1. Introduction to Topological Groups

In this section, we introduce topological groups, maps of topological groups, and discuss properties of open and closed subgroups.

1.1. Definition of a topological group. We build up to the definition of a topological group in [Definition 1.5]. In order to define this, we will need to introduce the notion of a topology.

Definition 1.1. A topological space X is a set (also called X) together with a collection of subsets $\{U_i\}_{i \in I}$ called open sets with $U_i \subset X$ satisfying the following conditions

1. The empty set $\emptyset \subset X$ is open.
2. The set X is open.
3. An arbitrary union of open sets is open.
4. The intersection of two open sets is open.

The collection of open subsets is called a topology for X.

Definition 1.2. A continuous map of topological spaces $f : X \to Y$ is a map of underlying sets such that for any open $U \subset Y$, the preimage $f^{-1}(U) \subset X$ is open.

Definition 1.3. For X and Y two topological spaces, define the product topology by taking the topology whose open sets are unions of sets of the form $U \times V$ for $U \subset X$ open and $V \subset Y$ open.

Exercise 1.4. Verify that the product topology is a topology.

Definition 1.5. A topological group is a topological space G together with a multiplication map $m : G \times G \to G$ and an inversion map $i : G \to G$ satisfying the group axioms (i.e., multiplication is associative, every element has a unique two sided inverse, there is an identity element) such that m and i are both continuous as maps of topological spaces.

Remark 1.6. We will often write $g \cdot h$ in place of $m(g, h)$ and g^{-1} in place of $i(g)$.
1.2. **Maps of topological groups.** We next introduce maps of topological groups.

Definition 1.7. Let G and H be topological groups. A **map of topological groups** $f : G \rightarrow H$ is a continuous map of topological spaces which is also a group homomorphism.

Definition 1.8. A continuous map of topological spaces $f : X \rightarrow Y$ is a **homeomorphism** if it has a continuous inverse map $f^{-1} : Y \rightarrow X$ (i.e., $f \circ f^{-1} = \text{id}_H, f^{-1} \circ f = \text{id}_G$).

Definition 1.9. A map of topological groups $f : G \rightarrow H$ is an **isomorphism** if it is a homeomorphism of topological spaces and an isomorphism of groups. I.e., f has an inverse map of topological groups $f^{-1} : H \rightarrow G$ meaning $f \circ f^{-1} = \text{id}_H, f^{-1} \circ f = \text{id}_G$.

Exercise 1.10. Let G be a topological group and let $g \in G$ be an element. Show that the left and right multiplication maps
\[
l_g : G \rightarrow G \quad \quad h \mapsto m(g, h)
\]
and
\[
r_g : G \rightarrow G \quad \quad h \mapsto m(h, g)
\]
define homeomorphisms of topological spaces. \(^2\)

1.3. **Open and closed subgroups.** We next discuss open and closed subgroups of topological groups and the pleasant relationship between them.

Definition 1.11. Let X be a topological space. A subset $Z \subset X$ is **closed** if $X - Z$ is open.

Exercise 1.12. Let G be a topological group and let $U \subset G$ be an open subset. Show that for $g \in G$,
\[
g \cdot U := \{m(g, u) : u \in U\}
\]
is again an open set.

Similarly, show that if $Z \subset G$ is a closed set, then $g \cdot Z$ is again a closed set.

Exercise 1.13. Show that an open subgroup of a topological group is necessarily also closed. \(^3\)
Definition 1.14. Let G be a group. A subgroup $H \subset G$ has finite index if the quotient G/H is finite (i.e., H has only finitely many cosets in G).

Exercise 1.15. Let $H \subset G$ be a subgroup which is also closed. Suppose H has finite index. Show that H is also open. 4
2. EXAMPLES

Next, we’ll consider some examples of topological groups. To give relevant examples, we’ll topologize them via the subspace topology, which we now introduce.

Definition 2.1. If \(i : X \subset Y \) with \(X \) a set and \(Y \) a topological space, then the **subspace topology** on \(X \) (with respect to \(i \)) is the topology on \(X \) whose open sets are those of the form \(X \cap U \) for \(U \subset Y \) open.

Exercise 2.2. Verify that the subspace topology is indeed a topology.

Exercise 2.3. Define a topology on \(\mathbb{R}^n \) so that the open sets are unions of open balls. Show that this indeed defines a topology, which we call the **Euclidean topology**.

