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Abstract. We introduce the theory of topological manifolds (of high dimension). We

develop two aspects of this theory in detail: microbundle transversality and the Pontryagin-

Thom theorem.
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These are the notes for three lectures I gave at a workshop. They are mostly based on

Kirby-Siebenmann [KS77] (still the only reference for many basic results on topological

manifolds), though we have eschewed PL manifolds in favor of smooth manifolds and often

do not give results in their full generality.

1. Lecture 1: the theory of topological manifolds

Definition 1.1. A topological manifold of dimension n is a second-countable Hausdorff

space M that is locally homeomorphic to an open subset of Rn.

In this first lecture, we will discuss what the “theory of topological manifolds” entails.

With “theory” I mean a collection of definitions, tools and results that provide insight in a

mathematical structure. For smooth manifolds of dimension ≥ 5, handle theory provides

such insight. We will describe the main tools and results of this theory, and then explain

how a similar theory may be obtained for topological manifolds. In an intermezzo we will

give the proof of the Kister’s theorem, to give a taste of the infinitary techniques particular

to topological manifolds. In the second lecture we will develop one of the important tools of

topological manifold theory — transversality — and in the third lecture we will obtain one

of its important results — the classification of topological manifolds of dimension ≥ 6 up to

bordism.
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1.1. The theory of smooth manifolds. There exists a well-developed theory of smooth

manifolds, see [Kos93, Hir94, Wal16]. Though we will recall the basic definition of a smooth

manifold to refresh the reader’s memory, we will not recall most other definitions, e.g. those

of smooth manifolds with boundary or smooth submanifolds.

Definition 1.2. A smooth manifold of dimension n is a topological manifold of dimension

n with the additional data of a smooth atlas: this is a maximal compatible collection of map

φi : Rn ⊃ Ui ↪→M that are homeomorphisms onto their image, called charts, such that the

transition functions φ−1
j φi between these charts are smooth.

The goal of the theory of smooth manifolds is to classify smooth manifolds, as well as

various geometric objects in and over them, such as submanifolds, vector bundles or special

metrics. This was to a large extent achieved by the high-dimensional theory developed in the

50’s, 60’s and 70’s. Here “high dimension” means dimensions n ≥ 5, though we will assume

n ≥ 6 for simplicity. The insight of this theory is to smooth manifolds can be understood by

building them out of standard pieces called handles, see e.g. [L0̈2].

Definition 1.3. Let M be a smooth manifold with boundary ∂M . Given a smooth embed-

ding φ : Si−1 ×Dn−i ↪→ ∂M , we define a new manifold

M ′ := M ∪φ Di ×Dn−i

Then M ′ is said to be the result of attaching an i-handle to M .

Giving a handle decomposition of M means expressing M as being given by iterated

handle attachments, starting at ∅.

Remark 1.4. When we glue Di ×Dn−i to M corners may appear. These can canonically

be smoothed, though we shall ignore such difficulties as they play no role in the topological

case.

Example 1.5. A sphere Sn has a handle decomposition with only two handles: a 0-handle

D0 ×Dn ∼= Dn (attached along S−1 ×Dn = ∅ to the empty manifold). We then attach an

n-handle Dn ∼= Dn×D0, by gluing its boundary Sn−1 to the boundary Sn−1 of the 0-handle

via the identity map.

It is very important to specify the gluing map. In high dimensions there exist so-called

exotic spheres, which are homotopy equivalent to Sn but not diffeomorphic to it, and these

are obtained by gluing an n-handle to a 0-handle along exotic diffeomorphisms Sn−1 → Sn−1.

For example, for n = 7, there are 28 exotic spheres.

Exercise 1.1. Give a handle decomposition of the genus g surface Σg with 2g + 2 handles

and show there is no handle decomposition with fewer handles.

The following existence result is often proven using Morse theory, i.e. the theory of generic

smooth functions M → R and their singularities, see e.g. [Mil65].

Theorem 1.6. Every smooth manifold admits a handle decomposition.

Once we have established the existence of handle decompositions, we should continue

the developed of the high-dimensional theory by understanding the manipulation of handle

decompositions. The goal is to reduce questions about manifolds to questions about homotopy
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theory or algebraic K-theory, both of which are more computable than geometry. The

highlights among the results are as follows, stated vaguely:

· the Pontryagin-Thom theorem: the homeomorphism classes of smooth manifolds

up to an equivalence relation called bordism (which is closely related to handle

attachments) can be computed homotopy-theoretically [Hir94, Chapter 7].

· the h-cobordism theorem: if a manifold M of dimension ≥ 6 looks like a product

N × I from the point of view of homotopy theory and algebraic K-theory, it is

diffeomorphic to N × I [Mil65].

· the end theorem: if an open manifold M of dimension ≥ 5 looks like the interior of a

manifold with boundary from the point of view of homotopy theory and algebraic

K-theory, then it is the interior of a manifold with boundary [Sie65].

· surgery theory : a smooth manifold of dimension ≥ 5 is described by a space with

Poincaré duality, bundle data and simple-homotopy theoretic data, satisfying certain

conditions [Wal99]. In surgery theory, one link between homotopy theory and

manifolds is through the identification of normal invariants using the Pontryagin-

Thom theorem mentioned above.

To start manipulating handles, we use transversality. A handle Di × Dn−i has a core

Di × {0} and cocore {0} ×Dn−i, which form the essential parts of the handle. We need to

control the way that the boundary of a core of one handle intersects the cocore of other

handles. Transversality results allow us assume these intersections are transverse, so we can

start manipulating them. This is one of the two reasons we discuss transversality in these

lectures, the other being the important role it plays in the proof of the Pontryagin-Thom

theorem in the next section.

Remark 1.7. In addition to smooth manifolds, there is a second type of manifold that

has a well-developed theory: piecewise linear manifolds, usually shortened to PL-manifolds

[RS72]. This is a topological manifold with a maximal piecewise linear atlas. Here instead of

the transition functions φ−1
j φi being smooth, they are required to be piecewise linear.

The results of this theory are essentially the same as for those in the theory of smooth

manifolds, though they differ on a few points in their statements and the methods used to

prove them. We will rarely mention PL-manifolds in these notes, but in reality they play a

more important role in the theory of topological manifolds than smooth manifolds. This is

because topological manifolds are closer to PL manifolds than smooth manifolds.

1.2. The theory of topological manifolds. The theory of topological manifolds is mod-

eled on that of smooth manifolds, using the existence and manipulation of handles. Hence

the final definitions, tools and theorems that we want for topological manifolds are similar

to those of smooth manifolds.

To obtain this theory, we intend to bootstrap from smooth or PL manifolds, a feat that was

first achieved by Kirby and Siebenmann [KS77, Essay IV]. They did this by understanding

smooth and PL structures on (open subsets of) topological manifolds. To state the results

of Kirby and Siebenmann, we define three equivalence relations on smooth structures on

(open subsets of) a topological manifold M , which one should think of as an open subset of

a larger topological manifold.
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To give these equivalence relations, we have to explain how to pull back smooth structures

along topological embeddings of codimension 0. In this case a topological embedding is

just a continuous map that is a homeomorphism onto its image, and a typical example

is the inclusion of an open subset. If Σ is a smooth structure on M and ϕ : N → M is

a codimension 0 topological embedding, then ϕ∗Σ is the smooth structure given by the

maximal atlas containing the maps ϕ−1 ◦ φi : Rn ⊂ UI ↪→ ϕ(N)→ N for those charts φi of

Σ with φi(Ui) ⊂ ϕ(N) ⊂M . Note that if N and M were smooth, ϕ is smooth if and only if

ϕ∗ΣM = ΣN .

Definition 1.8. Let M be a topological manifold.

· Two smooth structure Σ0 and Σ1 are said to concordant if there is a smooth structure

Σ on M × I that near M × {i} is a product Σi × R.

· Σ0 and Σ1 are said to be isotopic if there is a (continuous) family of homeomorphisms

φt : [0, 1] → Homeo(M) such that φt = id and φ∗1Σ0 = Σ1 (i.e. the atlases for Σ0

and Σ1 are compatible).

· Σ0 and Σ1 are said to be diffeomorphic if there is a homeomorphism φ : M → M

such that φ∗Σ0 = Σ1.

Remark 1.9. By the existence of smooth collars, Σ0 and Σ1 are concordant if and only

if there is a smooth structure Σ on M × I so that Σ|M×{i} = Σi, where implicitly we are

saying that the boundary of M is smooth.

