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In this lecture, we will introduce the notion of a complex-oriented cohomology theory E. We will generally
not distinguish between a cohomology theory E and the spectrum that represents it. The E-cohomology
groups of a space X are given by

En(X) = π−nE
X = [X,Ω∞−nE] = Hom(Σ∞X,ΣnE),

while the E-homology groups of X are given by En(X) = πn(E ⊗ Σ∞X).

Warning 1. In this class, we will not employ the usual notations in dealing with spectra. Instead we will
denote the smash product with the symbol ⊗, and the coproduct by ⊕.

We will say that a cohomology theory is multiplicative if its representing spectrum E is equipped with a
multiplication

E ⊗ E → E

which is associative and unital up to homotopy. We will generally also assume that E is homotopy commu-
tative, though it is sometimes convenient to relax this assumption.

Definition 2. A multiplicative cohomology theory E is complex-orientable if the map E2(CP∞)→ E2(S2)
is surjective. Here we identify the 2-sphere S2 with CP1 ⊆ CP∞.

We will henceforth regard S2 and CP∞ as pointed spaces. A choice of base point gives canonical
decompositions

E2(CP∞) ' Ẽ2(CP∞⊕E2(∗) E2(S2) ' Ẽ2(S2)⊕ E2(∗);

here the Ẽ denotes reduced cohomology with coefficients in E. Note that Ẽ2(S2) ' E0(∗) ' π0E is equipped
with a canonical unit element t. Since the image of the map θ : Ẽ(CP∞)→ Ẽ2(S2) is a (π0E)-module, θ is
surjective if and only if its image contains t. In other words:

• A multiplicative cohomology theory E is complex-orientable if and only if there exists an element
t ∈ Ẽ2(CP∞) such that θ(t) = t is the canonical generator of Ẽ2(S2).

We will refer to a choice of t ∈ Ẽ2(CP∞) ⊆ E2(CP∞) as a complex orientation of E.

Remark 3. Let E be a multiplicative cohomology theory and let E′ be its connective cover. Then the
canonical map Ẽ′

2
(X) → Ẽ2(X) is an isomorphism whenever X is simply connected. It follows that E is

complex orientable if and only if E′ is complex-orientable: better yet, there is a bijection between complex
orientations of E and complex orientations of E′.

Remark 4. We can think of t as encoding a pointed map S2 → Ω∞E. A complex orientation of E is
an extension of this map to CP∞. The existence of such a map can often be established by obstruction
theory. For example, if we are already given an extension of t to CPn, then there is an obstruction to further
extending to CPn+1 which lies in the homotopy group π2n+1Ω∞E = π2n+1E = E−2n−1(∗). In particular, if
we have π3E = π5E = . . ., then E is complex-orientable.
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Example 5. Ordinary cohomology (with coefficients in any commutative ring R) is complex-orientable. In
fact, the restriction map H2(CP∞;R)→ H2(S2;R) is an isomorphism.

Example 6. Complex K-theory is complex-orientable. This follows from Remark 4, since πiK = 0 whenever
i is odd. In this case, the complex orientation is not unique. However, there is a canonical complex
orientation, given by the class t ∈ K2(CP∞) ' K0(CP∞) = [O(1)] − 1, where the first map is Bott
periodicity and O(1) denotes the universal complex line bundle on CP∞.

We next show that the existence of a complex orientation on E often forces the Atiyah-Hirzebruch spectral
sequence for E to degenerate. We begin with a degeneration criterion (not the most general, but sufficient
for our purposes).

Proposition 7. Let X be a space and assume that each of the homology groups Hn(X; Z) is a free abelian
group on generators {hα,n}α∈Bn . Let cα,n ∈ Hn(X; Z) ' Hom(Hn(X; Z), Z) be defined by the formula

cα,n(hβ,n) =

{
1 if α = β

0 otherwise.

Let E be a multiplicative cohomology theory and let τ≤0E denote its truncation, so that πiτ≤0E ={
πiE if i ≤ 0
0 otherwise.

. The unit S → E determines a map of spectra HZ ' τ≤0S → τ≤0E. Under this

map, the homology classes hn,α have images h′n,α ∈ (τ≤0E)n(X) and the cohomology classes cn,α have
images c′n,α ∈ (τ≤0E)n(X). Assume that one of the following conditions is satisfied:

(∗) Each of the homology classes h′n,α can be lifted to a class h′′n,α ∈ En(X).

(∗′) Each of the groups Hn(X; Z) is finitely generated, and each of the cohomology classes c′n,α can be lifted
to a class c′′n,α ∈ En(X).

Then:

(1) The smash product E ⊗ Σ∞X+ is equivalent, as an E-module, to a coproduct
⊕

n,α∈Bn ΣnE.

(2) The function spectrum EX is equivalent to a product
∏
n,α∈Bn Σ−nE.

(3) We have (noncanonical) isomorphisms E∗(X) ' π∗E ⊗H∗(X) and E∗(X) ' Hom(H∗(X), π∗(E)).