Exercise 2.4. Show that \(S^1 := \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \} \) endowed with the subspace topology from the Euclidean topology on \(\mathbb{R}^2 \) is a topological group. Here, inversion is given by sending \((x, y) \mapsto (x, -y) \) and is multiplication given by adding angles on the circle, or more formally

\[
(x, y) \cdot (z, w) = (xz - yw, yz + xw).
\]

Exercise 2.5. Identify \(n \times n \) real matrices with \(\mathbb{R}^{n^2} \). Give \(n \times n \) real matrices the Euclidean topology via this identification, with group operation given by matrix addition and inversion given by negating the matrix. Show that this is a topological group.

Exercise 2.6. In this exercise, we show certain matrix groups are topological groups.

1. Let \(\text{Gl}_2(\mathbb{R}) \) denote the set of \(2 \times 2 \) invertible matrices with real entries, viewed as a subset of all \(2 \times 2 \) invertible matrices. Topologize \(\text{Gl}_2(\mathbb{R}) \) with the subspace topology, giving all \(2 \times 2 \) matrices the topology from Exercise 2.5 (which can itself be identified with the Euclidean topology on \(\mathbb{R}^4 \)). Show that \(\text{Gl}_2(\mathbb{R}) \) is a topological group, where multiplication is given by matrix multiplication and inversion is given by matrix inversion.

2. Let \(\text{Sl}_2(\mathbb{R}) \) denote the set of \(2 \times 2 \) matrices with determinant 1. Topologize \(\text{Sl}_2(\mathbb{R}) \) with the subspace topology, giving all \(2 \times 2 \) matrices the topology from Exercise 2.5 (which can itself be identified with the Euclidean topology on \(\mathbb{R}^4 \)). Show that \(\text{Sl}_2(\mathbb{R}) \) is a topological group.
(3) Generalize the preceding parts to show $\text{Gl}_n(\mathbb{R})$ ($n \times n$ invertible matrices) and $\text{Sl}_n(\mathbb{R})$ ($n \times n$ determinant 1 matrices) are topological groups.

Exercise 2.7 (Optional, unimportant tricky exercise). In this exercise we explore what happens when you topologize the complex numbers with the cofinite topology, and try to make it a group under addition.

1. Give the complex numbers, \mathbb{C}, the **cofinite topology**, where the only closed sets other than \mathbb{C} itself are the finite sets. Verify that this is indeed a topology.
2. Give \mathbb{C} the structure of a group where the operation is addition of complex numbers and inversion is negation. Show that addition of complex numbers is not continuous with respect to the cofinite topology, so \mathbb{C} is not a group under addition in the cofinite topology.
3. For $f_1, \ldots, f_m \in \mathbb{C}[x_1, \ldots, x_n]$ polynomials, in n variables define

$$V(f_1, \ldots, f_m) := \{(a_1, \ldots, a_n) : f_1(a_1, \ldots, a_n) = \cdots = f_m(a_1, \ldots, a_n) = 0\}.$$

Define the Zariski topology on \mathbb{C}^n as that topology where closed sets are precisely those of the form $V(f_1, \ldots, f_n)$. Show that this defines a topology, called the **Zariski topology**.
4. Show that the Zariski topology on \mathbb{C} agrees with the cofinite topology.
5. Show that if we give $\mathbb{C} \times \mathbb{C} = \mathbb{C}^2$ and \mathbb{C} the Zariski topologies, then addition $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$ is indeed continuous. In some sense, this is a fix to the failure of addition on \mathbb{C} to be continuous with respect to the cofinite topology.
3. QUOTIENTS OF TOPOLOGICAL GROUPS

In this section, we discuss quotients of topological spaces, the T_1 property for topological groups, and then show that the quotient of a topological group by a closed normal subgroup is again a topological group.

3.1. Quotients of topological spaces.

Definition 3.1. Let Y be a topological space and let Z be a set such that there is a surjective map of sets $f : Y \to Z$. Define the quotient topology on Z by declaring the open sets in Z to be those sets $U \subset Z$ such that $f^{-1}(U)$ is open.

Exercise 3.2. Verify that the quotient topology is indeed a topology. That is, show finite intersections of open sets in Z are open and arbitrary unions of open sets in Z are open.

3.2. T_1 and quotients.

Definition 3.3. A topological space X is T_1 if every point $x \in X$ is closed.

Exercise 3.4. Let Y be a topological space, $f : Y \to Z$ a surjective map, and give Z the quotient topology. Show that Z is T_1 if and only if for every $z \in Z$, the set $f^{-1}(z) \subset Y$ is closed as a subset of Y.

Exercise 3.5. Let G be a topological group and $H \subset G$ be a closed subgroup. Topologize G/H with the quotient topology.

