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Recall that our goal this week is to prove the following result:

Theorem 1 (Quillen). The universal complex orientation of the complex bordism spectrum MU determines
a formal group law over π∗MU. This formal group law is classified by an isomorphism of commutative rings
L→ π∗MU.

To prove this theorem, we need a method for calculating the homotopy groups π∗MU. In the last lecture,
we computed the homology groups H∗(MU; Z) ' Z[b1, b2, . . .]. The universal coefficient theorem then gives
H∗(MU;R) ' R[b1, b2, . . .] for any commutative ring R. In this lecture, we review a general method for
passing from information about the homology of a spectrum to information about its homotopy groups: the
Adams spectral sequence.

Fix a prime number p, and let R denote the Eilenberg-MacLane spectrum HFp. Then E admits a
coherently associative multiplication. In particular, we can define a functor R

•
from finite linearly ordered

sets to spectra, given by {0, 1, . . . , n} 7→ R ⊗ · · · ⊗ R ' R⊗n+1. In other words, we can view R
•

as an
augmented cosimplicial spectrum. Restricting to nonempty finite linearly ordered sets, we get a cosimplicial
spectrum which we will denote by R•. If X is any other spectrum, we can define an augmented cosimplicial
spectrum X

•
= X ⊗ R•; let X• denote the underlying cosimplicial spectrum. The augmented cosimplicial

spectrum X
•

determines a map

X ' X ⊗ S ' X ⊗R−1
= X

−1 → TotX•.

Put more concretely, we have the canonical Adams resolution of X, which is a chain complex of spectra

X → X ⊗R d0−d1

→ X ⊗R⊗R d0−d1+d2

→ X ⊗R⊗R⊗R→ · · ·

Any cosimplicial spectrum X• determines a spectral sequence {Ea,b
r }. Here Ea,b

1 = πaX
b, and the

differential on the first page is the differential in the chain complex

πaX
0 d0−d1

→ πaX
1 d0−d1+d2

→ πaX
2 → · · ·

In good cases, this spectral sequence will converge to information about the totalization TotX•. In our case,
we have the following result:

Theorem 2 (Adams). Let X be a connective spectrum whose homotopy groups πnX are finitely generated
for every integer n. Fix a prime number p and let R = HFp, and let X → TotX• be the map constructed
above. Then:

(1) For every integer n, we have a canonical decreasing filtration

· · · ⊆ F 2πnX → F 1πnX → F 0πnX = πnX

where F iπnX is the kernel of the map πnX → πn Toti−1X•.
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(2) The decreasing filtration F iπnX is commensurate with the p-adic filtration. That is, for each i ≥ 0,
there exists j � i such that piπnX ⊆ F jπnX ⊆ pjπnX. In particular, we have a canonical isomorphism

lim←−(πnX/F
jπnX) ' lim←−(πnX/p

iπnX) ' (πnX)∨,

where ∨ denotes the functor of p-adic completion.

(3) For fixed a and b, the abelian groups {Ea,b
r }r≥0 stabilize to some fixed value Ea,b

∞ for r � 0. Moreover,
we have a canonical isomorphism

F bπa−b(X)/F b+1πa−bX ' Ea,b
∞ .

If X is a ring spectrum, then X• has the structure of a cosimplicial ring spectrum. In this case, we have
the following additional conclusions:

(4) For integers m and n, the multiplication map πmX × πnX → πn+mX carries F iπmX × F jπnX into
F i+jπm+nX. In particular, we get a bilinear multiplication Ea,b

∞ × Ea′,b′

∞ → Ea+a′,b+b′

∞ .

(5) The spectral sequence {Ea,b
r } is multiplicative. That is, for each r, we have bilinear maps Ea,b

r ×Ea′,b′

r →
Ea+a′,b+b′

r . These maps are associative in the obvious sense and compatible with the differential (i.e.,
the differential satisfies the Leibniz rule). Moreover, when r � 0 so that Ea,b

r = Ea,b
∞ and Ea′,b′

r =
Ea′,b′

∞ , these multiplications agree with the multiplications defined in (4).

To apply Theorem 2 in practice, we would like to understand the initial pages of the spectral sequence
{Ea,b

r }. When r = 1, we have Ea,b
r ' πa(X⊗R⊗b+1). In particular, E∗,01 ' π∗(X⊗R) = H∗(X; Fp) is the mod

p homology of the spectrum X. To understand the next term, we write X1 = X⊗R⊗R = (X⊗R)⊗R(R⊗R).
This gives a canonical isomorphism E∗,11 ' H∗(X; Fp)⊗Fp

π∗(R⊗R).

Definition 3. Let R be the ring spectrum HFp. The graded-commutative ring π∗(R⊗R) is called the dual
Steenrod algebra, and will be denoted by A∨.

More generally, we can write

Xb = X ⊗R⊗b+1 = (X ⊗R)⊗R (R⊗R)⊗R · · · ⊗R (R⊗R).

This identification gives a canonical isomorphism

E∗,b1 ' H∗(X; Fp)⊗Fp (A∨)⊗b

. We have a chain complex of graded abelian groups

H∗(X; Fp)→ H∗(X; Fp)⊗Fp
A∨ → H∗(X; Fp)⊗Fp

A∨⊗Fp
A∨ → · · ·

associated to a cosimplicial graded abelian group H∗(X; Fp)⊗ (A∨)⊗•.
To describe the second page of the spectral sequence {Ea,b

r }, we would like understand the differentials in
this chain complex. We begin by noting that A∨ is actually a Hopf algebra. That is, there is a comultiplication
c : A∨ → A∨⊗Fp A∨, which is induced by the map of ring spectra

R⊗R ' R⊗ S ⊗R→ R⊗R⊗R ' (R⊗R)⊗R (R⊗R)

by passing to homotopy groups. Moreover, this coalgebra acts on H∗(X; Fp) for any spectrum X: that is,
we have a canonical map a : H∗(X; Fp)→ H∗(X; Fp)⊗Fp

A∨. This map is induced by the map of spectra

X ⊗R ' X ⊗ S ⊗R→ X ⊗R⊗R ' (X ⊗R)⊗R (R⊗R).