Note that isotopy implies concordance and isotopy implies diffeomorphism. Kirby and

Siebenmann proved the following foundational results about smooth structures:

· concordance implies isotopy : If dimM ≥ 6, then the map

{smooth structures on M}
isotopy

−→ {smooth structures on M}
concordance

is a bijection. Hence also concordance implies diffeomorphism:

isotopy

diffeomorphism concordance

· concordance extension: Let M be a topological manifold of dimension ≥ 6 with a

smooth structure Σ0 and U ⊂M open. Then any concordance of smooth structures

on U starting at Σ0|U can be extended to a concordance of smooth structures on M

starting at Σ0.

· the product structure theorem: If dimM ≥ 5, then taking the cartesian product with

R induces a bijection

{smooth structures on M}
concordance

−×R−→ {smooth structures on M × R}
concordance

.

These theorems can be used to prove a classification theorem for smooth structures.

Theorem 1.10 (Smoothing theory). There is a bijection

{smooth structures on M}
concordance

τ−→ {lifts of TM : M → BTop to BO}
vertical homotopy

.
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These techniques are used as follows: every point in a topological manifold has a neigh-

borhood with a smooth structure. This means we can use all our smooth techniques locally.

Difficulties arise when we want to move to the next chart. Using the above three theorems, it

is sometimes possible to adapt the smooth structures so that we can transfer certain proper-

ties. We will do this for handlebody structures in this lecture and microbundle transversality

in the next lecture. Perhaps the slogan to remember is a sentence in Kirby-Siebenmann

(though we will replace “PL” by “smoothly”):

The intuitive idea is that ... the charts of a TOP manifolds ... are as good

as PL compatible.

Let me try to somewhat elucidate the hardest part of proving these results: it appears in

the product structure theorem (which also happens to be the theorem we will use most in

later lectures). The proof of this theorem is by induction over charts, and the hardest step is

the initial case M = Rn. We prove this by showing that for n ≥ 6, both Rn and Rn+1 have

a unique smooth structure up to concordance; a map between two sets containing a single

element is of course a bijection. To produce a concordance from any smooth structure of

Rn to the standard one, we will need both the stable homeomorphism theorem and Kister’s

theorem. Let us state these results.

Definition 1.11. A homeomorphism f : Rn → Rn is stable if it is a finite composition of

homeomorphisms that are identity on some open subset of Rn.

Remark 1.12. Using the topological version of isotopy extension [EK71], one may prove

that f is stable if and only if for all x ∈ Rn there is an open neighborhood U of x such that

f |U is isotopic to a linear isomorphism. This allows one to define a notion of a stable atlas

and stable manifold, which play a role in the proof of stable homeomorphism theorem.

The following is due to Kirby [Kir69].

Theorem 1.13 (Stable homeomorphism theorem). If n ≥ 6, then every orientation-

preserving homeomorphism of Rn is stable.

Remark 1.14. The case n = 0, 1 are folklore, n = 2 follows from work by Radó [Rad24],

n = 3 from work by Moise [Moi52], and the cases n = 4, 5 are due to Quinn [Qui82].

Exercise 1.2. Prove the case n = 1 of the stable homeomorphism theorem.

Lemma 1.15. A stable homeomorphism is isotopic to the identity.

Proof. If a homeomorphism h is the identity near p ∈ Rn, and τp : Rn → Rn denotes the

translation homeomorphism x 7→ x+ p, then τ−1
p hτp is the identity near 0. Thus the formula

[0, 1] 3 t 7→ τ−1
t·p hτt·p

gives an isotopy from h to a homeomorphism that is the identity near 0.

Next suppose we are given a stable homeomorphism h, which by definition we may write

as h = h1 · · ·hk with each hi a homeomorphism that is the identity on some open subset

Ui Then applying the above construction to each of the hi using pi ∈ Ui, shows that h is

isotopic to a homeomorphism h′ that is the identity near 0.
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Finally, let σr : Rn → Rn for r > 0 denote the scaling homeomorphism given by x 7→ rx

then

[0, 1] 3 r 7→

{
σ−1

1−rh
′σ1−r if r ∈ [0, 1)

id if r = 1

gives an isotopy from h′ to the identity (note that for continuity in the compact open topology

we require convergence on compacts). �

Thus the stable homeomorphism theorem implies that Homeo(Rn) has two path compo-

nents: one contains the identity, the other the orientation-reversing map (x1, x2, . . . , xn) 7→
(−x1, x2, . . . , xn). We will combine this with Kister’s theorem [Kis64]. This result uses the

definition of a topological embedding, which in this case — when the dimensions are equal —

is just a continuous map that is a homeomorphism onto its image.

Theorem 1.16 (Kister’s theorem). Every topological embedding Rn ↪→ Rn is isotopic to a

homeomorphism. In fact, the proof gives a canonical such isotopy, which depends continuously

on the embedding.

In the intermezzo following this section, we shall give a proof of this theorem. It is

proven by what may be described impressionistically as a “convergent infinite sphere jiggling”

procedure. Combining this with Theorem 1.13 and Lemma 1.15 we obtain:

Corollary 1.17. If n ≥ 6, every orientation-preserving topological embedding Rn ↪→ Rn is

isotopic to the identity.

Corollary 1.18. For n ≥ 6, every smooth structure Σ on Rn is concordant to the standard

one.

Proof. Any smooth chart for the smooth structure Σ can be used to obtain a smooth

embedding φ0 : Rnstd ↪→ RnΣ, which without loss of generality we may assume to be orientation-

preserving (otherwise precompose it with the map (x1, x2, . . . , xn) 7→ (−x1, x2, . . . , xn)). A

smooth embedding is in particular a topological embedding and by Corollary 1.17, it is

isotopic to the identity. Pulling back the smooth structure along this isotopy gives us a

concordance of smooth structures starting at the standard one and ending at Σ. �

Remark 1.19. In particular, for n ≥ 6 there is a unique smooth structure on Rn up

to diffeomorphism, as concordance implies isotopy implies diffeomorphism. The smooth

structure on Rn is in fact unique in all dimension except 4. The stable homeomorphism

theorem and Kister’s theorem are true even in dimension 4, but concordance implies isotopy

fails.

Remark 1.20. The proof of the stable homeomorphism theorem is beautiful, but has

many prerequisites. It relies on both the smooth end theorem and the classification of

PL homotopy tori using PL surgery theory [KS77, Appendix V.B] [Wal99, Chapter 15A],

and uses a so-called torus trick to construct a compactly-supported homeomorphism of Rn
agreeing with the original one on an open subset.

1.3. Existence of handle decompositions. As an application of the product structure

theorem, we will prove that every topological manifold of dimension ≥ 6 admits a handle

decomposition [KS77, Theorem III.2.1]. The definition of handle attachments and handle
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decompositions for topological manifolds are as in Definition 1.3 except φ now only needs to

be a topological embedding.

This definition involves topological manifolds with boundary, which are locally homeomor-

phic to [0,∞)× Rn−1 and the points which correspond to {0} × Rn−1 form the boundary

∂M of M . We prove in Lemma 1.23 that every topological manifold with boundary admits a

collar, i.e. a map ∂M × [0,∞) ↪→M that is the identity on the boundary and a homeomor-

phism onto its image. Suppose one has a map e : M ′ ↪→M of a topological manifold with

boundary M ′ into a topological manifold M of the same dimension that is a homeomorphism

onto its image. Using a collar for M ′, we may isotope the map e such that its boundary

∂M ′ has a bicollar in M , i.e. there is a map ∂M ×R ↪→M that is the identity on ∂M ×{0}
and is a homeomorphism onto its image. This isotopy is given by “pulling M back into its

collar a bit.”

Remark 1.21. Not every map e : M ′ ↪→M as above admits a bicollar, e.g. the inclusion of

the closure of one of the components of the complement of the Alexander horned sphere, see

Remark 3.10.

Theorem 1.22. Every topological manifold M of dimension n ≥ 6 admits a handle decom-

position.

Proof. Let us prove this in the case that M is compact. Then there exists a finite cover of

M by closed subsets Ai, each of which is contained in an open subset Ui that can be given a

smooth structure Σi (these do not have to be compatible). For example, one may obtain

this by taking a finite subcover of the closed unit balls in charts.

