operatorname{Tot}^{i-1} X^{\bullet}$.

(2) The decreasing filtration $F^i \pi_n X$ is commensurate with the p-adic filtration. That is, for each $i \ge 0$, there exists $j \gg i$ such that $p^i \pi_n X \subseteq F^j \pi_n X \subseteq p^j \pi_n X$. In particular, we have a canonical isomorphism

$$\underline{\lim}(\pi_n X/F^{j}\pi_n X) \simeq \underline{\lim}(\pi_n X/p^{i}\pi_n X) \simeq (\pi_n X)^{\vee},$$

where \lor denotes the functor of p-adic completion.

(3) For fixed a and b, the abelian groups $\{E_r^{a,b}\}_{r\geq 0}$ stabilize to some fixed value $E_{\infty}^{a,b}$ for $r \gg 0$. Moreover, we have a canonical isomorphism

$$F^b \pi_{a-b}(X) / F^{b+1} \pi_{a-b} X \simeq E^{a,b}_{\infty}.$$

If X is a ring spectrum, then X^{\bullet} has the structure of a cosimplicial ring spectrum. In this case, we have the following additional conclusions:

- (4) For integers m and n, the multiplication map $\pi_m X \times \pi_n X \to \pi_{n+m} X$ carries $F^i \pi_m X \times F^j \pi_n X$ into $F^{i+j} \pi_{m+n} X$. In particular, we get a bilinear multiplication $E_{\infty}^{a,b} \times E_{\infty}^{a',b'} \to E_{\infty}^{a+a',b+b'}$.
- (5) The spectral sequence $\{E_r^{a,b}\}$ is multiplicative. That is, for each r, we have bilinear maps $E_r^{a,b} \times E_r^{a',b'} \to E_r^{a+a',b+b'}$. These maps are associative in the obvious sense and compatible with the differential (i.e., the differential satisfies the Leibniz rule). Moreover, when $r \gg 0$ so that $E_r^{a,b} = E_{\infty}^{a,b}$ and $E_r^{a',b'} = E_{\infty}^{a',b'}$, these multiplications agree with the multiplications defined in (4).

To apply Theorem 2 in practice, we would like to understand the initial pages of the spectral sequence $\{E_r^{a,b}\}$. When r = 1, we have $E_r^{a,b} \simeq \pi_a(X \otimes R^{\otimes b+1})$. In particular, $E_1^{*,0} \simeq \pi_*(X \otimes R) = \mathcal{H}_*(X; \mathbf{F}_p)$ is the mod p homology of the spectrum X. To understand the next term, we write $X^1 = X \otimes R \otimes R = (X \otimes R) \otimes_R (R \otimes R)$. This gives a canonical isomorphism $E_1^{*,1} \simeq \mathcal{H}_*(X; \mathbf{F}_p) \otimes_{\mathbf{F}_p} \pi_*(R \otimes R)$.

Definition 3. Let R be the ring spectrum $H\mathbf{F}_p$. The graded-commutative ring $\pi_*(R \otimes R)$ is called the *dual Steenrod algebra*, and will be denoted by \mathcal{A}^{\vee} .

More generally, we can write

$$X^{b} = X \otimes R^{\otimes b+1} = (X \otimes R) \otimes_{R} (R \otimes R) \otimes_{R} \cdots \otimes_{R} (R \otimes R).$$

This identification gives a canonical isomorphism

$$E_1^{*,b} \simeq \mathrm{H}_*(X;\mathbf{F}_p) \otimes_{\mathbf{F}_p} (\mathcal{A}^{\vee})^{\otimes b}$$

. We have a chain complex of graded abelian groups

$$\mathrm{H}_*(X; \mathbf{F}_p) \to \mathrm{H}_*(X; \mathbf{F}_p) \otimes_{\mathbf{F}_p} \mathcal{A}^{\vee} \to \mathrm{H}_*(X; \mathbf{F}_p) \otimes_{\mathbf{F}_p} \mathcal{A}^{\vee} \otimes_{\mathbf{F}_p} \mathcal{A}^{\vee} \to \cdots$$

associated to a cosimplicial graded abelian group $\mathrm{H}_*(X; \mathbf{F}_p) \otimes (\mathcal{A}^{\vee})^{\otimes \bullet}$.

