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In the last lecture, we defined spectra MU(n) = Σ∞−2nBU(n)/BU(n− 1) which form a direct system

MU(0)→ MU(1)→ MU(2)→ · · ·

The (homotopy) colimit of this sequence is called the complex bordism spectrum and is denoted by MU.

Example 1. The spectrum MU(0) is equivalent to the sphere spectrum.

Example 2. The spectrum MU(1) is the desuspension Σ∞−2 CP∞ of CP∞ = BU(1).

Remark 3. In terms of the above identifications, the inclusion MU(0)→ MU(1) is given by

MU(0) ' S ' Σ∞−2S2 → Σ∞−2 CP∞ = MU(1).

Remark 4. The direct sum of complex vector bundles is classified by a multiplication ma,b : BU(a) ×
BU(b)→ BU(a+ b). Passing to Thom spectra, we get a multiplication MU(a)⊗MU(b)→ MU(a+ b). We
note that the inclusion MU(n)→ MU(n+ 1) can be identified with the map

MU(n) ' S ⊗MU(n) = MU(0)⊗MU(n)→ MU(1)⊗MU(n)→ MU(n+ 1).

Remark 5. Taking the limit in a and b, we get a multiplication MU⊗MU → MU. That is, MU has the
structure of a ring spectrum. In fact, this multiplication is commutative and associative up to homotopy. It
has a unit, given by the map S ' MU(0)→ MU.

In fact, the situation is much better: the multiplication on MU is commutative and associative up to all
higher homotopies. That is, MU has the structure of an E∞-ring spectrum.

Let E be a complex-oriented cohomology theory. In the last lecture, we saw that every complex vector
bundle is E-orientable. In fact, for each integer n we can write down a canonical orientation of the universal
bundle ζn of rank n on the classifying space BU(n): it is classified by a map φn : MU(n)→ E. These maps
φn are uniquely characterized by the following requirements:

(1) The map φ1 : MU(1)→ E is given by the complex orientation of E (note that we can identify the set
of homotopy classes of maps [MU(1), E] with Ẽ2(CP∞).

(2) The maps φn are multiplicative in the following sense: for every pair of integers m and n, the diagram

MU(m)⊗MU(n)

φm⊗φn

��

// MU(m+ n)

φm+n

��
E ⊗ E // E

commutes up to homotopy.
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To prove assertion (2), we recall that E∗(MU(m + n)) can be identified (up to a shift in grading)
with the ideal in E∗(BU(m + n)) ' (π∗E)[[c1, . . . , cm+n]] generated by the Chern class cm+n. Similarly,
E∗(MU(m)⊗MU(n)) can be identified with the ideal in E∗(BU(m)×BU(n)) ' (π∗E)[[c1, . . . , cm, c′1, . . . , c

′
n]]

generated by the product cmc′n. The commutativity of the diagram now follows from the equation cm+n(ζ⊕
ζ ′) = cm(ζ)cn(ζ ′), where ζ and ζ ′ are vector bundles of rank m and n.

We claim that the composite map

MU(n)→ MU(n+ 1)
φn+1→ E

coincides with φn. Using (2) and Remark 4, we deduce that this composite map is given by

MU(n) ' MU(n)⊗MU(0)→ MU(n)⊗MU(1)
φnφ1→ E.

We are therefore reduced to proving that φ1|MU(0) coincides with φ0 (which is the unit map S → E).
According to Remark 3, this map is given by the class in π0E given by restricting our complex orientation
t ∈ Ẽ2(CP∞) to Ẽ2(S2) ' π0E, which we have assumed to be the unit in E.

The mapping spectrum EMU can be obtained as a homotopy limit of mapping spectra EMU(n). We
therefore have a Milnor long exact sequence

lim←−
1{E−1(MU(n))} → E0(MU)→ lim←−E

0(MU(n))→ lim←−
1{E0(MU(n))}.

The outer groups vanish, since each of the restriction maps E∗(MU(n + 1)) → E∗(MU(n)) is surjective (it
corresponds, under our choice of Thom isomorphisms, to the restriction map E∗(BU(n+ 1))→ E∗(BU(n)),
which is obtained by killing cn+1 in the power series ring E∗(BU(n+ 1)) ' (π∗E)[[c1, . . . , cn+1]]). It follows
that the maps φn : MU(n)→ E can be uniquely amalgamated to give a map φ : MU→ E.

Proposition 6. The map φ is a map of ring spectra.

Proof. We must show that the diagram

MU⊗MU
φ⊗φ //

��

MU

φ

��
E ⊗ E // E

commutes. Repeating the above argument, we conclude that E0(MU⊗MU) can be obtained as the inverse
limit of the cohomology groups E0(MU(a)⊗MU(b)). The desired result now follows from the commutativity
of each of the squares

MU(a)⊗MU(b) //

��

MU(a+ b)

��
E ⊗ E // E

(see Remark 4).

The inclusion Σ∞−2 CP∞ ' MU(1) → MU determines a class t ∈ M̃U
2
(CP∞). By construction, the

ring spectrum map φ : MU→ E carries t to our chosen complex orientation of E.

Remark 7. The class t ∈ M̃U
2
(CP∞) is a complex orientation of MU. To see this, we note that the

restriction of t to M̃U
2
(S2) ' π0 MU is given by the map S ' MU(0) → MU(1) → MU, which is the unit

for the ring spectrum MU.

We can summarize our discussion as follows:
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Theorem 8. Let E be a commutative ring spectrum, and let t ∈ M̃U
2
(CP∞) be the complex orientation

described above. The construction (φ : MU→ E) 7→ φ(t) determines a bijection between complex orientations
of E and ring spectrum maps MU→ E.

In other words, the complex bordism spectrum MU is the universal complex-oriented cohomology theory.

Proof. The above analysis shows that given any complex orientation of E, we can construct a ring spectrum
map φ : MU→ E which carries our complex orientation to the specified complex orientation of E. It remains
to prove injectivity. Let φ, φ′ : MU → E be two ring spectrum maps which determine the same complex
orientation of E; we wish to prove that φ and φ′ are homotopic. The condition that φ and φ′ determine the
same complex orientation tells us that φ|MU(1) ' φ′|MU(1). Since E is complex-orientable, the preceding
argument shows that E0(MU) ' lim←−E

0(MU(n)). It will therefore suffice to show that φ and φ′ have the
same restriction to MU(n) for every integer n. Since φ is a ring map, the composition

MU(1)⊗n → MU(n)
φ→ E

is a product of n copies of φ|MU(1) in E0(MU(1)), and therefore coincides with the composition

MU(1)⊗n → MU(n)
φ′

→ E.

It will therefore suffice to show that the restriction maps E0(MU(n)) → E0(MU(1)⊗n). Using our Thom
isomorphisms (provided by any complex orientation of E), this is equivalent to the injectivity of the map
E0(BU(n))→ E0(BU(1)n), which is the “spliting principle” we discussed earlier.

Theorem 8 suggests that if we are interested in complex-oriented cohomology theories and the associated
formal group laws, then we should focus our attention on the complex bordism spectrum MU. The universal
complex orientation determines a (graded) formal group law f(x, y) ∈ (π∗MU)[[x, y]]. As we have seen, this
formal group law is given by a map of graded rings L→ π∗MU.

Our goal next week will be to prove the following theorem:

Theorem 9 (Quillen). The map L → π∗MU is an isomorphism. (In particular, the spectrum MU has
homotopy groups only in even degrees.)
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