By induction over i we construct a handlebody Mi ⊂M whose interior containss
⋃
j≤iAj ,

starting with M−1 = ∅. So let i ≥ 0 and suppose we have constructed Mi−1, then we will

construct Mi. By the remarks preceding this theorem we assume that there exists a bicollar

Ci of ∂(Mi−1∩Ui) in Ui. In particular Ci is homeomorphic to ∂(Mi−1∩Ui)×R and being an

open subset of Ui with smooth structure Σi, admits a smooth structure. Thus we may apply

the product structure theorem to ∂(Mi−1 ∩ Ui) ⊂ Ci, and modify the smooth structure on

Ci by a concordance so that ∂(Mi−1 ∩ Ui) becomes a smooth submanifold. By concordance

extension we may then extend the concordance and resulting smooth structure to Ui. We can

then use the relative version of the existence of handle decompositions for smooth manifolds

to find a Ni ⊂ Ui obtained by attaching handles to Mi−1∩Ui, which contains a neighborhood

of Ai ∩ Ui. Taking Mi := Mi−1 ∪Ni completes the induction step. �

Exercise 1.3. Modify the proof of Theorem 1.22 to work for non-compact M (hint: use

that M is paracompact).

We now prove the lemma about collars. Though this is longer than the above proof, it is

completely elementary.

Lemma 1.23. The boundary of a topological manifold admits a collar c : ∂M × [0, 1) ↪→M ,

unique up to isotopy.

Proof. A local version of uniqueness can be used to prove existence. Its statement involves

local collars. A local collar is an open subset U ⊂ ∂M and a map c : U × [0,∞)→M that

is the identity on U × {0} and a homeomorphism onto its image.
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Then the local version of uniqueness says the following: given two local collars c, d : U ×
[0,∞)→M with the same domain, a closed Dtodo ⊂ U and open neighborhood Vtodo ⊂M
containing Dtodo × {0}, there exists a isotopy hs of M , i.e. a family of homeomorphisms

indexed by s ∈ [0, 1], with the following properties:

(i) h0 = idM ,

(ii) hs is the identity on ∂M for all s ∈ [0, 1],

(iii) h1d = c near Dtodo × {0} in U × [0,∞),

(iv) hs is supported in Vtodo for all s ∈ [0, 1].

To prove this local uniqueness statement, we do a “sliding procedure.” Let W :=

d−1(c(U × [0,∞))), an open subset of U × [0,∞) containing D × {0}. There exists an open

subset of the form W ′ × [0, ε) ⊂W in U × [0,∞) containing D × {0}. We can now look at

d|W ′×[0,ε) in c-coordinates, i.e. consider it as a map W ′× [0, ε)→ U× [0,∞). It is now helpful

to enlarge the manifolds we work in: U × [0,∞) ⊂ U × R and W ′ × [0, ε) ⊂ W ′ × (−ε, ε),
extending d by the identity to d̃ : W ′ × (−ε, ε)→ U × R. There exists a 1-parameter family

of homeomorphisms σs of U ×R indexed by s ∈ [0, 1], which “slides” along the lines {u}×R,

satisfying

(i) σ0 = idU×R,

(ii) σs(u, t) ∈ u× R and σs(u, t) ∈ u× [0,∞) if t ∈ [0,∞),

(iii) σ1(D × {0}) ⊂ U × (0,∞),

(iv) σt is supported on a closed neighborhood of D × {0} contained in d−1(Vtodo).

Hint for the construction of σs: find a continuous function U → [0,∞) that is non-zero

on D and whose graph lies in d−1(Vtodo) ∪ (U × {0}).
Then consider the family

d̃s := s 7→ σs ◦ d̃ ◦ σ−1
s

so that d̃0 = d̃ and d̃1 is the identity near D×{0}, i.e. coincides with c (since we were working

in c-coordinates). Now we can define the desired isotopy hs by d̃s ◦ d−1 on d(W ′ × [0, ε))

and identity elsewhere. This is continuous by properties (ii) and (iv) of σs. Properties (i),

(iii) and (iv) of hs follows from properties (i), (iii) and (iv) of σs respectively. Property (ii)

of hs follows from the definitions.

One deduces existence from uniqueness as follows. Since ∂M is paracompact, there exists

a locally finite collection of closed sets Aβ inside open subsets Uβ ⊂ ∂M so that
⋃
β Aβ = ∂M

and for all Uβ we have a local collar ci : Ui × [0,∞) ↪→M . Without loss of generality, the

images of ci are also locally finite, by shrinking them. Enumerate the β and write them as

i ∈ N from now on. Our construction of the collar will by induction.

That is, suppose we have constructed dj : Vj × [0,∞) ↪→ M on a neighborhood Vj of⋃
i≤j Ai. Then for the subset ∂Mj := Vj ∩ Uj+1 of the boundary we have two different

local collars, cj+1 and dj . We apply the local uniqueness with c = cj+1|∂Mj×[0,∞) and

d = dj |∂MJ×[0,∞), Dtodo = Aj+1 ∩ ∂Mj and Vtodo = cj+1(Uj+1 × [0,∞)). Then we get

our isotopy ht and a neighborhood Wj+1 × [0, ε) ⊂ ∂Mj × [0,∞) of Aj+1 ∩ ∂Mj on which

h1dj equals cj+1. There is an open subset of W ′j+1 × [0, ε) of Uj+1 containing Aj+1 so that
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W ′j+1 ∩ ∂Mj ⊂Wj+1. Then Vj+1 := Vj ∪W ′j+1 and define a function d′j+1 by

d′j+1(m, t) :=

{
cj+1(m, t) if m ∈W ′j+1

h1dj(m, t) otherwise

This is a collar near Vj+1 × {0}, not necessarily everywhere. This may be fixed by shrinking

it in Vtodo, and thus we have obtained our next local collar dj+1 : Vj+1 × [0,∞) ↪→ M ,

completing the induction step. The local finiteness conditions and our control on the support

means that the collar is modified near a fixed m ∈ ∂M only a finite number of times. �

1.4. Remarks on low dimensions. What happens in dimensions n ≤ 4? The situation is

different for n ≤ 3 and n = 4. In dimensions 0, 1, 2 and 3, results of Radó and Moise say

that every topological manifold admits a smooth structure unique up to isotopy. Informally

stated, topological manifolds are the same as smooth manifolds.

Dimension 4 is more complicated [FQ90]. A result of Freedman uses an infinite collapsing

construction to show that an important tool of high dimensions, the Whitney trick, still works

for topological 4-manifolds with relatively simple fundamental group [Fre82]. This means

that the higher-dimensional theory to a large extent applies to topological 4-manifolds. One

important exception is that they may no longer admit a handle decomposition, though in

practice one can work around this using the fact that a path-connected topological 4-manifold

is smoothable in the complement of a point, see Section 8.2 of [FQ90].

In dimension 4, smooth manifolds behave differently. For example, n = 4 is the only

case in which Rn admits more than one smooth structure up to diffeomorphism. In fact,

it admits uncountably many. Furthermore, these can occur in families: in all dimensions

6= 4 a submersion that is topologically a fiber bundle is smoothly a fiber bundle by the

Kirby-Siebenmann bundle theorem [KS77, Essay II], but in dimension 4 there exists a

smooth submersion E → [0, 1] with E homeomorphic to R4 × [0, 1] such that all fibers are

non-diffeomorphic smooth structures on R4 [DMF92]. See also [Tau87]. Hence the product

structure theorem is false for 3-manifolds, as it also involves 4-manifolds. In particular, it

predicts two smooth structures on S3, but the now proven Poincaré conjecture says there is

only one. However, it may not be the right intuition to think that there are different exotic

smooth structures on a given manifold, but that many different smooth manifolds happen to

be homeomorphic.

2. Intermezzo: Kister’s theorem

In this section we give a proof of Kister’s theorem on self-embeddings of Rn, which we

use in two places: (i) to prove the initial case of the product structure theorem, and (ii) to

prove Theorem 3.7 about the existence of Rn-bundles in microbundles. The proof is rather

elementary, and a close analogue plays an important role in the ε-Schoenflies theorem used

in [EK71] to prove isotopy extension for locally flat submanifolds.

The goal is to compare the following two basic objects of manifold theory:

(i) The topological groups

{CAT-isomorphisms (Rn, 0)→ (Rn, 0)}
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with CAT = Diff or Top. In words, these are the diffeomorphisms, homeomorphisms

and PL-homeomorphisms of Rn fixing the origin. These are denoted Diff(n) and Top(n)

respectively.

(ii) The topological monoids

{CAT-embeddings (Rn, 0)→ (Rn, 0)}

with CAT = Diff or Top. In words, these are the self-embeddings of Rn fixing the

origin, either smooth or topological. These is no special notation for them, so we use

EmbCAT
0 (Rn,Rn).

