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We begin by recalling Adams’ variant of the Brown representability theorem:

Theorem 1 (Adams). Let E be a spectrum and let h∗ be a homology theory. Suppose we are given a map of
homology theories α : E∗ → h∗ (that is, a collection of maps E∗(X,Y ) → h∗(X,Y ), depending functorially
on a pair of spaces (Y ⊆ X) and compatible with boundary maps). Then there is a map of spectra β : E → E′

and an isomorphism of homology theories E′∗ ' h′∗ such that α is given by the composition E∗ → E′∗ ' h∗.

Corollary 2 (Adams). Let E and E′ be spectra, and let α : E∗ → E′∗ be a map between the corresponding
homology theories. Then α is induced by a map of spectra α : E → E′.

Proof. Let h∗ = E′∗. Applying Theorem 1 the evident map α : E∗ ⊕ E′∗ → h∗, we get a spectrum F and
a map E ⊕ E′ → F inducing α. This comes from a pair of spectrum maps f : E → F and g : E′ → F .
The map g induces an isomorphism π∗E

′ = h∗(∗) = π∗F and is therefore a homotopy equivalence. Then
α : g−1 ◦ f is the desired map of spectra from E to E′.

Corollary 3 (Adams). Every homology theory h∗ is represented by a spectrum E, which is uniquely defined
up to (nonunique) homotopy equivalence.

Proof. The existence of E follows from Theorem 1. For the uniqueness, we note that if E and E′ are two
spectra with E∗ ' h∗ ' E′∗, then the isomorphism E∗ ' E′∗ is induced by a map of spectra E → E′

(Corollary 2), which is automatically a homotopy equivalence.

In the situation of Corollary 2, the map α is generally not determined by α, even up to homotopy. This
is due to the existence of phantom maps:

Definition 4. Let f : E → E′ be a map of spectra. We say that f is a phantom if the underlying map of
homology theories E∗ → E′∗ is zero: that is, for every space X, the map E∗(X)→ E′∗(X) is identically zero.

Lemma 5. Let f : E → E′ be a map of spectra. The following conditions are equivalent:

(1) The map f is a phantom.

(2) For every spectrum X, the map E∗(X)→ E′∗(X) is zero.

(3) For every finite spectrum X, the map E∗(X)→ E′∗(X) is zero.

(4) For every finite spectrum X, the map E∗(X)→ E′
∗(X) is zero.

(5) For every finite spectrum X and every map g : X → E, the composition f◦g : X → E′ is nullhomotopic.

Proof. The implication (2) ⇒ (1) is obvious, and the converse follows from the fact that every spectrum
X can be written as a filtered colimit lim−→Σ∞−nΩ∞−nX. The implication (2) ⇒ (3) is obvious, and the
converse follows from the fact that every spectrum is a filtered colimit of finite spectra. The equivalence of
(4) and (5) follows by Spanier-Whitehead duality, and the equivalence of (4) and (5) is a tautology.
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Let us now return to the setting of the previous lectures. Let L ' Z[t1, . . .] denote the Lazard ring,
and let M be a graded L-module. Assume that the grading on M is even: that is, Mk ' 0 for every odd
number k. In the last lecture, we saw that if M satisfies Landweber’s criterion: that is, if the sequence
v0 = p, v1, v2, . . . ∈ L is M -regular for every prime number p, then the construction

X 7→ MU∗(X)⊗LM

is a homology theory. It follows from Corollary 3 that this homology theory is represented by a spectrum E,
which is unique up to homotopy equivalence. We will say that a spectrum E is Landweber-exact if it arises
from this construction. Our goal in this lecture is to show that, as an object of the homotopy category of
spectra, E is functorially determined by M . This is a consequence of the following assertion:

Theorem 6. Let E be a Landweber-exact spectrum, and let E′ be a spectrum such that πkE′ ' 0 for k odd.
Then every phantom map f : E → E′ is nullhomotopic.

Corollary 7. Let E and E′ be Landweber exact spectra. Then every phantom map f : E → E′ is null-
homotopic. In particular, every nontrivial endomorphism of E acts nontrivially on the homology theory
E∗.

To prove Theorem 6, we introduce two new notions:

Definition 8. We will say that a finite spectrum X is even if the homology groups Hk(X; Z) are free
abelian groups, which vanish when k is odd. Equivalently, a finite spectrum X is even if it admits a finite
cell decomposition using only even-dimensional cells.

We say that a spectrum E is evenly generated if, for every map X → E where X is a finite spectrum,
there exists a factorization X → X ′ → E where X ′ is a finite even spectrum.

Theorem 6 is a consequence of the following two assertions:

Proposition 9. Every Landweber exact spectrum E is evenly generated.

Proposition 10. Let E be an evenly generated spectrum and let E′ be a spectrum whose homotopy groups
are concentrated in even degrees. Then every phantom map f : E → E′ is null.

We begin by proving Proposition 9. Let E be a Landweber-exact spectrum, associated to a graded
L-module M , and let f : X → E be a map where X is a finite spectrum. We can associate to f an
element of E0(X) = E0(DX) = MU0(DX)⊗LM = MU0(X)⊗LM , which can be written as

∑
cimi where

ci ∈ MUdi(X) and mi ∈Mdi
. Then f factors as a composition

X
{ci}→

⊕
Σdi MU mi→ E.