To describe the second page of the spectral sequence $\{E_r^{a,b}\}$, we would like understand the differentials in this chain complex. We begin by noting that \mathcal{A}^{\vee} is actually a Hopf algebra. That is, there is a comultiplication $c: \mathcal{A}^{\vee} \to \mathcal{A}^{\vee} \otimes_{\mathbf{F}_p} \mathcal{A}^{\vee}$, which is induced by the map of ring spectra

$$R \otimes R \simeq R \otimes S \otimes R \to R \otimes R \otimes R \simeq (R \otimes R) \otimes_R (R \otimes R)$$

by passing to homotopy groups. Moreover, this coalgebra *acts* on $H_*(X; \mathbf{F}_p)$ for any spectrum X: that is, we have a canonical map $a: H_*(X; \mathbf{F}_p) \to H_*(X; \mathbf{F}_p) \otimes_{\mathbf{F}_p} \mathcal{A}^{\vee}$. This map is induced by the map of spectra

$$X \otimes R \simeq X \otimes S \otimes R \to X \otimes R \otimes R \simeq (X \otimes R) \otimes_R (R \otimes R).$$

Remark 4. Passing to (graded) vector space duals, we see that the dual of \mathcal{A}^{\vee} is an algebra (called the *Steenrod algebra*, which acts on the cohomology $\mathrm{H}^*(X; \mathbf{F}_p)$ of any spectrum.

Unwinding the definitions, we see that each of the differentials

$$\mathrm{H}_*(X;\mathbf{F}_p) \otimes_{\mathbf{F}_p} (\mathcal{A}^{\vee})^{\otimes n-1} \to \mathrm{H}_*(X;\mathbf{F}_p) \otimes_{\mathbf{F}_p} (\mathcal{A}^{\vee})^{\otimes n}$$

is given by an alternating sum $\sum_{0 \le i \le n} d^i$, where:

- The map d^0 is induced by the action map $a: \mathrm{H}_*(X; \mathbf{F}_p) \to \mathrm{H}_*(X; \mathbf{F}_p) \otimes_{\mathbf{F}_p} \mathcal{A}^{\vee}$.
- The maps d^1, \ldots, d^{n-1} are induced by the comultiplication $c : \mathcal{A}^{\vee} \to \mathcal{A}^{\vee} \otimes_{\mathbf{F}_p} \mathcal{A}^{\vee}$, applied to each factor of \mathcal{A}^{\vee} .
- The map d^n is given by the inclusion of the unit $\mathbf{F}_p \to \mathcal{A}^{\vee}$.

It is convenient to describe the above analysis in the language of algebraic geometry. For simplicity, we will henceforth assume that p = 2, so that graded-commutative rings are actually commutative.

- **Proposition 5.** (1) Let \mathbb{G} denote the spectrum of the commutative ring \mathcal{A}^{\vee} . The comultiplication $\mathcal{A}^{\vee} \to \mathcal{A}^{\vee} \otimes_{\mathbf{F}_2} \mathcal{A}^{\vee}$ determines a multiplication $\mathbb{G} \times_{\operatorname{Spec} \mathbf{F}_2} \mathbb{G} \to \mathbb{G}$, which endows \mathbb{G} with the structure of an affine group scheme over $\operatorname{Spec} \mathbf{F}_2$.
 - (2) For any spectrum X, the action map $H_*(X; \mathbf{F}_2) \to H_*(X; \mathbf{F}_2) \otimes_{\mathbf{F}_2} \mathcal{A}^{\vee}$ endows the vector space $V = H_*(X; \mathbf{F}_2)$ with the structure of a representation of the group scheme \mathbb{G} .
 - (3) The E_1 -term of the Adams spectral sequence can be identified with the canonical cochain complex

$$V \to \Gamma(\mathbb{G}; V \otimes \mathcal{O}_{\mathbb{G}}) \to \Gamma(\mathbb{G}^2; V \otimes \mathcal{O}_{\mathbb{G}^2}) \to \cdots$$

which encodes the action of \mathbb{G} on V.

(4) The E_2 -term of the Adams spectral sequence can be identified with the cohomologies of this cochain complex. In other words, we have

$$E_2^{*,b} \simeq \mathrm{H}^b(\mathbb{G}; \mathrm{H}_*(X; \mathbf{F}_2)).$$

In the special case where X is a ring spectrum, we can say more. In this case, the multiplication on X endows the homology $H_*(X; \mathbf{F}_2)$ with the structure of a commutative \mathbf{F}_2 -algebra. Then the spectrum Spec $H_*(X; \mathbf{F}_2)$ is an affine scheme Y. The action $H_*(X; \mathbf{F}_2) \to H_*(X; \mathbf{F}_2) \otimes_{\mathbf{F}_2} \mathcal{A}^{\vee}$ is a map of commutative rings, which determines a map of affine schemes $\mathbb{G} \times_{\operatorname{Spec} \mathbf{F}_2} Y \to Y$. In other words, the affine scheme Y is *acted on* by the group scheme G. Moreover, the cohomology groups $H^b(\mathbb{G}; H_*(X; \mathbf{F}_2))$ are simply the cohomology groups of the quotient stack Y/\mathbb{G} . In particular, we get an isomorphism of commutative algebras $E_2^{**} \simeq H^*(Y/\mathbb{G}; \mathcal{O}_{Y/\mathbb{G}})$.