Remark 2.1. We can include these spaces into the topological groups or monoids of CAT-

isomorphisms or CAT-embeddings that do not necessarily fix the origin. A translation

homotopy, i.e. deforming the embedding or isomorphism φ through the family

[0, 1] 3 t 7→ φt(x) := φ(x)− t · φ(0)

shows that these inclusions are homotopy equivalences.

The reason there is no special notation for the self-embeddings is the following theorem.

Theorem 2.2. The inclusion

{CAT-isomorphisms (Rn, 0)→ (Rn, 0)} ↪→ {CAT-embeddings (Rn, 0)→ (Rn, 0)}

is a weak equivalence if CAT is Diff or Top.

In this section we prove this theorem, and the smooth case will serve as an explanation of

the proof strategy for the topological case.

Remark 2.3. The PL version of Theorem 2.2 is also true [KL66].

2.1. Smooth self-embeddings of Rn. We start by proving that all of the inclusions

O(n) ↪→ GLn(R) ↪→ Diff(n) ↪→ EmbDiff
0 (Rn,Rn)

are weak equivalences. Our strategy will be to prove that GLn(R) ↪→ EmbDiff
0 (Rn,Rn) is

a weak equivalence, and note that our proof will restrict to a proof for GLn(R) ↪→ Diff(n).

This will follow from the fact that a smooth map is a diffeomorphism if and only if it

is surjective smooth embedding, which follows from the inverse function theorem. That

O(n) ↪→ GLn(R) is a weak equivalence is well-known and a consequence of Gram-Schmidt

orthonormalization. By the 2-out-of-3 property for weak equivalences, this implies all

inclusions are weak equivalences.

Theorem 2.4. The inclusion

GLn(R) ↪→ EmbDiff
0 (Rn,Rn)

is a weak equivalence.

Proof. Recall that a weak equivalence is a map that induces an isomorphism on all homotopy

groups with all base points, which is equivalent to the existence of dotted lifts for each
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original embedding make it linear near the origin zoom in to make linear everywhere

Figure 1. An outline for the strategy for Theorem 2.4.

k ≥ −1 (S−1 = ∅ by convention) in each diagram

Sk //

��

GLn(R)

��

Dk+1
gs
//

g(2)s

88

EmbDiff
0 (Rn,Rn)

after homotoping the diagram. That is, we want to deform the family (gs)s∈Dk+1 into linear

maps, staying in linear maps if we are already in linear maps. In this case, we will in fact

not modify any embedding that is already linear.

Our strategy is as follows, see also Figure 1:

gs

Taylor approximation
��

our original family

g
(1)
s

zooming in
��

linear near origin

g
(2)
s linear everywhere

(i) Our first step makes gs linear near the origin. Let η : [0,∞)→ [0, 1] be a decreasing

C∞ function that is 1 near 0 and 0 on [1,∞) (it looks like a bump near the origin).

Consider the function

G(1)
s (x, t) := (1− tη(||x||/ε))gs(x) + tη(||x||/ε)Dgs(0) · x

with s ∈ Dk+1, x ∈ Rn and t ∈ [0, 1]. This is a candidate for the isotopy deforming gs
to be linear near the origin, but we still need to pick ε. We have that Gs(x, t) = gs(x)

for all t ∈ [0, 1] and ||x|| ≥ ε. For ||x|| ≤ ε the difference ||DG(1)
s (x, t)−Dgs(x)|| can

be estimated as ≤ Dε for D uniform in s. So picking ε small enough we can guarantee

that DGs(x, t) 6= 0 for all x ∈ Rn, t ∈ [0, 1]. This implies that they are all embeddings,
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since they are for t = 0. Indeed, the number of points in an inverse image cannot

change without a critical point appearing. We set

g(1)
s := G(1)

s (−, 1)

and note that if gs was linear, then gs = G
(1)
s (−, t) for all t (so in particular g

(1)
s is

linear).

(ii) Our second step zooms in on the origin. To do this, we define

G(2)
s (x, t) :=

{
Dg

(1)
s (0) · x if ||x|| ≤ ε and t < 1, or if t = 1

(1− t)g(1)
s ( x

1−t ) if ||x|| > ε and t < 1

We set g
(2)
s := G

(2)
s (−, 1). Note if g

(1)
s was linear, then g

(1)
s = G

(2)
s (−, t) for all t.

This completes the proof that the map GLn(R) ↪→ EmbDiff
0 (Rn,Rn) is a weak equivalence.

We remark that if all gs were diffeomorphisms, i.e. surjective, then so are all G
(1)
s (−, t)

and G
(2)
s (−, t) and thus the same argument tells us that GLn(R) ↪→ Diff(n) is a weak

equivalence. �

2.2. Topological self-embeddings of Rn. We next repeat the entire exercise in the

topological setting. We want to show that the inclusion

Top(n) ↪→ EmbTop
0 (Rn,Rn)

is a weak equivalence. As before it suffices to find a lift

Sk //

��

Top(n)

��

Dk+1
gs
//

g(2)s

88

EmbTop
0 (Rn,Rn)

after homotoping the diagram. That is, we want to deform the family gs, s ∈ Dk+1 to

homeomorphisms staying in homeomorphisms if we already are in homeomorphisms. Here it

is helpful to remark that since a topological embedding is a homeomorphism onto its image,

it is a homeomorphism if and only if it is surjective.

Our strategy is outlined by the following diagram:

gs

canonical circle jiggling
��

our original family

g
(1)
s

zooming in
��

image equals an open disk

g
(2)
s surjective

The important technical tool replacing Taylor approximation is the following “sphere

jiggling” trick. Let Dr ⊂ Rn denote the closed disk of radius r around the origin.

Lemma 2.5. Fix a < b and c < d in (0,∞). Suppose we have f, h ∈ EmbTop
0 (Rn,Rn) with

h(Rn) ⊂ f(Rn) and h(Db) ⊂ f(Dc). Then there exists an isotopy φt of Rn such that
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(i) φ0 = id,

(ii) φ1(h(Db)) ⊃ f(Dc),

(iii) φt fixes pointwise Rn \ f(Dd) and h(Da).

This is continuous in f, h and a, b, c, d.

Proof. Since h(Rn) ⊂ f(Rn), it suffices to work in f -coordinates. Our isotopy will be

compactly supported in these coordinates, so we can extend by the identity to the complement

of f(Rn) in Rn.

We will now define some subsets in f -coordinates and invite the reader to look at Figure

2. Let b′ be the radius of the largest disk contained in h(Db) (in f -coordinates, remember)

and a′ the radius of the largest disk contained in h(Da). Our first attempt for an isotopy is

to make φt piecewise-linearly scale the radii between a and d such that c moves to b′. This

satisfies (i), (ii) and fixes Rn \ f(Dd). In words it “pulls h(Db) over f(Dc). It might not fix

h(Da).

This can be solved by a trick: we conjugate with a homeomorphism, described in h-

coordinates as follows: piecewise-linearly radially scale between 0 and b by moving the radius

a to radius a′′, where a′′ is the radius of the largest disk contained in f(Da′). In words, we

temporarily decrease the size of h(Da) to be contained in f(Da′), do our previous isotopy,

and restore h(Da) to its original shape.

The continuity of this construction depends on the continuity of b′, a′ and a′′, which we

leave to the reader as an exercise in the compact-open topology. �

Theorem 2.6. The inclusion

Top(n) ↪→ EmbTop
0 (Rn,Rn)

is a weak equivalence.

Proof. Following the strategy outlined before, we have two steps.

(i) Our first step involves making the image of gs into a (possibly infinite) open disk.

Let Rs(r) be the piecewise linear function [0,∞) → [0,∞) sending i ∈ N0 to the

radius of the largest disk contained in gs(Di). Then we can construct an element of

EmbTop
0 (Rn,Rn) given in radial coordinates by hs(r, ϕ) = (Rs(r), ϕ). This satisfies

hs(Rn) ⊂ gs(Rn), hs(Di) ⊂ gs(Di) for all i ∈ N0 and has image an open disk. It is

continuous in s.

