Telescopic vs. E,-Localization (Lecture 29)

April 13, 2010

Let p be a prime number, fixed throughout this lecture. Let L be a Bousfield localization functor on
p-local spectra. Our goal in this lecture is to obtain a structure theorem for L, under the assumption that
L is smashing.

Let us begin by fixing a bit of terminology. We say a spectrum X is L-local if the map X — LX is an
equivalence.

Lemma 1. Let L be a localization functor. For 0 <n < oo, we have either LK(n) ~ 0 or LK(n) ~ K(n).

Proof. We have a map of ring spectra K(n) — LK(n). Consequently, LK (n) has the structure of a K(n)-
module. If LK(n) # 0, then LK (n) contains K(n) (possibly shifted) as a retract. Since LK (n) is L-local,
we conclude that K (n) is L-local so that K(n) ~ LK(n). O

Lemma 2. Let L be a smashing localization functor and let & be a monzero complex-oriented cohomology
theory whose formal group has height exactly n. Then LE ~ 0 if and only if LK (n) ~ 0.

Proof. If LE ~ 0, then 0 ~ K(n) ® LE ~ LK (n) ® E. Since K(n) ® E # 0, we conclude that LK (n) ~ 0
(Lemma 1). Conversely, suppose that LK (n) ~ 0. Then 0 ~ LK(n) ® E ~ K(n) ® LE. On the other hand,
LE ® K(m) ~ 0 for m # n, since it is a complex oriented ring spectrum whose formal group has height
exactly m and exactly n. It follows from the nilpotence theorem that LE ~ 0. O

Lemma 3. Let L be a smashing localization functor. If LK(m) ~ 0, then LK(n) ~ 0 for n > m.

Proof. For k > 0, let M(k) denote the cofiber of the map #; : X2 MU,y — MU,), and let R be the
ring spectrum obtained by smashing (over MUy,)) the spectra {M(k)}yzpm—1 pn—1 with MU, [v;!]. For
notational simplicity we will assume that 0 < m < n < oo, so that T.R ~ Fp[v,,,vil]. Note that R[v;,!]
is a ring spectrum whose associated formal group has height exactly m. It follows from Lemma 2 that
LR[v;;}] ~ 0. Since L is smashing, we can identify LR[v,.!] with the colimit of the sequence

m m

LRz 220" -V R Y 240" -Dr R ...

It follows that 1 € moLR vanishes in moX~2*®" =D R for k > 0: in other words, the image of vfjl vanishes
in 7,LR. Let R’ denote the cofiber of the map vF+! : R2E+DE™" DR _ R so that v¥ vanishes in 7, LR’
Since TR’ =~ F,[vy,, viEl]/(vEFL), we conclude that the map 7. R’ — 7.LR’ is not injective. In particular,
R’ is not L-local. Note that R’ can be obtained as a successive extension of k + 1 copies of R/v,, ~ K(n).

It follows that K (n) is not L-local. According to Lemma 1, this means that LK (n) ~ 0. O

If L is any localization functor, let us denote by ker(L) the collection of all L-acyclic spectra: that is,
spectra X such that LX ~ 0.

Lemma 4. Let L be a smashing localization functor, and let n > 0 be an integer. The following conditions
are equivalent:

(1) LK(n) ~ 0.



(2) LK(m) =0 forn <m < co.
(3) FEvery finite p-local spectrum X of type > n belongs to ker(L).
(4) There exists a finite p-local spectrum X of type n in ker(L).

Proof. The implication (1) = (2) follows from Lemma 3. The implication (3) = (4) is clear (since there exists
a finite p-local spectrum of type n). To prove that (4) = (1), we note that LX ~ 0 implies LX ® K(n) ~
X®LK(n)~0. If LK(n) # 0, then LK (n) ~ K(n) so that X ® LK(n) # 0, since X has type n.

It remains to prove that (2) = (3). Let X be a p-local finite spectrum of type > n. We wish to prove
that LX ~ 0. Let R = X ® DX; since LX is an LR-module, it will suffice to show that LR ~ 0. Since
LR is a ring spectrum, by the nilpotence theorem it will suffice to show that LR ® K(m) ~ 0 for every
m. If m < n, we have LR ® K(m) ~ L(R ® K(m)) ~ 0 since R has type > n > m. If m > n, then
LR® K(m) ~ R® LK(m) ~ 0 because LK (m) ~ 0 by assumption (2). O

(A) We have LK (n) ~ 0 for all 0 <n < co.
(B) We have LK (n) ~ K(n) for all 0 < n < co.
(C) There exists an integer n > 0 such that LK (n) ~ K(n) but LK(n + 1) ~ 0.

In case (A), Lemma 2 guarantees that L annihilates every finite p-local spectrum of type > 0. In

particular, for every X we have
LX>~X®LSy) ~X®0~0:

that is, L is the zero functor.

Let us now analyze case (C). Fix n such that LK (n) ~ K(n) but LK (n+1) ~ 0. Lemma 4 implies that
ker(L) contains every finite spectrum of type > n. Conversely, if X is a finite p-local spectrum such that
LX ~ 0, we have

0~Kn)@LX ~LKn)@ X ~K(n)®X

so that X must have type > n. In other words, the finite p-local spectra belonging to ker(f) are precisely
the spectra of type > n: that is, the spectra which are F(n)-acyclic. Conversely, we have the following:

Proposition 5. Let L be a smashing localization, and suppose that LK (n) ~ K(n). Then every spectrum
which belongs to ker(L) is E(n)-acyclic.

Remark 6. An equivalent formulation is the following: if L is a smashing localization with LK (n) ~ K(n),
then every E(n)-local spectrum is L-local.

Proof. Let X € ker(L). We wish to show that X is E(n)-acyclic. Since E(n) is Bousfield equivalent to
K(0) @ - ® K(n), it suffices to show that X is K(m)-acyclic for m < n. This follows from

Km)@X ~LK(m)®@X ~K(m)® LX ~0,
since L is smashing and LK (m) ~ K(m) for m < n (Lemma 3). O

Let us now return to case (C). If L is a smashing localization with LK (n) ~ K(n) and LK (n + 1) ~ 0,
then we conclude that ker(L) consists of E(n)-acyclic spectra, and contains all finite E,-acyclic spectra. In

other words, we have
ker(L,) C ker(L) C ker(Lg ).

The following conjecture of Ravenel is the main open problem left in the subject (though it is generally
believed to be false):

Conjecture 7 (Telescope Conjecture). The localization functors LY, and L E(n) coincide. In particular, every
smashing localization L satisfying (C) above has the form Lf, for some n > 0.



It remains to treat the case (B): suppose that L is a smashing localization with LK (n) ~ K(n) for
n > 0. According to Remark 6, if X is an FE(n)-local spectrum for any X, then X is L-local. In particular,
the chromatic tower

- = Lp2)Sp) = Leq)Sep) — Leo)Sep)

consists of L-local spectra, so that homotopy inverse limit of this tower is L-local. Next week we will prove
the following:

Theorem 8 (Chromatic Convergence Theorem). The homotopy inverse limit of the chromatic tower is S(y).

Corollary 9. Let L be a smashing localization such that LK(n) ~ K(n) for 0 < n < oo. Then L is
equivalent to the identity functor.

Proof. Using the chromatic convergence theorem and Remark 6, we deduce that S, is L-local. Then, for
any p-local spectrum X, we have

LX&X@LS(F)ZX(@S(IJ)&X



