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1. Eigenvalues and eigenvectors of symmetric matrices

Problem 1. Consider the matrix

A =

[
a b

b a

]
for a, b ∈ R.

(i) Give the eigenvalues of A in terms of a and b and verify they are real.

(ii) Give the eigenvectors of A in terms of a and b and very that A is diagonalizable using an orthonormal

eigenbasis.

Solution. (i) The characteristic polynomial is (a− λ)2 − b2 = (a− λ+ b)(a− λ− b), so the roots are a+ b

and a− b. These are indeed real.

(ii) To compute the eigenvectors we find a basis of

ker

[
−b b

b −b

]
, ker

[
b b

−b b

]
.

These are given by [
1

1

]
,

[
1

−1

]
.

Normalizing them to have length 1, we get[
1/
√

2

1/
√

2

]
,

[
1/
√

2

−1/
√

2

]
,

which are indeed an orthonormal basis. �

Problem 2. Consider the matrix

A =



3 1 1 1 1 1

1 3 1 1 1 1

1 1 3 1 1 1

1 1 1 3 1 1

1 1 1 1 3 1

1 1 1 1 1 3


.

(i) What is the dimension of the kernel of the matrix A− 2 · id6?

(ii) Use part (i) and the trace to find the eigenvalues of A.

(iii) Find an eigenbasis. Can you find an orthonormal eigenbasis?

Solution. (i) We have that A− 2id6 is given by

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1


,

which has 5-dimensional kernel. Thus we have an eigenvalue 2 with geometric multiplicity 5.
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(ii) To find the remaining eigenvalues, we see that there is one which remains to be found. We use that

2 + 2 + 2 + 2 + 2 + λ = 6 · 3 = 18, so that λ = 8.

(iii) The eigenspace for eigenvalue 2 is spanned by

−1

1

0

0

0

0


,



−1

0

1

0

0

0


,



−1

0

0

1

0

0


,



−1

0

0

0

1

0


,



−1

0

0

0

0

1


.

These are not yet orthonormal, so we can apply Gram-Schmidt to get:

−(1/
√

2)

1/
√

2

0

0

0

0


,



−(1/
√

6)

−(1/
√

6)√
2/3

0

0

0


,



−(1/(2
√

3))

−(1/(2
√

3))

−(1/(2
√

3))√
3/2

0

0


,



−(1/(2
√

5))

−(1/(2
√

5))

−(1/(2
√

5))

−(1/(2
√

5))

2/
√

5

0


,



−(1/
√

30)

−(1/
√

30)

−(1/
√

30)

−(1/
√

30)

−(1/
√

30)√
5/6


.

For the eigenvalue 8, we get 

1/
√

6

1/
√

6

1/
√

6

1/
√

6

1/
√

6

1/
√

6


�

Problem 3. Show that every symmetric matrix A with positive eigenvalues has a “square root”, a matrix C

such that C2 = A.

Solution. By the spectral theorem, there is an (orthogonal) matrix S such that S−1AS is a diagonal matrix

D with positive eigenvalues λ1, . . . , λn on the diagonal. Let
√
D be the diagonal matrix with entries√

λ1, . . . ,
√
λn on the diagonal. Then we have that C := S

√
DS−1 satisfies

S
√
DS−1S

√
DS−1 = SDS−1 = A. �

Summary

· If an (n× n)-matrix A satisfies AT = A it is called symmetric, and if it satisfies AT = −A it is

called anti-symmetric.

· Symmetric matrices have real eigenvalues and eigenvectors for different eigenvalues are orthogo-

nal.

· The spectral theorem says that a symmetric matrix can always be diagonalized and has an

orthonormal eigenbasis. Thus there exists an orthogonal matrix S such that S−1AS is diagonal

with diagonal entries the real eigenvalues of A.
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