The Adams Spectral Sequence (Lecture 8)

April 27, 2010

Recall that our goal this week is to prove the following result:

Theorem 1 (Quillen). The universal complex orientation of the complex bordism spectrum MU determines
a formal group law over m, MU. This formal group law is classified by an isomorphism of commutative rings
L — m, MU.

To prove this theorem, we need a method for calculating the homotopy groups m, MU. In the last lecture,
we computed the homology groups H,(MU;Z) ~ Z[by, bs, ...]. The universal coefficient theorem then gives
H.(MU; R) ~ R[by,ba,...] for any commutative ring R. In this lecture, we review a general method for
passing from information about the homology of a spectrum to information about its homotopy groups: the
Adams spectral sequence.

Fix a prime number p, and let R denote the Eilenberg-MacLane spectrum HF,. Then E admits a
coherently associative multiplication. In particular, we can define a functor R’ from finite linearly ordered
sets to spectra, given by {0,1,...,n} — R® ---® R ~ R®"*1  In other words, we can view R’ as an
augmented cosimplicial spectrum. Restricting to nonempty finite linearly ordered sets, we get a cosimplicial
spectrum which we will denote by R®. If X is any other spectrum, we can define an augmented cosimplicial
spectrum X' =X E.; let X*® denote the underlying cosimplicial spectrum. The augmented cosimplicial
spectrum X° determines a map

X~X®S~X®R '=X ' — Tot X*.

Put more concretely, we have the canonical Adams resolution of X, which is a chain complex of spectra
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Any cosimplicial spectrum X°® determines a spectral sequence {E%’}. Here Ef v — 7,X" and the
differential on the first page is the differential in the chain complex
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In good cases, this spectral sequence will converge to information about the totalization Tot X*. In our case,
we have the following result:

Theorem 2 (Adams). Let X be a connective spectrum whose homotopy groups 7, X are finitely generated
for every integer n. Fiz a prime number p and let R = HF,, and let X — Tot X*® be the map constructed
above. Then:

(1) For every integer n, we have a canonical decreasing filtration
- C P, X - F'r, X — FOmp X = 1, X

where Fim, X is the kernel of the map mp X — m, Tot' ™1 X,



(2) The decreasing filtration F'm,X is commensurate with the p-adic filtration. That is, for each i > 0,
there exists j > i such that p'mp, X C Fin,X C pPm,X. In particular, we have a canonical isomorphism

lim (70, X/ FI 70, X) o lim (7, X /p'mn X)) = (1, X) ",
where V denotes the functor of p-adic completion.

(3) For fived a and b, the abelian groups {E®*},>q stabilize to some fived value ELY for r > 0. Moreover,
we have a canonical isomorphism

FPry (X)) F" M, X ~ E%P,
If X is a ring spectrum, then X°® has the structure of a cosimplicial ring spectrum. In this case, we have
the following additional conclusions:

(4) For integers m and n, the multiplication map T, X X 71, X — TpemX carries Fim, X x Fig, X into
Ftim,. . X. In particular, we get a bilinear multiplication E%? x B3V — Eata b+b

(5) The spectral sequence { E®*} is multiplicative. That is, for each r, we have bilinear maps E&" XE“, LN
E“*a/ bV These maps are associative in the obvious sense and compatible with the dzﬁerentzal (z €.,
the dzﬁerentzal satisfies the Leibniz rule). Moreover, when r > 0 so that E*®* = E% and Ea’ =
Ego b , these multiplications agree with the multiplications defined in (4).

To apply Theorem 2 in practice, we would like to understand the initial pages of the spectral sequence
{E%*}. When r = 1, we have E*? ~ 7,(X®R®"+1). In particular, B} ~ 7, (X®R) = H.(X; F,) is the mod
p homology of the spectrum X. To understand the next term, we write X! = X@ R®R = (X®@R)®r(RRR).
This gives a canonical isomorphism E;"' ~ H,(X;F,) ®F, T.(R® R).

Definition 3. Let R be the ring spectrum HF),. The graded-commutative ring 7,.(R® R) is called the dual
Steenrod algebra, and will be denoted by A".

More generally, we can write
X'=X®R*" =(X®R) ®r (R®R)®r - ®r (R® R).
This identification gives a canonical isomorphism
By ~ Ho(X;Fp) @, (AY)®
. We have a chain complex of graded abelian groups
H.(X;F,) — H,(X;F,) ®p, A — H.(X;F,) @p, A’ @, A —

associated to a cosimplicial graded abelian group H.(X;F,) ® (AY)®".

To describe the second page of the spectral sequence { E%*}, we would like understand the differentials in
this chain complex. We begin by noting that A" is actually a Hopf algebra. That is, there is a comultiplication
c: AV — AY ®F, AV, which is induced by the map of ring spectra

RR®R~R®S®R—-R®R®R~(R®R)®r (R®R)

by passing to homotopy groups. Moreover, this coalgebra acts on H,(X;F),) for any spectrum X: that is,
we have a canonical map a : H.(X;F,) — Ho(X; F,,) ®F, AY. This map is induced by the map of spectra

XQ@R~X®S®R—-X®R®R~(X®R)®r (R®R).

