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We begin by recalling Adams’ variant of the Brown representability theorem:

Theorem 1 (Adams). Let E be a spectrum and let hy be a homology theory. Suppose we are given a map of
homology theories o : Ex — hy (that is, a collection of maps E.(X,Y) — h.(X,Y), depending functorially
on a pair of spaces (Y C X) and compatible with boundary maps). Then there is a map of spectra 3 : E — E’
and an isomorphism of homology theories E. ~ h! such that « is given by the composition E, — E. ~ h,.

Corollary 2 (Adams). Let E and E’ be spectra, and let o : E, — E. be a map between the corresponding
homology theories. Then a is induced by a map of spectraa : E — E'.

Proof. Let h, = E.. Applying Theorem 1 the evident map « : E, @ E, — h., we get a spectrum F and
amap F® E’ — F inducing «. This comes from a pair of spectrum maps f : £ — F and g : E/ — F.
The map ¢ induces an isomorphism 7.E" = h.(x) = m.F and is therefore a homotopy equivalence. Then
@: g ' o fis the desired map of spectra from F to FE'. O

Corollary 3 (Adams). Every homology theory h. is represented by a spectrum E, which is uniquely defined
up to (nonunique) homotopy equivalence.

Proof. The existence of E follows from Theorem 1. For the uniqueness, we note that if £ and E’ are two
spectra with E, ~ h, ~ E’, then the isomorphism E, ~ E. is induced by a map of spectra E — E’
(Corollary 2), which is automatically a homotopy equivalence. O

In the situation of Corollary 2, the map @ is generally not determined by «, even up to homotopy. This
is due to the existence of phantom maps:

Definition 4. Let f : E — E’ be a map of spectra. We say that f is a phantom if the underlying map of
homology theories F, — F, is zero: that is, for every space X, the map F.(X) — F,(X) is identically zero.

Lemma 5. Let f : E — E' be a map of spectra. The following conditions are equivalent:
1) The map f is a phantom.
2) For every spectrum X, the map E.(X) — EL(X) is zero.

(1)
(2)
(3) For every finite spectrum X, the map E,(X) — EL(X) is zero.
(4) For every finite spectrum X, the map E*(X) — E'*(X) is zero.
(5)

5) For every finite spectrum X and every map g : X — E, the composition fog : X — E’ is nullhomotopic.

Proof. The implication (2) = (1) is obvious, and the converse follows from the fact that every spectrum
X can be written as a filtered colimit lim ¥>°7"Q°~"X. The implication (2) = (3) is obvious, and the
converse follows from the fact that every spectrum is a filtered colimit of finite spectra. The equivalence of
(4) and (5) follows by Spanier-Whitehead duality, and the equivalence of (4) and (5) is a tautology. O



Let us now return to the setting of the previous lectures. Let L ~ Z[t1,...] denote the Lazard ring,
and let M be a graded L-module. Assume that the grading on M is even: that is, My ~ 0 for every odd
number k. In the last lecture, we saw that if M satisfies Landweber’s criterion: that is, if the sequence
v = p,v1,V2,... € L is M-regular for every prime number p, then the construction

X MU, (X)®, M

is a homology theory. It follows from Corollary 3 that this homology theory is represented by a spectrum F,
which is unique up to homotopy equivalence. We will say that a spectrum FE is Landweber-ezact if it arises
from this construction. Our goal in this lecture is to show that, as an object of the homotopy category of
spectra, E is functorially determined by M. This is a consequence of the following assertion:

Theorem 6. Let E be a Landweber-exact spectrum, and let E' be a spectrum such that mp B’ ~ 0 for k odd.
Then every phantom map f : E — E’ is nullhomotopic.

Corollary 7. Let E and E' be Landweber exact spectra. Then every phantom map f : E — E’ is null-
homotopic. In particular, every nontrivial endomorphism of E acts nontrivially on the homology theory
E,.

To prove Theorem 6, we introduce two new notions:

Definition 8. We will say that a finite spectrum X is even if the homology groups Hy(X;Z) are free
abelian groups, which vanish when k is odd. Equivalently, a finite spectrum X is even if it admits a finite
cell decomposition using only even-dimensional cells.

We say that a spectrum FE is evenly generated if, for every map X — FE where X is a finite spectrum,
there exists a factorization X — X’ — F where X’ is a finite even spectrum.

Theorem 6 is a consequence of the following two assertions:
Proposition 9. Fvery Landweber exact spectrum E is evenly generated.

Proposition 10. Let E be an evenly generated spectrum and let E' be a spectrum whose homotopy groups
are concentrated in even degrees. Then every phantom map f : E — E’ is null.