To apply this information in practice, we need to understand the algebraic group \mathbb{G} . For each integer n, let X(n) denote the function spectrum $S^{\mathbb{R}P^n}$, where $\mathbb{R}P^n$ denotes real projective space of dimension n. Then X(n) is a commutative ring spectrum (in fact, an E_{∞} -ring spectrum), and we have a canonical isomorphism

$$\mathrm{H}_*(X(n); \mathbf{F}_2) \simeq \mathrm{H}^*(\mathbf{R}P^n; \mathbf{F}_2) \simeq \mathbf{F}_2[x]/(x^{n+1}).$$

In particular, we get an action of \mathbb{G} on the affine scheme Spec $\mathbf{F}_2[x]/(x^{n+1})$. Passing to the limit as n grows, we get an action of \mathbb{G} on the formal scheme

$$\lim \operatorname{Spec} \mathbf{F}_2[x]/(x^{n+1}) \simeq \operatorname{Spf} \mathbf{F}_2[[x]] = \operatorname{Spf} H^*(\mathbf{R}P^{\infty}, \mathbf{F}_2)$$

This action is not arbitrary. Note that $\mathbf{R}P^{\infty}$ has a commutative multiplication. For example, we can realize $\mathbf{R}P^{\infty}$ as the projectivization of the *real* vector space $\mathbb{R}[t]$, and $\mathbf{R}P^n$ as the projectivization of the subspace of $\mathbb{R}[t]$ spanned by polynomials of degree $\leq n$. The multiplication on $\mathbb{R}[t]$ induces a multiplication $\mathbf{R}P^{\infty} \times \mathbf{R}P^{\infty} \to \mathbf{R}P^{\infty}$, which is the direct limit of multiplication maps $\mathbf{R}P^m \times \mathbf{R}P^n \to \mathbf{R}P^{m+n}$. Each of these multiplication maps induces a map of spectra $X(m+n) \to X(m) \otimes X(n)$, which induces a G-equivariant map

$$\operatorname{Spec}(\mathbf{F}_2[x]/(x^{m+1})) \times_{\operatorname{Spec}\mathbf{F}_2} \operatorname{Spec}(\mathbf{F}_2[x]/(x^{n+1})) \to \operatorname{Spec}(\mathbf{F}_2[x]/x^{m+n+1})$$

In concrete terms, this is just given by the map of commutative rings $\mathbf{F}_2[x]/(x^{m+n+1}) \to \mathbf{F}_2[x, x']/(x^{m+1}, x'^{n+1})$ given by $x \mapsto x + x'$. Passing to the limit as m and n grow, we get a map of formal schemes

$$\operatorname{Spf} \mathbf{F}_2[[x]] \times_{\operatorname{Spec} \mathbf{F}_2} \operatorname{Spf} \mathbf{F}_2[[x]] \to \operatorname{Spf} \mathbf{F}_2[[x]].$$

This map encodes a formal group law over the ring \mathbf{F}_2 , which is given by the power series $f(x, y) = x + y \in \mathbf{F}_2[[x, y]]$.

By construction, the action of \mathbb{G} on Spf $\mathbf{F}_2[[x]]$ preserves the group structure given by f(x, y) = x + y. That is, we can regard \mathbb{G} as acting by *automorphisms* of the formal group law f. This gives a description of \mathbb{G} which is very convenient for our purposes:

Theorem 6. For every commutative \mathbf{F}_2 -algebra A, the above construction yields a canonical bijection of $\operatorname{Hom}(\mathcal{A}^{\vee}, A) \simeq \operatorname{Hom}(\operatorname{Spec} A, \mathbb{G})$ with the group of all power series

$$x \mapsto x + a_1 x^2 + a_2 x^4 + a_3 x^8 + \dots$$

where $a_i \in A$, regarded as automorphisms of the formal group $\operatorname{Spec} A \times_{\operatorname{Spec} F_2} \operatorname{Spf} \mathbf{F}_2[[x]] = \operatorname{Spf} A[[x]]$.