Remark 4. Passing to (graded) vector space duals, we see that the dual of AY is an algebra (called the
Steenrod algebra, which acts on the cohomology H*(X; F,) of any spectrum.



Unwinding the definitions, we see that each of the differentials
H.(X;F,) @r, (A)®" 7! — Ho(X;Fp) @, (A7)®"
is given by an alternating sum Zogign d?, where:
e The map d° is induced by the action map a : H,(X;F,) — H.(X;F,) @p, A".

e Themaps d!,...,d" ! are induced by the comultiplication ¢ : AY — A" QF, AY, applied to each factor
of AY.

e The map d" is given by the inclusion of the unit F,, — AY.

It is convenient to describe the above analysis in the language of algebraic geometry. For simplicity, we
will henceforth assume that p = 2, so that graded-commutative rings are actually commutative.

Proposition 5. (1) Let G denote the spectrum of the commutative ring A . The comultiplication A —
AY F, AY determines a multiplication G XspecFy G — G, which endows G with the structure of an
affine group scheme over Spec Fa.

(2) For any spectrum X, the action map H.(X;Fy) — H(X;Fs) @p, A endows the vector space V =
H. (X;F3) with the structure of a representation of the group scheme G.

(3) The E;-term of the Adams spectral sequence can be identified with the canonical cochain complex
V - I(G;V®0g) = T(GHV ®0g2) — -
which encodes the action of G on V.

(4) The Es-term of the Adams spectral sequence can be identified with the cohomologies of this cochain
complex. In other words, we have

E3? ~ HY(G; Ho (X Fy)).

In the special case where X is a ring spectrum, we can say more. In this case, the multiplication on
X endows the homology H,(X;Fs) with the structure of a commutative Fa-algebra. Then the spectrum
Spec H, (X; Fy) is an affine scheme Y. The action H,(X;Fy) — H,(X;F2) ®p, A"’ is a map of commutative
rings, which determines a map of affine schemes G xgpecr, ¥ — Y. In other words, the affine scheme
Y is acted on by the group scheme G. Moreover, the cohomology groups H?(G; H, (X;F5)) are simply the
cohomology groups of the quotient stack Y/G. In particular, we get an isomorphism of commutative algebras
E;’* ~ H* (Y/(GI, OY/G)'

To apply this information in practice, we need to understand the algebraic group G. For each integer
n, let X(n) denote the function spectrum S®? " where RP™ denotes real projective space of dimension
n. Then X(n) is a commutative ring spectrum (in fact, an FE.-ring spectrum), and we have a canonical
isomorphism

H. (X (n); Fp) ~ H*(RP"; Fy) ~ Fyz] /(™).

In particular, we get an action of G on the affine scheme Spec Fo[z]/(z"*1). Passing to the limit as n grows,
we get an action of G on the formal scheme

lim Spec Fy[z]/(2™ 1) ~ Spf Fy[[z]] = Spf H*(RP™,F5)

This action is not arbitrary. Note that RP® has a commutative multiplication. For example, we can
realize RP™ as the projectivization of the real vector space R[t], and RP"™ as the projectivization of the
subspace of R[t] spanned by polynomials of degree < n. The multiplication on R[¢] induces a multiplication
RP> x RP® — RP*, which is the direct limit of multiplication maps RP™ x RP" — RP™"". Each of



these multiplication maps induces a map of spectra X (m+n) — X (m)®X (n), which induces a G-equivariant
map
Spec(Fa[z]/(z™*1)) XspeeF, Spec(Fa[z]/ (2" 1)) — Spec(Fa[z]/z™ 1),

In concrete terms, this is just given by the map of commutative rings Fy[z]/ (2™ ") — Fylz, 2]/ (2™, /")
given by x +— x + z’. Passing to the limit as m and n grow, we get a map of formal schemes

Spf Fa[]] XspecF, Spf Fal[z]] — Spf Fa([x]].

This map encodes a formal group law over the ring Fo, which is given by the power series f(z,y) =x +y €

Fa[[z, y]].

By construction, the action of G on Spf Fy[[z]] preserves the group structure given by f(x,y) = = + .
That is, we can regard G as acting by automorphisms of the formal group law f. This gives a description of
G which is very convenient for our purposes:

Theorem 6. For every commutative Fo-algebra A, the above construction yields a canonical bijection of
Hom(A", A) ~ Hom(Spec A, G) with the group of all power series

acb—>x—|—a1x2+a2x4—|—a3m8—|—...,

where a; € A, regarded as automorphisms of the formal group Spec A Xgpec 1, SPf Fa[[z]] = Spf Al[z]].