Our goal is to deform hs to have the same image as gs in infinitely many steps. For

t ∈ [0, 1/2] we use the lemma to push hs(D1) to contain gs(D1) while fixing gs(D2). For

t ∈ [1/2, 3/4] we use the lemma to push the resulting image of hs(D2) to contain gs(D2)

while fixing gs(D3) and the resulting image of hs(D1), etc. These infinitely many steps

converge to an embedding since on each compact only finitely many steps are not the

identity. The result is a family Hs(−, t) in EmbTop
0 (Rn,Rn) such that Hs(−, 1) has the

same image as gs. It is continuous in s since hs is. So step (i) does this:

G(1)
s (x, t) := Hs(Hs(−, 1)−1gs(x), 1− t)

For t = 0, this is simply gs(x). For t = 1, this is Hs(−, 1)−1(gs(x)), which we denote

by g
(1)
s and has the same image as hs(x), i.e. a possibly infinite open disk. Note that if

gs were surjective, then so G
(1)
s (x, t) for all t.
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Figure 2. The disks appearing in Lemma 2.5.

(ii) There is a piecewise-linear radial isotopy Ks moving hs(x) to the identity. It is given

by moving the values of Rs at each integer i to i. We set

G(2)
s (x, t) := Ks(−, 1− t)−1g(1)

s (x)

so that for t = 0 we have get g
(1)
s and for t = 1 we get g

(2)
s with image Rn. Note that if

g
(1)
s were surjective, then so G

(2)
s (x, t) for all t.

�

3. Lecture 2: microbundle transversality

In this lecture we describe a notion of transversality for topological manifolds, and prove a

transversality result for topological manifolds. We start by recalling the situation for smooth

manifolds.

3.1. Smooth tranversality. The theory of transversality for smooth manifolds requires us

to discuss tangent bundles and differentials. Every smooth manifold N has a tangent bundle

TN . A smooth submanifold X of a smooth manifold of N is a closed subset such that there

for each x ∈ X there exists a chart U of N containing x such that the pair (U,U ∩X) is

diffeomorphic to (Rn,Rx). The tangent bundle TX of a smooth submanifold X ⊂ N can be
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canonically identified with a subbundle of TN |X . This identification is a special case of the

derivative of a smooth map f : M → N , which is a map Tf : TM → TN of vector bundles.

Definition 3.1. Let M,N be smooth manifolds, X ⊂ N a smooth submanifold and

f : M → N be a smooth map. Then f is transverse to X if for all x ∈ X and m ∈ f−1(x)

we have that Tf(TMm) + TXx = Nx.

Some remarks about this definition:

· If X = {x}, then f is transverse to X if and only if for each m ∈ f−1(x) the

differential Tf : TMm → TNx is surjective. In this case m is said to be a regular

point and x an regular value. Sard’s lemma says that regular values are dense.

· The implicit function theorem says that if f is transverse to X then f−1(X) ⊂ N is a

smooth submanifold. It will be of codimension n− x, hence of dimension m+ x− n.

· If f is the inclusion of a submanifold, this definition simplifies: two smooth submani-

folds M and X are transverse if TMx+TXx = TNx for all x ∈M ∩X. The implicit

function theorem then says that we can find a chart U near m such that N ∩ U and

X ∩U in this chart are given by two affine planes intersecting generically (that is, in

an m+ x− n-dimensional affine plane).

· Note that if dimM + dimX < dimN then f and X are transverse if and only if

f(M) and X are disjoint.

Lemma 3.2. Every smooth map f : M → N can be approximated by a smooth map transverse

to X.

Proof. To do induction over charts in Step 3, we actually need to prove a strongly relative

version. That is, we assume we are given closed subsets Cdone, Dtodo ⊂ M and open

neighborhoods Udone, Vtodo ⊂M of Cdone, Dtodo respectively, such that f is already transverse

to X on Udone (note that Cdone ∩Dtodo could be non-empty). See Figure 3. It will be helpful

to let r := n− x denote the codimension of X.

Then we want to make f transverse on a neighborhood of Cdone∪Dtodo without changing it

on a neighborhood of Cdone ∪ (M \Vtodo). We will ignore the smallness of the approximation.

Step 1: M open in Rm, X = {0}, N = Rr: We first prove that the subset of C∞(M,Rr)
which consists of smooth functions M → Rr that are transverse to {0} is open and

dense (the C∞-topology on spaces of smooth functions is the one in which a sequence

converges if and only if all derivatives converge on compacts). This is analysis and

the only place where smoothness plays a role.

Recall that f is transverse to 0 at a point m ∈ M if either (i) f(m) 6= 0, or (ii)

f(m) = 0 and Tfm : TMm → TRr0 is surjective. Openness follows from the fact that

(i) and (ii) are open conditions. For density, we use Sard’s lemma [Hir94, Theorem

3.1.3], which says that for any smooth function the regular values are dense in the

target. Thus for every f ∈ C∞(M,Rn) there is a sequence of xk ∈ Rr of regular

values of f : M → Rr converging to 0. Then

fk := f − xk
is a sequence of functions transverse to {0} converging to f .

This is not a relative version yet. Fix a smooth function η : M → [0, 1] such that η

is 0 on Cdone ∪ (M \ Vtodo) and 1 on a neighborhood of Dtodo \Udone. Then consider
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f(M)

M

N

X

Cdone Dtodo

VtodoUdone

strong relative transversality

f(M)

N

X

Figure 3. The data for the strongly relative version in Lemma 3.2 and the
result of the strong relative transversality.



THREE LECTURES ON TOPOLOGICAL MANIFOLDS 17

the smooth functions

f̃k := ηfk + (1− η)f

For k sufficiently large, this is transverse to {0} on a neighborhood of Cdone∪Dtodo,

by openness of the condition of being transverse to {0}.
Step 2: M open in Rm, νX trivializable: Since νX is trivializable, we may take a

trivialized tubular neighborhood Rr ×X in N , and substitute

· M ′ = f−1(Rr ×X),

· C ′done = Cdone ∪ f−1(X × (Rr \ int(Dr))) ∩ f−1(Rr ×X),

· D′todo = Dtodo ∩ f−1(Rr ×X).

This reduces to the case N = Rr ×X, and then f : M → N = Rr ×X is transverse

to X if and only if f̄ := π1 ◦ f : M → Rr ×X → Rr is transverse to {0}. This may

be achieved by Step 1.

Step 3: General case: This will be an induction over charts. Since our manifolds are

always assumed paracompact we can find a covering Uα of X so that each νX |Uα is

trivializable. We can then find a locally finite collection of charts {φb : Rm ⊃ Vβ ↪→
M} covering Vtodo, such that (i) Dm ⊂ Vβ , (ii) Dtodo ⊂

⋃
β φβ(Dm) and (iii) for all

β there exists an α with f(φβ(Vβ)) ⊂ Uα.

Order the β, and write them as i ∈ N from now on. By induction one then

constructs a deformation to fi transverse on some open Ui of Ci := C ∪
⋃
j≤i φj(D

m).

The induction step from i to i+ 1 uses step (2) using the substitution M = Vi+1,

Cdone = φ−1
i+1(Ci), Udone = φ−1

i+1(Ui), Dtodo = Dm and Vtodo is int(2Dm).

Then a deformation is given by putting the deformation from fi to fi+1 in the

time period [1− 1/2i, 1− 1/2i+1]. This is continuous as t→ 1 since the cover was

locally finite. �

3.2. Microbundles. Let us reinterpret smooth tranversality in terms of normal bundles.

Recall that f : M → N was transverse to a smooth submanifold X ⊂ N if for all x ∈ X and

m ∈ f−1(x) we have that Tf(TMm) + TXx = TNx. This is equivalent to the statement

that Tf : TMm → νx := TNx/TXx is surjective. The vector bundle ν := TN |X/TX over X

is the so-called normal bundle.

In the topological world the notion of a vector bundle is replaced by that of a microbundle,

due to Milnor [Mil64].

Definition 3.3. An n-dimensional microbundle ξ over a space B is a triple ξ = (X, i, p) of

a space X with maps p : X → B and i : B → X such that

· p ◦ i = id

· for each b ∈ B there exists open neighborhoods U ⊂ B of b and V ⊂ p−1(U) ⊂ X

of i(b) and a homeomorphism φ : Rn × U → V such that {0} × U → Rn × U → V

coincides with i and Rn × U → V → B coincides with the projection to U . More

precisely, the following diagrams should commute

Rn × U
φ

// V

U

ι

OO

U

i|U

OO Rn × U

π2

��

φ
// V

p

��

U U
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Two n-dimensional microbundles ξ = (X, i, p), ξ′ = (X ′, i′, p′) over B are equivalent if there

are neighborhoods W of i(B) and W ′ of i′(B) and a homeomorphism W →W ′ compatible

with all the data.