Proof. We will prove (1); assertions (2) and (3) are obvious consequences. Let Y denote the suspension
spectrum Σ∞X+. In what follows, we will not use that Y is a suspension spectrum: only that Y is connective
with freely generated homology. We construct a sequence of spectra

Y0 → Y1 → . . .

having colimit Y , with the following additional properties:

(a) The map Yn → Y induces an isomorphism in homology in degrees ≤ n. In particular, Y is homotopy
equivalent to the colimit of the sequence {Yn}.

(b) The spectrum Yn is build from finitely many spheres of dimension ≤ n; in particular, the cohomology
groups Hk(Yn; Z) vanish for k > n.

Assume that Yn−1 has been constructed, and let Zn denote the cofiber of the map Yn−1 → Y . Then Zn
is (n− 1)-connected, and the map Hn(Y ; Z)→ Hn(Zn; Z) is an isomorphism. By the Hurewicz theorem, the
image of each of the homology classes hn,α is represented by a map Sn → Zn. Let Z ′n =

⊕
α∈Bn S

n and let
φn : Z ′n → Zn be the induced map, so that we have a cofiber sequence

Z ′n → Zn → Z ′′n .
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We now define Yn to be the homotopy fiber product Y ×Zn Z ′n; in other words, Yn is the homotopy fiber of
the composite map Y → Zn → Z ′′n . It is easy to see that (a) and (b) hold.

Now suppose that (∗) is satisfied. Each h′′n,α is represented by a map of E-modules ΣnE → E ⊗ Y . We
will prove:

(c) The map θ :
⊕

n,α∈Bn ΣnE → E ⊗ Y is a homotopy equivalence.

To prove (c), it suffices to show that θ is k-connected for every value of k. This is obvious for k = 0. Assume
that k > 0. Note that that φ0 induces an E-module map

⊕
α∈B0

E ' E ⊗ Z ′0 → E ⊗ Y , which we can
identify with a sequence of homology classes bα,0 ∈ E0(Y ). By construction, the classes bα,0 lift the classes
h′α,0. Since Y is connective, we have (τ≥1E)0(Y ) ' 0 so that the map E0(Y ) → (τ≤0E)0(Y ) is injective; it
follows that bα,0 = h′′α,0. We therefore have a map of cofiber sequences⊕

α∈B0
E //

θ′

��

⊕
n,α∈Bn ΣnE //

θ

��

⊕
n>0,α∈Bn ΣnE

θ′′

��
Z ′0 // Y // Z ′′0 .

Since θ is a homotopy equivalence, to prove that θ′ is k-connective it suffices to show that θ′′ is k-connective.
This follows from the inductive hypothesis, applied to the connective spectrum Σ−1Z ′′0 .

Now suppose that condition (∗′) is satisfied. We will prove, using induction on n, that each of the maps
E ⊗ Y → E ⊗ Zn admits a splitting sn : E ⊗ Zn → E ⊗ Y , so that the cohomology classes c′′α,n give maps

φα : Zn → E ⊗ Zn → E ⊗ Y
c′′α,n→ ΣnE.

Using (b), we deduce that the map (τ≤0E)nZn → (τ≤0E)nY is injective, so each the image of ψα ∈ En(Zn)→
(τ≤0E)n(Zn) coincides with the image of cα,n ∈ Hn(Y ; Z) ' Hn(Zn;Z)→ (τ≤0E)n(Zn).

Assume that sn−1 has been constructed. The maps {ψα}α∈Bn−1 together yield a map Zn →
⊕

α ΣnE '
E ⊗ Z ′n, which we can identify with an E-module map sn : E ⊗ Zn → E ⊗ Z ′n. Moreover, the compatibility
of the classes φα with cαn shows that the composition

E ⊗ Z ′n
ψ→ E ⊗ Zn

φ→ E ⊗ Z ′n

is the identity; that is, sn is a splitting of the projection E ⊗ Y → E ⊗ Zn.
It now follows that E ⊗ Y ' lim−→(E ⊗ Yn) ' lim−→n

⊕
m≤nE ⊗ Z ′m.

Example 8. Let X = CPn, and let t ∈ E2(X) be a complex orientation on a multiplicative cohomology
theory E. Then the cohomology classes {1, t, t2, . . . , tn} satisfy the hypotheses of Proposition 7. It follows
that the classes 1, t, t2, . . . , tn form a basis for E∗(CPn) over π∗E. We claim that tn+1 = 0. To prove this, we
may replace E by its connective cover and thereby assume that E is connective: then tn+1 ∈ E2n+2(CPn)
vanishes since CPn has dimension < 2n + 2. It follows that we have a ring isomorphism E∗(CPn) '
(π∗E)[t]/(tn+1). Writing CP∞ = lim−→CPn, we get

E∗(CP∞) = lim←−E
∗(CPn) ' lim←−(π∗E)[t]/(tn+1) ' (π∗E)[[t]].