1. Show that the map $G \to G/H$ is continuous.
2. Show that G/H is T_1.

3.3. Quotients of topological groups. In the next series of exercises, we show that for G a topological group and $H \subset G$ a closed normal subgroup, G/H can also be given the structure of a topological group.

Exercise 3.6. Let X and Y be topological spaces and let Z and W be sets with surjective maps $f : Y \to Z$ and $g : X \to W$. Give Z and W and the quotient topology. We obtain an induced map $g \times f : X \times Y \to W \times Z$, where we give both $X \times Y$ and $W \times Z$ the product topologies. Show that the map $g \times f$ is continuous.

Exercise 3.7. Show that the map

$$\alpha : G \times G/H \to G/H$$

$$\alpha(g_1, g_2 \cdot H) \mapsto g_1 g_2 \cdot H$$

is continuous, where we give G/H the quotient topology.
Exercise 3.8. Let $H \subset G$ be a closed normal subgroup. We have a surjective map $G \to G/H$ sending $g \mapsto g \cdot H$ and so we may endow G/H with the quotient topology. In this exercise, we show G/H is a topological group.

(1) Show that the induced multiplication map on G/H
\[
\bar{m} : G/H \times G/H \to G/H
\]
\[
g_1 \cdot H, g_2 \cdot H \mapsto g_1 \cdot g_2 \cdot H
\]
is continuous. 10

(2) Show that the induced inversion map
\[
\bar{i} : G/H \to G/H
\]
\[
g \cdot H \mapsto g^{-1} \cdot H
\]
is continuous.

(3) Show that \bar{m} and \bar{i} give G/H the structure of a topological group.
4. THE CLOSURE OF THE IDENTITY

The main goal of this section is to show that for G any topological group, the closure of the identity is again a subgroup.

Definition 4.1. Let X be a topological space and $U \subset X$ a subset (not necessarily open or closed). The **closure of U** is the intersection of all closed sets containing U.

Exercise 4.2 (Easy Exercise). Prove the following topological properties of the closure.

1. Verify that closure of any $U \subset X$ set is closed.
2. Show that the closure of U is the smallest closed set containing U. That is, if $V \subset X$ is any closed set with $U \subset V$ then the closure of U is contained in V.

Definition 4.3. A map of topological spaces $f : X \to Y$ is a **homeomorphism** if there is a continuous inverse map $f^{-1} : Y \to X$ so that $f \circ f^{-1} = \text{id}_Y$, $f^{-1} \circ f = \text{id}_X$.

Exercise 4.4. Let G be a topological group. Show that the inverse map $i : G \to G$ is a homeomorphism. 11

Exercise 4.5. Let G be a topological group and let $e \in G$ be the identity. Let V denote the closure of $\{e\} \subset G$. In this exercise, we show that V is a closed normal group.

1. Show that the map $i : G \to G$ restricts to a map $i_V : V \to V$. That is, show that for $v \in V$, $i(v) \in V$. 12
2. Show that the induced map $i_V : V \to V$ is continuous, where V is given the subspace topology.
3. Show that if $g \in V$ then $g \cdot V$ is a closed set containing the identity. 13
4. Show that if $g \in V$ then $g \cdot V = V$. 14
5. Show that the multiplication map $m : G \times G \to G$ restricts to a multiplication map $m : V \times V \to V$. That is, show that if $v, w \in V$ then $m(v, w) \in V$. 15
6. Conclude that V is a closed subgroup of G. In particular, V is a topological group.
7. Show that V is in fact a closed normal subgroup of G. 16

Exercise 4.6. Let $V \subset G$ be the closure of the identity. By **Exercise 4.5**, $V \subset G$ is a closed normal subgroup. Conclude that G/V is a topological group.
5. HAUSDORFNESS

We now introduce the concept of a topological space being Hausdorff and explore the interaction between Hausdorffness and topological groups.

Definition 5.1. A topological space X is **Hausdorff** if for any $x, y \in X$ with $x \neq y$, there are open sets $U, V \subset X$ with $x \in U, y \in V$ and $U \cap V = \emptyset$.

Exercise 5.2. Let X be a topological space. Show that if X is Hausdorff then X is also T_1.

Exercise 5.3. Let G be a T_1 topological group. We show that G is also Hausdorff. Hence, a topological group is T_1 if and only if it is Hausdorff.

1. Let $g \in G$ with $g \neq e$ (for $e \in G$ the identity). Use that the multiplication map $m : G \times G \to G$ is continuous at (e, e) to show that there are two open sets U and V with $e \in U, e \in V$ and $g \notin U \cdot V$.