Example 3.4. If ∆: M → M × M denotes the diagonal, and π2 : M × M → M the

projection on the second factor, then (M ×M,∆, π2) is the tangent microbundle of M .

To show it is an m-dimensional microbundle near b, pick a chart ψ : Rn →M such that

b ∈ ψ(Rn). Since the condition on the existence of the homeomorphism φ in the definition

of a microbundle is local, it suffices to prove that the diagonal in Rn has one of these

charts. Indeed, we can take U = Rn, V = Rn × Rn and φ : Rn × Rn → Rn × Rn given by

(x, y) 7→ (x+ y, y).

Example 3.5. Every vector bundle is a microbundle. If M is a smooth manifold, the

tangent microbundle is equivalent to the tangent bundle. This is a consequence of the tubular

neighborhood theorem.

Kister’s theorem allows us to describe these microbundles in more familiar terms. To give

this description, we use that microbundles behave in many respects like vector bundles. For

example, any microbundle over a paracompact contractible space B is trivial, i.e. equivalent

to (Rn ×B, ι0, π2). This is Corollary 3.2 of [Mil64]. The following appears in [Kis64] and is

a consequence of Theorem 1.16.

Definition 3.6. An Rn-bundle over a space B is a bundle with fibers Rn and transition

functions in the topological group consisting of homeomorphisms of Rn fixing the origin.

We say that two Rn-bundles ξ0, ξ1 over B are concordant if there is an Rn-bundle ξ over

B × I that for i ∈ {0, 1} restricts to ξi over X × {i}.

Theorem 3.7 (Kister-Mazur). Every n-dimensional microbundle ξ = (E, i, p) over a suffi-

ciently nice space (e.g. locally finite simplicial complex or a topological manifold) is equivalent

to an Rn-bundle. This bundle is unique up to isomorphism (in fact concordance).

Proof. Let us assume that the base is a locally finite simplicial complex. The total space of

our Rn-bundle E will be a subset of the total space E of the microbundle, and we will find it

inductively over the simplices of B.

We shall content ourselves by proving the basic induction step, by showing how to extend

E from ∂∆i to ∆i, see Figure 4. So suppose we are given a Rn-bundle E∂∆i inside ξ|∂∆i . For

an inner collar ∂∆i × [0, 1] of ∂∆i in ∆i, the local triviality allows us to extend it to E∂×[0,1]

inside ξ|∂∆i×[0,1]. Since ∆i is contractible, we can trivialize the microbundle ξ|∆i and in

particular it contains a trivial Rn bundle E∆i
∼= Rn ×∆i. By shrinking the Rn, we may

assume that its restriction to ∂∆i × [0, 1] is contained in E∂∆i×[0,1]. Thus for each x ∈ ∂∆i,

we get a map φx : [0, 1] → Emb0(Rn,Rn). Using the canonical isotopy proved by Kister’s

theorem 1.16, we can isotope this family continuously in x to φ̃x satisfying (i) φ̃x(0) is a

homeomorphism, (ii) φ̃x(1) = φx(1). Thus the replacement of E∆i |∆i×[0,1] ⊂ E∂∆i×[0,1] by

φ̃ ◦ φ−1(E∆i |∆i×[0,1]), is an extension of E∂∆i to ∆i. �

Remark 3.8. Warning: an Rn-bundle need not contain a disk bundle, in contrast with

the case of vector bundles [Bro66]. Even if there exists one, it does not need to be unique

[Var67].
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E|∆i

E|∂∆i

original pair of bundles

image of isotopy

new bundle
collar

Figure 4. The extension in the proof of the Kister-Mazur theorem.

3.3. Locally flat submanifolds and normal microbundles. The appropriate general-

ization of a smooth submanifold to the setting of topological manifolds is given by the

following definition.

Definition 3.9. A locally flat submanifold X of a topological manifold M is a closed subset

X such that for each x ∈ X there exists an open subset U of M and a homeomorphism from

U to Rm which sends U ∩X homeomorphically onto Rx ⊂ Rm.

Locally flat submanifolds are well behaved: every locally flat submanifold of codimension

1 admits a bicollar, the Schoenflies theorem for locally flat Sn−1’s in Sn says that any

locally flat embedded Sn−1 in Sn has as a complement two components whose closures are

homeomorphic to disks [Bro60]. Moreover, there is an isotopy extension theorem for locally

flat embeddings [EK71].

Exercise 3.1. Prove that every locally flat submanifold of codimension 1 admits a bicollar.

Use this in a different version of the proof of Theorem 1.22, by noting that all Mi constructed

have locally flat boundary ∂Mi in M . Generalize Theorem 1.22 to the relative case: if M is

of dimension ≥ 6 and contains a codimension zero submanifold A with handle decomposition

and locally flat boundary ∂A, then we may extend the handle decomposition of A to one of

M .

Remark 3.10. This is not the only possible definition: one could also define a “possibly

wild” submanifold to be the image of a map f : X →M , where X is a topological manifold

X and f is a homeomorphism onto its image.

Examples of such possibly wild submanifolds include the Alexander horned sphere in S3

and the Fox-Artin arc in R3. These exhibit what one may consider as pathological behavior:

the Schoenflies theorem fails for the Alexander horned sphere (it is not the case that the

closure of each component of its complement is homeomorphic to a disk). The Fox-Artin arc

has a complement which is not simply-connected, showing that there is no isotopy extension

theorem for wild embeddings.

See [DV09] for more results about wild embeddings. We do note that there exists a theory

of “taming” possibly wild embeddings in codimension 3, see [Las76, Appendix]. This theory
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may be summarized by saying that the spaces (really simplicial sets) of locally flat and

possibly wild embeddings are weakly equivalent.

Definition 3.11. A normal microbundle ν for a locally flat submanifold X ⊂ N is a (n−x)-

dimensional microbundle ν = (E, i, p) over X together with an embedding of a neighborhood

U in E of i(X) into N . The composite X ↪→ U ↪→ N should be the identity.

Does a locally flat submanifold always admit a normal microbundle? This is true in the

smooth case, as a consequence of the tubular neighborhood theorem.

Lemma 3.12. Any smooth submanifold X of a smooth manifold N has a normal microbun-

dle.

Remark 3.13. In fact, one can define smooth microbundles, requiring all maps to the

smooth and replacing homeomorphisms with diffeomorphisms. A smooth submanifold has a

unique smooth normal microbundle.

However, the analogue of Lemma 3.12 is not be true in the topological case, and there

is an example of Rourke-Sanderson in the PL case [RS67]. However, they do exist after

stabilizing by taking a product with Rs [Bro62]. The uniqueness statement uses the notion

of concordance. We say that two normal mircobundles ν0, ν1 over X ⊂ N are concordant if

there is a normal bundle ν over X × I ⊂ N × I restricting for i ∈ {0, 1} to νi on X × {i}.

Theorem 3.14 (Brown). If X ⊂ N is a locally flat submanifold, then there exists an S � 0

depending only on dimX and dimN , such that X has a normal microbundle in N × Rs if

s ≥ S, which is unique up to concordance if s ≥ S + 1.

Remark 3.15. By the existence and uniqueness of collars, normal microbundles do exist

in codimension one. Kirby-Siebenmann proved they exist and are unique in codimension

two (except when the ambient dimension is 4) [KS75], the case relevant to topological knot

theory. Finally, in dimension 4 normal bundles always exist by Freedman-Quinn [FQ90,

Section 9.3]. One can also relax the definitions and remove the projection map but keep a

so-called block bundle structure. Normal block bundles exist and are unique in codimension

≥ 5 or ≤ 2, see [RS70].

3.4. Topological microbundle transversality. We will now describe a notion of transver-

sality for topological manifolds, which generalizes smooth transversality and makes the normal

bundles part of the data of transversality.

Definition 3.16. Let X ⊂ N be a locally flat submanifold with normal microbundle ξ.

Then a map f : M → N is said to be microbundle transverse to ξ (at ν) if

· f−1(X) ⊂M is a locally flat submanifold with a normal microbundle ν in M ,

· f gives an open topological embedding of a neighborhood of the zero section in each

fiber of ν into a fiber of ξ.

See Figure 5 for an example. We now prove that this type of transversality can be achieved

by small perturbations, as we did in Lemma 3.2 for smooth transversality.