We begin by proving Proposition 9. Let E be a Landweber-exact spectrum, associated to a graded
L-module M, and let f : X — FE be a map where X is a finite spectrum. We can associate to f an
element of E°(X) = Eo(DX) = MUo(DX) @, M = MU®(X) ® M, which can be written as 3_ ¢;m; where
¢; € MU% (X)) and m; € My,. Then f factors as a composition

x e P MU ™ E.

We may therefore replace E by @ X% MU: that is, it suffices to prove that @ X% MU is evenly generated.
Since M is evenly graded, each of the integers d; is even. We can therefore reduce to showing that MU itself
is evenly generated.

Since MU ~ lim MU(n), it suffices to show that each MU(n) is evenly generated. Recall that MU(n)
is the Thom complex of the virtual bundle ¢ — C", where ( is the tautological vector bundle on BU(n).
We can write BU(n) ~ lim Grass(n,n + m), wehre Grass(n,n + m) denotes the Grassmannian of n-
dimensional subspaces of C"*™. Tt follows that MU(n) is a direct limit of Thom spectra associated to the
finite-dimensional Grassmannians Grass(n,n + m). It therefore suffices to show that each of these Thom
complexes is an even finite spectrum. We now note that the space Grass(n,n + m) admits a finite cell
decomposition with cells of even dimension: for example, we can take the Bruhat decomposition. This
proves Proposition 9.



We now prove Proposition 10. Let E be an evenly generated spectrum. We begin by describing the
structure of phantom maps from E to other spectra. Let A be a set of representatives for all homotopy
equivalence classes of maps X, — F, where X, is an even finite spectrum, and form a fiber sequence

Kﬁ@XQ&E.

This sequence is classified by a map «' : E — 3(K). Since E is evenly generated, every map from a finite
spectrum X into E factors through u, so the composite map X — E — X(K) is null: in other words, v’ is a
phantom map. Conversely, if f: E — E’ is any phantom map, then f ow is nullhomotopic, so that f factors
as a composition £ — X(K) — E’. Consequently, to prove Proposition 10, it will suffice to prove that every
map X(K) — E’ is nullhomotopic: that is, that the group E’fl(K) is zero.

Since the homotopy groups of E’ are concentrated in even degrees, the Atiyah-Hirzebruch spectral se-
quence shows that E’ 71(X ) ~ 0 whenever X is a finite even spectrum. It will therefore suffice to prove the
following:

(¥) The spectrum K is a retract of a direct sum of even finite spectra.

To prove (*), we will compare the cofiber sequence

K—-@PXx.—E
acA

with another cofiber sequence of spectra. Let B be the collection of triples (o, o/, f), where o,/ € A and f
ranges over all homotopy classes of maps fitting into a commutative diagram

%

For each 3 = (a, ¢/, f) € B, we let Yz = X,. We have a canonical map ¢ : @ﬁeB Ys — @,ca Xa, whose
restriction to Y for 8 = (a, o, f) given by the difference of the maps Yz = X, — P X, and

Xa

Xo

acA

Y5 = Xo L X0 — @ X
aEA

Let F be the cofiber of the map ¢. By construction, we have a map of fiber sequences

DpecpYs — Doca Xa ——F

]

K Doca Xa —E.

We now construct a map of spectra ¢ : £ — F. By Corollary 2, it will suffice to define a map of
homology theories E, — F.. We will give a map E.(X) — F,(X) defined for every spectrum X. Since
homology theories commute with filtered colimits, it will suffice to consider the case where X is a finite
spectrum. Replacing X by its Spanier-Whitehead dual, we are reduced to the problem of producing a map
q(f) : X — F for every map of spectra f: X — E for X finite.

Here is our construction. Since F is evenly generated, every map f : X — FE factors through some map

x4 Xo — E for o € A. We define ¢(f) to be the composite map X EN Xow = Dpca Xa — F. We
must show that this construction is well-defined; that is, it does not depend on the choice of f’. To this end,



suppose we are given another factorization of f X 2 X, — E, where o € A. Let Y denote the pushout
Xo [Ix Xav. Then Y is a finite spectrum, and our data gives a canonical map ¥ — E. Since F is evenly
generated, this map factors as a composition

y L X,—FE

for some a € A. Let k' denote the composite map Xor — X’ 2% X, and let &’ be defined similarly. Then
(o/,a,h) and (&, a, h) can be identified with elements of B. It follows that the composite maps

X—>Xa/—>@Xa—>F
acA

XHXQ/,H@XQHF
acA

both coincide with the map
X-v%x,— @XQHF,
acA

which proves that ¢ is well-defined.
We now have a larger commutative diagram of fiber sequences

E——>@ucaXoa—E

L]

DsepYs — Doca Xo — f‘j
K—>®@,ca—FE.
The right vertical composition induces the identity map on the underlying homology theory FE,: that is, it

differs from idg by a phantom map. In particular, it is an equivalence, so that the left vertical composition
is an equivalence of K with itself. It follows that K is a retract of (Pgc p Y, which proves (x).