We may therefore replace E by
⊕

Σdi MU: that is, it suffices to prove that
⊕

Σdi MU is evenly generated.
Since M is evenly graded, each of the integers di is even. We can therefore reduce to showing that MU itself
is evenly generated.

Since MU ' lim−→MU(n), it suffices to show that each MU(n) is evenly generated. Recall that MU(n)
is the Thom complex of the virtual bundle ζ − Cn, where ζ is the tautological vector bundle on BU(n).
We can write BU(n) ' lim−→m

Grass(n, n + m), wehre Grass(n, n + m) denotes the Grassmannian of n-
dimensional subspaces of Cn+m. It follows that MU(n) is a direct limit of Thom spectra associated to the
finite-dimensional Grassmannians Grass(n, n + m). It therefore suffices to show that each of these Thom
complexes is an even finite spectrum. We now note that the space Grass(n, n + m) admits a finite cell
decomposition with cells of even dimension: for example, we can take the Bruhat decomposition. This
proves Proposition 9.
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We now prove Proposition 10. Let E be an evenly generated spectrum. We begin by describing the
structure of phantom maps from E to other spectra. Let A be a set of representatives for all homotopy
equivalence classes of maps Xα → E, where Xα is an even finite spectrum, and form a fiber sequence

K →
⊕
α

Xα
u→ E.

This sequence is classified by a map u′ : E → Σ(K). Since E is evenly generated, every map from a finite
spectrum X into E factors through u, so the composite map X → E → Σ(K) is null: in other words, u′ is a
phantom map. Conversely, if f : E → E′ is any phantom map, then f ◦u is nullhomotopic, so that f factors
as a composition E → Σ(K)→ E′. Consequently, to prove Proposition 10, it will suffice to prove that every
map Σ(K)→ E′ is nullhomotopic: that is, that the group E′

−1(K) is zero.
Since the homotopy groups of E′ are concentrated in even degrees, the Atiyah-Hirzebruch spectral se-

quence shows that E′−1(X) ' 0 whenever X is a finite even spectrum. It will therefore suffice to prove the
following:

(∗) The spectrum K is a retract of a direct sum of even finite spectra.

To prove (∗), we will compare the cofiber sequence

K →
⊕
α∈A

Xα → E

with another cofiber sequence of spectra. Let B be the collection of triples (α, α′, f), where α, α′ ∈ A and f
ranges over all homotopy classes of maps fitting into a commutative diagram

Xα

!!CC
CC

CC
CC

f // Xα′

}}{{
{{

{{
{{

E.

For each β = (α, α′, f) ∈ B, we let Yβ = Xα. We have a canonical map φ :
⊕

β∈B Yβ →
⊕

α∈AXα, whose
restriction to Yβ for β = (α, α′, f) given by the difference of the maps Yβ = Xα →

⊕
α∈AXα and

Yβ = Xα
f→ Xα′ →

⊕
α∈A

Xα.

Let F be the cofiber of the map φ. By construction, we have a map of fiber sequences⊕
β∈B Yβ //

��

⊕
α∈AXα

u //

��

F

��
K //

⊕
α∈AXα // E.

We now construct a map of spectra q : E → F . By Corollary 2, it will suffice to define a map of
homology theories E∗ → F∗. We will give a map E∗(X) → F∗(X) defined for every spectrum X. Since
homology theories commute with filtered colimits, it will suffice to consider the case where X is a finite
spectrum. Replacing X by its Spanier-Whitehead dual, we are reduced to the problem of producing a map
q(f) : X → F for every map of spectra f : X → E for X finite.

Here is our construction. Since E is evenly generated, every map f : X → E factors through some map

X
f ′

→ Xα′ → E for α′ ∈ A. We define q(f) to be the composite map X
f ′

→ Xα′ →
⊕

α∈AXα → F . We
must show that this construction is well-defined; that is, it does not depend on the choice of f ′. To this end,
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suppose we are given another factorization of f X
f ′′

→ Xα′′ → E, where α′′ ∈ A. Let Y denote the pushout
Xα′

∐
X Xα′′ . Then Y is a finite spectrum, and our data gives a canonical map Y → E. Since E is evenly

generated, this map factors as a composition

Y
g→ Xα → E

for some α ∈ A. Let h′ denote the composite map Xα′ → X ′
g→ Xα and let h′ be defined similarly. Then

(α′, α, h) and (α′′, α, h) can be identified with elements of B. It follows that the composite maps

X → Xα′ →
⊕
α∈A

Xα → F

X → Xα′′ →
⊕
α∈A

Xα → F

both coincide with the map
X → Y

g→ Xα →
⊕
α∈A

Xα → F,

which proves that q is well-defined.
We now have a larger commutative diagram of fiber sequences

K //

��

⊕
α∈AXα //

��

E

��⊕
β∈B Yβ //

��

⊕
α∈AXα //

��

F

��
K //

⊕
α∈A

// E.

The right vertical composition induces the identity map on the underlying homology theory E∗: that is, it
differs from idE by a phantom map. In particular, it is an equivalence, so that the left vertical composition
is an equivalence of K with itself. It follows that K is a retract of

⊕
β∈B Yβ , which proves (∗).
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