Here the potential lim1-terms vanish because the maps (π∗E)[t]/(tn+1)→ (π∗E)[t]/(tm+1) are surjective.

Example 9. IfX = CPm×CPn, the same reasoning gives an isomorphism E∗(X) ' (π∗E)[x, y]/(xm+1, yn+1).
Passing to the limit as before, we get an isomorphism E∗(CP∞×CP∞) = (π∗E)[[x, y]].

The space CP∞ is an Eilenberg-MacLane space K(Z, 2), and can therefore be realized as a topological
abelian group. In fact, it is easy to realize CP∞ as a topological monoid: we can define CP∞ to be the
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projectivization (V − {0})/C∗ for any complex vector space V of infinite dimension. Taking V to be the
underlying vector space of the ring C[x], we get a commutative and associative multiplication on CP∞. The
multiplication map

CP∞×CP∞ → CP∞

classifies the operation of forming tensor products of complex line bundles. If E is a complex-oriented
cohomology theory, then we get a pullback map on E-cohomology

(π∗E)[[t]] ' E∗(CP∞)→ E∗(CP∞×CP∞) ' (π∗E)[[x, y]].

We let f(x, y) ∈ (π∗E)[[x, y]] denote the image of t under this map. (The map is entirely determined by
f(x, y), since it is continuous with respect to the “inverse limit” topologies on the power series rings in
question.)

The associativity and commutativity of the multiplication CP∞ imply the following:

Proposition 10. Let E be a complex-oriented multiplicative cohomology theory. Then the above construction
determines a formal group law f(x, y) ∈ R[[x, y]], where R is the commutative ring ⊕nπ2nE. This formal
group law is compatible with the natural grading of R: that is, the expression f(x, y) has degree −2, if we let
x and y have degree −2.

We close by describing another application of Proposition 7. Fix an integer n ≥ 0, and let X = BU(n)
be the classifying space of the unitary group U(n). There is a canonical map

θ : (CP∞)n ' BU(1)× · · · ×BU(1)→ BU(n).

This map classifies the construction (L1, . . . ,Ln) 7→ L1⊕ · · ·⊕Ln, which takes the direct sum of a collection of
complex line bundles. Since the formation of direct sums is commutative up to isomorphism, the map θ is Σn-
equivariant, up to homotopy. It therefore induces a map H∗(BU(n); Z) → H∗((CP∞)n; Z) ' Z[t1, . . . , tn],
whose image is contained in the subgroup Z[t1, . . . , tn]Σn of symmetric polynomials in n-variables. This ring
of invariants is given by Z[c1, c2, . . . , cn], where ci is the ith elementary symmetric function on (t1, . . . , tn).
In fact, this construction yields an isomorphism H∗(BU(n),Z)→ Z[c1, . . . , cn]; under this isomorphism, the
cohomology class ci corresponds to the ith Chern class of the universal bundle.

Dually, can write H∗(CP∞; Z) = Z{β0, β1, . . .}, where {βi} is the dual basis to {ti}. Then H∗(BU(n); Z)
is given by H∗(CP∞; Z)⊗nΣn

= Symn H∗(CP∞; Z). In particular, it is a free Z-module whose generators can
be lifted to H∗((CP∞)n; Z).

Let E be a complex-oriented multiplicative cohomology theory. Then we have a canonical isomorphism
E∗(CP∞) ' (π∗E)[[t]]. The (topological) basis {ti} for this cohomology has a dual basis {βi} for E∗(CP∞)
over π∗E. Using the map θ, we get homology classes {βi1βi2 . . . βin}i1≤···≤in in E∗(BU(n)) which lift the
corresponding basis for the Z-homology of BU(n). It follows from Proposition 7 that E∗(BU(n)) is freely
generated by the classes {βi1βi2 . . . βin}0≤i1≤···≤in over π∗E.

The same argument shows that E∗(BU(n) × BU(n)) is given by E∗(BU(n)) ⊗π∗E E∗(BU(n)). The
diagonal map BU(n) → BU(n) × BU(n) determines a comultiplication on E∗(BU(n)). When n = 0, this
comultiplication is dictated by the structure of the multiplication on E∗(BU(1)) = (π∗E)[[t]]: namely, it
is given by δβn =

∑
i+j=n βi ⊗ βj . Since θ induces a map of coalgebras E∗(BU(1)n) → E∗(BU(n)), this

completely determines the comultiplication on E∗(BU(n)). More informally, we can say that the comul-
tiplication on E∗(BU(n)) is given by the same formulas as in the case of integral homology. It follows
that multiplication on E∗(BU(n)) can be described in the same way as the multiplication on the ordinary
cohomology of E∗(BU(n)). More precisely, we have a canonical isomorphism

E∗(BU(n)) ' (π∗E)[[c1, . . . , cn]]

where ci is dual to βi1 (with respect to the basis consisting of monomials in the βi). We can think of the ci
as analogues of the Chern classes in E-cohomology.
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