Remark 4. Passing to (graded) vector space duals, we see that the dual of A∨ is an algebra (called the
Steenrod algebra, which acts on the cohomology H∗(X; Fp) of any spectrum.
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Unwinding the definitions, we see that each of the differentials

H∗(X; Fp)⊗Fp
(A∨)⊗n−1 → H∗(X; Fp)⊗Fp

(A∨)⊗n

is given by an alternating sum
∑

0≤i≤n d
i, where:

• The map d0 is induced by the action map a : H∗(X; Fp)→ H∗(X; Fp)⊗Fp A∨.

• The maps d1, . . . , dn−1 are induced by the comultiplication c : A∨ → A∨⊗Fp
A∨, applied to each factor

of A∨.

• The map dn is given by the inclusion of the unit Fp → A∨.

It is convenient to describe the above analysis in the language of algebraic geometry. For simplicity, we
will henceforth assume that p = 2, so that graded-commutative rings are actually commutative.

Proposition 5. (1) Let G denote the spectrum of the commutative ring A∨. The comultiplication A∨ →
A∨⊗F2 A∨ determines a multiplication G ×SpecF2 G → G, which endows G with the structure of an
affine group scheme over Spec F2.

(2) For any spectrum X, the action map H∗(X; F2) → H∗(X; F2) ⊗F2 A∨ endows the vector space V =
H∗(X; F2) with the structure of a representation of the group scheme G.

(3) The E1-term of the Adams spectral sequence can be identified with the canonical cochain complex

V → Γ(G;V ⊗ OG)→ Γ(G2;V ⊗ OG2)→ · · ·

which encodes the action of G on V .

(4) The E2-term of the Adams spectral sequence can be identified with the cohomologies of this cochain
complex. In other words, we have

E∗,b2 ' Hb(G; H∗(X; F2)).

In the special case where X is a ring spectrum, we can say more. In this case, the multiplication on
X endows the homology H∗(X; F2) with the structure of a commutative F2-algebra. Then the spectrum
Spec H∗(X; F2) is an affine scheme Y . The action H∗(X; F2)→ H∗(X; F2)⊗F2 A∨ is a map of commutative
rings, which determines a map of affine schemes G ×SpecF2 Y → Y . In other words, the affine scheme
Y is acted on by the group scheme G. Moreover, the cohomology groups Hb(G; H∗(X; F2)) are simply the
cohomology groups of the quotient stack Y/G. In particular, we get an isomorphism of commutative algebras
E∗,∗2 ' H∗(Y/G; OY/G).

To apply this information in practice, we need to understand the algebraic group G. For each integer
n, let X(n) denote the function spectrum SRP n

, where RPn denotes real projective space of dimension
n. Then X(n) is a commutative ring spectrum (in fact, an E∞-ring spectrum), and we have a canonical
isomorphism

H∗(X(n); F2) ' H∗(RPn; F2) ' F2[x]/(xn+1).

In particular, we get an action of G on the affine scheme Spec F2[x]/(xn+1). Passing to the limit as n grows,
we get an action of G on the formal scheme

lim−→ Spec F2[x]/(xn+1) ' Spf F2[[x]] = Spf H∗(RP∞,F2)

This action is not arbitrary. Note that RP∞ has a commutative multiplication. For example, we can
realize RP∞ as the projectivization of the real vector space R[t], and RPn as the projectivization of the
subspace of R[t] spanned by polynomials of degree ≤ n. The multiplication on R[t] induces a multiplication
RP∞ ×RP∞ → RP∞, which is the direct limit of multiplication maps RPm ×RPn → RPm+n. Each of
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these multiplication maps induces a map of spectra X(m+n)→ X(m)⊗X(n), which induces a G-equivariant
map

Spec(F2[x]/(xm+1))×SpecF2 Spec(F2[x]/(xn+1))→ Spec(F2[x]/xm+n+1).

In concrete terms, this is just given by the map of commutative rings F2[x]/(xm+n+1)→ F2[x, x′]/(xm+1, x′
n+1)

given by x 7→ x+ x′. Passing to the limit as m and n grow, we get a map of formal schemes

Spf F2[[x]]×SpecF2 Spf F2[[x]]→ Spf F2[[x]].

This map encodes a formal group law over the ring F2, which is given by the power series f(x, y) = x+ y ∈
F2[[x, y]].

By construction, the action of G on Spf F2[[x]] preserves the group structure given by f(x, y) = x + y.
That is, we can regard G as acting by automorphisms of the formal group law f . This gives a description of
G which is very convenient for our purposes:

Theorem 6. For every commutative F2-algebra A, the above construction yields a canonical bijection of
Hom(A∨, A) ' Hom(SpecA,G) with the group of all power series

x 7→ x+ a1x
2 + a2x

4 + a3x
8 + . . . ,

where ai ∈ A, regarded as automorphisms of the formal group SpecA×Spec F2 Spf F2[[x]] = Spf A[[x]].
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