Remark 3.17. One can also define smooth microbundle transversality to a smooth normal

microbundle. This differs from ordinary transversality in the sense that the smooth manifold
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N

X

M

ξ

ν

L

Figure 5. An example of microbundle transversality for f : M → N given
by the inclusion of a submanifold.

has to line up with normal microbundle near the manifold X, i.e. the difference between the

intersection “at an angle” of Figure 3 and the “straight” intersection of Figure 5. Smooth

microbundle transversality implies ordinary transversality, and any smooth transverse map

can be made smooth microbundle tranverse. This is why one usually does not discuss the

notion of smooth microbundle transversality.

Remark 3.18. There are other notions of transversality that may be more well-behaved; in

particular there is Marin’s stabilized transversality [Mar77] and block transversality [RS67].

A naive local definition is known to be very badly behaved: a relative version is false [Hud69].

The following is a special case of [KS77, Theorem III.1.1].

Theorem 3.19 (Topological microbundle transversality). Let X ⊂ N be a locally flat

submanifold with normal microbundle ξ = (E, i, p). If m+x−n ≥ 6 (the excepted dimension

of f−1(X)), then every map f : M → N can be approximated by a map which microbundle

transverse to ξ.

Proof. The steps of our proof are the same as those in Lemma 3.2. Again, we actually need

to prove a strongly relative version. That is, we assume we are given Cdone, Dtodo ⊂ M

closed and Udone, Vtodo ⊂M open neighborhoods of Cdone, Dtodo respectively such that f is

already microbundle transverse to ξ at νdone over a submanifold Ldone := f−1(X) ∩ Udone in

Udone (note that Cdone ∩Dtodo could be non-empty). We invite the reader to look at Figure

3 again. It will be helpful to let r := n− x denote the codimension of X.

Then we want to make f microbundle transverse to ξ at some ν on a neighborhood of

Cdone ∪Dtodo without changing it on a neighborhood of Cdone ∪ (M \ Vtodo). We will also
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E

L

L× Rs

D

V

Figure 6. The data in the local product structure theorem.

ignore the smallness of the approximation, as it is a theorem that a strongly relative result

always implies an ε-small result, see Appendix I.C of [KS77].

Step 1: M open in Rm, X = {0}, ξ is a product, N = E = Rr: We want to ap-

ply the relative version of smooth transversality (with the small smooth microbundle

transversality improvement mentioned in Remark 3.17). To do this we need to

find a smooth structure Σ on M such that for some open neighborhood WΣ of

f−1(0) ∩ Cdone ⊂ M , the microbundle νdone ∩WΣ over Ldone ∩WΣ is smooth and

f : MΣ → Rn is transverse at νdone ∩WΣ to 0 near Cdone.

This uses a version of the product structure theorem. The version we stated before

said that concordance classes of smooth structures on M × R are in bijection to

concordance classes of smooth structures on M . We need a local version, specializing

[KS77, Theorem I.5.2]:

Suppose one has a topological manifold L of dimension ≥ 6, an open

neighborhood E of L × {0} ⊂ L × Rs, a smooth structure Σ on E, D ⊂
L× {0} closed and V ⊂ E an open neighborhood of D. Then there exists

a concordance of smooth structures on E rel (E \ V ) from Σ to a Σ′ that

is a product near D. See Figure 6.

We want to substitute the data (L,E, s,Σ, D, V ) of this theorem by the data

(Ldone, E(νdone), r,Σ′, Ldone ∩Cdone, V
′) with Σ′ and V ′ to be defined. Thus here we

get the condition that dim(Ldone) = m− r = m+x−n ≥ 6. For this substitution to

make sense, we must have that Edone is an open subset of Ldone×Rr, which comes from

the open inclusion (p, f) : E(νdone) ↪→ Ldone ×Rr. In terms of the latter coordinates

f is simply the projection π2 : Ldone × Rr → Rr. Since E(νdone) ⊂ M ⊂ Rm, it

inherits the standard smooth structure. The set V ′ will be an open neighborhood of

Ldone in E(νdone) with closure also contained in E(νdone).
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Then the application of the local version of the product structure theorem gives us

a smooth structure on V ′, which can be extended by the standard smooth structure

to M since we did not modify it outside V ′. In this smooth structure Ldone is smooth

and νdone is just the product with Rn. This implies that f is a now smooth, as it is

given by the projection (Ldone)Σ × Rr → Rr.
To finish this step, outside a small neighborhood of Ldone we smooth f near Dtodo

without modifying outside Vtodo and then apply a relative version of transversality

with the same constraints on where we make the modifications.

Step 2: M open in Rm, ξ trivializable: Since ξ is trivializable we may assume E(ξ)

contains Rr ×X. If we substitute

· M ′ = f−1(Rr ×X),

· C ′done = (Cdone ∪ f−1(X × (Rr \ int(Dn)))) ∩ f−1(Rr ×X),

· D′todo = Dtodo ∩ f−1(Rr ×X),

we reduce to the case where ξ is a product and Y = Rr ×X.

Then we have that f : M → Y is given by (f1, f2) : M → Rr ×X. Consider the

map f1 : M → Rr. Then (f1)−1({0}) ∩ Udone = f−1(X) ∩ Udone is a locally flat

submanifold Ldone with normal microbundle and f1 embeds a neighborhood of the 0-

section of the fibers of νdone into Rr, the fiber of projection to a point. By the previous

step we thus can make f1 microbundle transverse to ξ near Cdone ∪Dtodo by a small

perturbation to some f ′1, while fixing it on a neighborhood of Cdone ∪ (M \ Vtodo).

A minor problem now appears when we add back in the component f2: even

though f ′ := (f ′1, f2) has (f ′)−1(X) a locally flat submanifold with normal bundle,

f ′ may not embed neighborhoods of the 0-section of fibers of this normal bundle into

fibers of Rr ×X → Rr. This would be resolved if we precomposed f2 by a map that

near Cdone ∪Dtodo collapses a neighborhood of the 0-section into the 0-section in a

fiber-preserving way, extending by the identity outside a closed subset containing this

neighborhood. Such a map can easily be found, see e.g. Lemma III.1.3 of [KS77].

Step 3: General case: This will be an induction over charts, literally the same as

Step 3 for smooth transversality. We can find a covering Uα of X so that each ξ|Uα
is trivializable. Since X is paracompact (by our definition of topological manifold),

we can find a locally finite collection of charts {φb : Rm ⊃ Vβ ↪→M} covering Vtodo,

such that (i) Dm ⊂ Vβ , (ii) Dtodo ⊂
⋃
β φβ(Dm) and (iii) for all β there exists an α

with f(φβ(Vβ)) ⊂ Uα.

Order the β, and write them as i ∈ N from now on. By induction one then

constructs a deformation to fi transverse on some open Ui of Ci := C ∪
⋃
j≤i φj(D

m).

The induction step from i to i+ 1 uses step (2) using the substitution M = Vi+1,

Cdone = φ−1
i+1(Ci), Udone = φ−1

i+1(Ui), Dtodo = Dm and Vtodo is int(2Dm).

Then a deformation is given by putting the deformation from fi to fi+1 in the

time period [1− 1/2i, 1− 1/2i+1]. This is continuous as t→ 1 since the cover was

locally finite. �

Remark 3.20. We could have used the local version of the product structure version in

place of the ordinary product structure theorem and concordance extension in the proof of

Theorem 1.22.
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Exercise 3.2. Prove the case m+ x− n < 0 of Theorem 3.19, which does not require the

local product structure theorem.

If re-examine the proof to see how important the role of the normal bundle ξ to X is,

we realize that we only used that X is paracompact and that X is the zero-section of an

Rn-bundle. The microbundle transversality result with these weaker assumptions on X will

be used in the next lecture.

Remark 3.21. Theorem 3.19 does not prove that if M and X are locally flat submanifolds

and X has a normal microbundle ξ, then M can be isotoped to be microbundle transverse

to ξ. The reason is that the smoothing of f in step (1) destroys embeddings, as locally flat

embeddings are not open.

However, an embedded microbundle transversality result like this is true. The proof in

[KS77, Theorem III.1.5] bootstraps from PL manifolds instead, a category of manifolds

in which it does not even make sense to talk about openness (PL maps should always be

considered as a simplicial set). One additional complication is that finding adapted PL

structures requires a result of taming theory, which says that for a topological embedding of

a PL manifold of codimension ≥ 3 into a PL manifold, the PL structures on the target can

be modified so that the embedding is PL. This is applied to both X and N .

