Complex Bordism (Lecture 5)

February 4, 2010

In this lecture, we will introduce another important example of a complex-oriented cohomology theory:
the cohomology theory MU of complex bordism. In fact, we will show that MU is universal among complex-
oriented cohomology theories.

We begin with a general discussion of orientations. Let X be a topological space and let { be a vector
bundle of rank n on X. We may assume without loss of generality that { is equipped with a metric,
so that the unit ball bundle B({) — X and the unit sphere bundle S({) — X are well-defined. If E
is an arbitrary cohomology theory, we can define the twisted E-cohomology E*~¢(X) to be the relative
cohomology E*(B((), S(C)).

Example 1. If  is the trivial bundle of rank n, then B(¢) ~ B™ x X and S(¢) ~ S"~! x X. In this case,
we have a canonical isomorphism E*~¢(X) = E*(X x B", X x S"~!) ~ E*~"(X).

If E is a multiplicative cohomology theory, then E*~¢(X) is a module over E*(X).

Definition 2. Let ¢ be a vector bundle of rank n on a space X, and let E be a multiplicative cohomology
theory. An E-orientation of ( is a cohomology class u € E"~¢(X) ~ E"(B((), S(¢)) such that:

(¥) For every point € X, the restriction 2*(u) € E" = ({x}) ~ E°({}) is a generator of E*({z}) ~ 7. F
(as a m.E-module).

In this case, we say that u is a Thom class for ¢ in E-cohomology.

Remark 3. The identification E"~% ({z}) ~ E°({z}) is noncanonical: it depends on a trivialization of the
fiber {,. This dependence is not very strong, since the orthogonal group O(n) has only two components: the
resulting elements of E°({z}) are off by a sign if we choose trivializations with different orientations.

Remark 4. A consequence of Definition 2 is that the Leray-Serre spectral sequence for the fibration S(¢) —
X degenerates and gives an identification E*(X) ~ E*t"~¢(X), given by multiplication by w.

Remark 5. In the setting of Definition 2, it suffices to check the condition at one point x in each connected
component of X.

Our next goal is to show that if F is a complex-oriented cohomology theory, then all complex vector
bundles have a canonical E-orientation. To prove this, it suffices to consider the universal case: that is, the
case of a universal bundle ¢ of (complex) rank n over the classifying space BU(n). Recall that BU(n) can
be realized as the quotient of a contractible space EU(n) by a free action of the unitary group U(n). In this
case, the subgroup U(n — 1) also acts freely on EU(n), so the quotient EU(n)/U(n — 1) is a model for the
classifying space BU(n — 1). This realization gives us a fibration BU(n — 1) — BU(n), whose fiber is the
quotient group U(n)/U(n — 1) ~ S?"~1. In fact, this sphere bundle can be identified with the unit sphere
bundle S(¢). Since B(¢) ~ BU(n), we get canonical isomorphisms E*~¢(BU(n)) = E*(BU(n), BU(n — 1)).

We have computed these groups: the group E*(BU(n)) is a power series ring (m.F)|[[c1,. .., ¢,]] and the
group E*(BU(n — 1)) is a power series ring (7. E)[[c1,...,¢n-1]]. The restriction map 6 : E*(BU(n)) —
E*(BU(n—1)) is a surjective ring homomorphism. It follows that the relative cohomology group E*(BU (n), BU (n—
1)) can be identified with the kernel of 8: that is, with the ideal ¢, (7. E)[[c1,...,cy]]. This is in fact a free
module over E*(BU(n)), which suggests the following:



Proposition 6. The cohomology class c,, € E*"(BU(n), BU(n — 1)) ~ E?>"=¢(BU(n)) is a Thom class (so
that the universal bundle ¢ on BU(n) has a canonical E-orientation).

Proof. We must check that condition (x) holds at every point of BU(n). Since BU(n) is connected, it will
suffice to check (x) at any points of BU(n). We may therefore replace ¢ by its pullback along the map
f:BU(1)" — BU(n) and ¢, by its image in

ETSBUM™) ~ (t1 .. .t) (7 E)[[t1, . - -, tn]] C (mE)[[t1, . . ., ta]] ~ E*(BU1)"),

which can be identified with the product ¢;...t,. Since f*( is a direct sum P1<;<,pf O(1) of pullbacks
of the universal line bundle O(1) on BU(1) ~ CP* along the projection maps p; : BU(1)" — BU(1), we
can reduce to proving the assertion in the case n = 1. In this case, E*~¢(BU(1)) can be identified with
the reduced cohomology E*(CP>), and the condition that u € E2(CP>) be an orientation of O(1) is that
it maps to a unit when restricted to Ez(SZ) ~ mgE. Our complex orientation is even better: it maps to
1emnE. O]

If ¢’ is any complex vector bundle of rank n on any (nice) space X, then we can write ¢’ = f*( for some
classifying map f : X — BU(n). We can then define an orientation u¢ € E2=¢"(X) to be the pullback of
cn € E?"=¢(BU(n)).

By construction, our Chern classes in E-cohomology have the same behavior with respect to direct sums
of vector bundles as the usual Chern classes: namely, we have

(o)=Y alQe(d).
i+j=n
In particular, if ¢ and ¢’ have ranks a and b, then we have ¢,,(C+¢") = ca(¢)ep(¢’). We conclude from this:

(1) If ¢ and ¢’ are complex vector bundles of rank a and b on a space X, then the Thom classes u; €
E?*=¢(X) and ue € B2~ (X) have product ucy ¢ € B2 +20-(8) (X)),

We also have the following

(2) Let ¢ be the trivial bundle of rank 1 on a space X. Then the Thom class uc € E?>~¢(X) ~ E%(X)
coincides with the unit. This is a translation of our assumption that t € E?(CP>) restricts to the unit
in £2(S?) ~ mE.

Definition 7. For each integer n, we let MU(n) denote the Thom spectrum X2 BU (n)» = £ *"BU (n)/BU (n—
1), where ¢, denotes the universal bundle of rank n. The restriction of (,, to BU(n — 1) is the sum of a
trivial bundle 1 of rank 1 with a bundle (,,—;. We therefore have a canonical map

MU(n — 1) ~ 2272"BU(n — 1)~ = ¥72"BU(n — 1)*"—*®1 — £72"BU(n)"" = MU(n).

The universal Thom class ¢, € E"(BU(n)/BU(n — 1)) can be interpreted as a map of spectra ¢, :
MU(n) — E. It follows from (1) and (2) that the restriction of this map to MU(n — 1) is homotopic to ¢,_1.
In the next lecture, we will see that the maps {¢;, },>0 therefore determine a map from the colimit

S ~MU(0) - MU(1) - MU(2) — ...
into E.
Definition 8. The colimit hL>nMU(n) is denoted by MU; it is called the complex bordism spectum.

Remark 9. The complex bordism spectrum MU can be described as a Thom spectrum for the space
BU = li_n)1B U(n). However, it is not a Thom spectrum for a vector bundle of any particular rank: rather, it
is the Thom spectrum for a virtual bundle of rank 0, whose restriction to each BU(n) is a formal difference

Cp— 1.



Remark 10. The complex bordism spectrum has a natural geometric interpretation. Namely, each homo-
topy group 7, F can be identified with the group of bordism classes of n-dimensional manifolds M equipped
with a stable almost complex structure (that is, a complex structure on the direct sum of the tangent bundle
M with a trivial vector bundle of sufficiently large rank). More generally, if X is any space, we can identify
the homology groups F, X with bordism groups of stably almost complex n-manifolds equipped with a map
to X.