2. To prove that G is Hausdorff, show that it suffices to show that for any $x \in G$ there is some U, V with $e \in U, x \in V$ and $U \cap V = \emptyset$.

3. Let U, V be as in the first part and define $W := (U \cap V) \cap i(U \cap V)$. Show that $W \cap gW = \emptyset$ with $e \in W$ and $g \in gW$.

4. Conclude that G is Hausdorff.

Exercise 5.4. Let G be a topological group, let $e \in G$ be the identity, and let V denote the closure of e. Show that G/V, equipped with the quotient topology, is Hausdorff.

Exercise 5.5. If G is a Hausdorff topological group and $H \subset G$ is a closed subgroup, show that G/H with the quotient topology is also Hausdorff.

5.1. The T_0 property. Finally, we include a bonus subsection on the T_0 property.

Definition 5.6. A topological space X is T_0 if for any two points $x, y \in X$ there is an open set $U \subset X$ so that either $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$.

Exercise 5.7. Show that a T_1 topological space is T_0.

Exercise 5.8. Show that a T_0 topological group is also T_1. Conclude that a topological group is T_0 if and only if it is T_1 if and only if it is Hausdorff.
Notes

1 Hint: You need to show that an intersection of two sets of the form \((V_1 \times U_1) \cap (V_2 \times U_2)\), for \(U_i \subset X, V_i \subset Y\), can be written as a union of open sets of the form \(W_i \times Z_i\) for \(U_i \subset X, Z_i \subset Y\).

2 Hint: To show \(l_g\) is continuous, write \(l_g\) as the composition of the map \(\phi: G \rightarrow G \times G\) with the multiplication map \(m\). Show that \(\phi\) is continuous and that a composition of continuous maps is continuous.

3 Hint: If \(H \subset G\) is an open subgroup, show that \(U := \bigcup_{g \in H} g \cdot H\) is an open subset with \(G - U = H\).

4 Hint: Use the same idea as in Exercise 1.13

5 Hint: The key step to check is that an intersection of two open balls \(U\) and \(V\) is again a union of open balls. To show this, for each point \(x \in U \cap V\) find an open ball containing \(x\) and contained in \(U \cap V\).

6 Hint: Show multiplication and inversion are continuous by expressing them as a polynomial in the variables of the two matrices you are multiplying.

7 Hint: Use Exercise 3.4 and Exercise 1.12

8 Hint: Argue that it suffices to verify that for \(U \subset W, V \subset Z\) we have \((g \times f)^{-1}(U \times V) = g^{-1}(U) \times f^{-1}(V) \subset X \times Y\) is open. Then, show this from the definition of product topology.

9 Hint: Show that the diagram

\[
\begin{array}{ccc}
G \times G & \xrightarrow{m} & G \\
\downarrow{\text{id} \times \pi} & & \downarrow{\pi} \\
G \times G/H & \xrightarrow{\alpha} & G/H
\end{array}
\]

commutes. Show using Exercise 3.6 (taking \(X = W\) and \(g : X \rightarrow W\) the identity map there) that \(\alpha\) is continuous if \(m\) is.

10 Hint: Use the same idea as in Exercise 3.7

11 Hint: Show that \(i\) is its own inverse.

12 Hint: If \(i(v) \notin V\), then show \(V \cap i(V)\) is a closed set containing \(e\) strictly contained in \(V\).

13 Hint: Use Exercise 1.12 and that \(g^{-1} \in V\).

14 Hint: If \(g \cdot V \neq V\), show that \(g \cdot V \cap V\) is a strict subset of \(V\) containing the identity.

15 Hint: Use the previous part.

16 Hint: If \(g \in G\) show that \(gVg^{-1}\) is a closed subset containing the identity. If \(gVg^{-1} \neq V\), show that \(gVg^{-1} \cap V\) is a closed proper subset of \(V\), and reach a contradiction.

17 Hint: Since \(G\) is \(T_1\), \(G - g\) is open. Consider \(m^{-1}(G - g)\).

18 Hint: Show that \(e \notin m(gW \times W)\) but if \(a \in gW \cap W\) then \(e = a \cdot a^{-1} \in m(gW \times W)\).

19 Hint: Use Exercise 4.6, Exercise 3.4, and Exercise 5.3

20 Hint: Use the same idea as in Exercise 5.3.
21 Hint: Reduce to showing that if there is an open set containing e but not p, then there is an open set containing p but not e. If there is an open set U containing e but not p, then consider $U \cap i(U)$ and translate.