4. Lecture 3: the Pontryagin-Thom theorem

In this lecture we will state and prove the Pontryagin-Thom theorem for topological

manifolds. This is an elementary and important classification result for manifolds, greatly

generalized in recent work on cobordism categories, e.g. [GTMW09]. It identifies groups of

topological manifolds up to bordism with homotopy groups of a so-called Thom spectrum.

The latter is relatively accessible via the tools of stable homotopy theory.

4.1. Thom spectra. We start by defining the Thom spectra mentioned above.

For a topological group G, BG denotes the classifying space for principal G-bundles.

This is only a homotopy type, but there is a standard functorial construction called the

bar construction. It has the property that for nice X (e.g. paracompact), homotopy classes

of maps X → BG are in bijection with isomorphism classes of principal G-bundles over

X. This bijection is given as follows: BG has a principal G-bundle γG over it, called the

universal bundle, and f : X → BG is mapped to f∗γG over X. In fact, it satisfies a relative

classification property for pairs (X,A), and this in turn implies that the space of classifying

maps for a principal G-bundle is weakly contractible.

Example 4.1. If we let G be Top(n), the topological group of origin-fixing homeomorphisms

of Rn in the compact-open topology, BTop(n) classifies principal Top(n)-bundles up to

isomorphism. These are in bijection with Rn-bundles up to isomorphism, our shorthand

for fibre bundles with fibre Rn and structure group Top(n). The map sends a principal

Top(n)-bundle with total space E to the Rn-bundle E ×Top(n) Rn. We will denote the

universal Rn-bundle by γn.

Remark 4.2. We can interpret Theorem 3.7 in terms of homotopy theory. A version of

Brown representability proves there is a classifying space BMicrob(n) for n-dimensional
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topological microbundles. As every Rn-bundle is an n-dimensional microbundle, there is the

map BTop(n)→ BMicrob(n) and the Kister-Mazur theorem implies it is a weak equivalence.

Considering the sequence of topological groups Top(n), we get a sequence of classifying

spaces BTop = (BTop(n))n≥0 with connecting maps BTop(n) → BTop(n + 1). We want

to generalize this. Warning: the following is not a standard definition, nor an ideal one,

but it will be sufficient for our naive approach. For example, it should suffice that Bn and

the bundle over it are only defined on a cofinal sequence of n and that the diagram is only

homotopy-coherent.

Definition 4.3. A sequential tangential structure θ is a sequence of spaces an maps

B0
i0−→ B1

i1−→ . . .

with for each Bn has an Rn-bundle θn and isomorphisms i∗nθn+1
∼= ε⊕ θn.

One way to construct a sequential tangential structure is to give a compatible sequence of

maps Bn → BTop(n). Pulling back the universal Rn-bundle γn over BTop(n) to Bn gives a

Rn-bundle γn over Bn satisfying that i∗nγn+1
∼= ε⊕ γn.

Remark 4.4. For standard constructions of classifying spaces, e.g. the bar construction,

BTop(n)→ BTop(n+ 1) is a cofibration and BTop = colimn→∞BTop(n). Thus BTop has

a filtration, and given a map θ : B → BTop, we can pull this back to a filtration of B. The

filtration step Bn has a map Bn → BTop(n) and we obtain a sequential tangential structure.

For an Rn-bundle ξ over a space B, we can construct the Thom space Th(ξ). This is

given by taking the fiberwise one-point compactification and collapsing the section at ∞
to a point. If B is compact, this is homeomorphic to the one-point compactification of the

total space of ξ. Thus as a set Th(ξ) is given by the total space of ξ together with a point at

∞. Note that Th(εn) ∼= Sn ∧B+ and Th(εk ⊕ ξ) ∼= Sk ∧ Th(ξ).

Recall that a spectrum E in its most naive form (good enough for our purposes) is a

sequence of pointed spaces En for n ≥ 0 together with maps S1 ∧ En → En+1.

Definition 4.5. For θ a sequential tangential structure, the Thom spectrum Mθ has nth

space given by the pointed space Th(θn) and maps S1 ∧Th(θn)→ Th(θn+1) induced by the

isomorphisms i∗nθn+1
∼= ε⊕ θn.

Example 4.6. For B = (∗)n≥0, we have that Th(θn) = Sn and S1 ∧ Sn → Sn+1 the

standard isomorphism, so that Mθ is the sphere spectrum S.

Spectra have stable homotopy groups, given by

πn(E) := colim
k→∞

πn+k(Ek)

Example 4.7. The homotopy groups πn(S) are the stable homotopy groups of spheres.

4.2. Cobordism groups. We want to classify topological manifolds up to a certain equiva-

lence relation. We call manifold closed if it is compact and we want to stress that it has

empty boundary.

Definition 4.8. We say that two n-dimensional closed topological manifolds M , M ′ are

cobordant if there is an (n + 1)-dimensional compact topological manifold N with ∂N ∼=
M tM ′, called a cobordism.
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Exercise 4.1. Cobordism is an equivalence relation.

Definition 4.9. The cobordism group ΩTop
n of n-dimensional closed topological manifolds is

given by the set of homeomorphism classes of n-dimensional compact topological manifolds

up to cobordism.

This is an abelian monoid under the operation of disjoint union, and the cobordism

N = M × I shows that M tM ∼ ∅, so [M ] + [M ] = 0. Thus every element has an inverse

and it is in fact an abelian group.

Example 4.10. If n = 0, all compact topological n-manifolds are disjoint unions of a finite

number of points, hence ΩTop
0 is either Z/2Z or 0. All cobordisms are disjoint unions of

intervals or circles, so the number of points modulo 2 is an invariant. It is easy to see this is

a complete invariant, so that we may conclude that ΩTop
0
∼= Z/2Z.

If n = 1, all compact topological manifolds are disjoint unions of circles. The complement

of two disjoint open disks inside a larger disk gives a cobordism from one circle to two

circles, so ΩTop
1 is generated by [S1] satisfying 2[S1] = [S1], i.e. [S1] = 0. We conclude that

ΩTop
1
∼= 0.

In these arguments we made some claims about topological 1-manifolds. To make this

rigorous, one does an induction over charts (or uses smoothing theory).

Remark 4.11. Since the bordism N admit a relative handle decomposition for n+ 1 ≥ 6 by

the improvement of Theorem 1.22 given in Remark 3.1, the equivalence relation of cobordism

is generated by those cobordisms obtained by attaching a single handle to M × I.

There is a more general definition of cobordism groups ΩTop,θ
n of topological manifolds

equipped with a θ-structure on the stable normal bundle, for θ a sequential tangential

structure. To define this, first of all, by a version of the Whitney embedding theorem, every

compact n-dimensional topological manifold M can be embedded in an Rs:

Lemma 4.12. Every compact topological manifold admits a locally flat embedding into Rs
for s� 0. This is unique up to ambient isotopy after possibly increasing s.

Proof. Cover M by charts {φi : Ui ↪→M}i∈I with Ui ⊂ Rn. By compactness we may assume

that I is finite. By paracompactness of M we can find a partition of unity {ηi : M → [0, 1]}i∈I
subordinate to {φi(Ui)}i∈I . Then the map

ψ : M → R|I|(n+1)

given by (ηiφ
−1
i , ηi)i∈I , is a locally flat embedding. Here we used ηiφ

−1
i as shorthand for the

map that on Ui equals ηiφ
−1
i and is identically 0 elsewhere.

Note that since supp(ηi) ⊂ φi(Ui), ψ is a well-defined map. It is clearly injective,

as ψ(x) = ψ(y) implies that there is an i ∈ I such that ηi(x) = ηi(y) 6= 0 and then
1

ηi(x) (ηi(x)φ−1
i (x)) = 1

ηi(y) (ηi(y)φ−1
i (y)) implies x = y. We leave it to the reader to check

that ψ is locally flat (hint: locally flatness can be checked locally, and if f : M → Rn is a locally

flat embedding, then for any continuous function g : M → Rm the map (f, g) : M → Rn×Rm
is a locally flat embedding).

Given φ : M ↪→ Rs and φ′ : M ↪→ Rs′ it is easy to give a locally flat isotopy from φ to φ′

in Rs+s′ . For locally flat submanifolds isotopy implies ambient isotopy by isotopy extension

[EK71]. �
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We saw in Theorems 3.14 and 3.7 that this embedding has a normal Rs−n-bundle νs−n
unique up to concordance for s sufficiently large. A θ-structure on νs−n is a Rs−n-bundle

map from νs−n over M to θs−n over Bs−n, and a θ-structure ζ on M is an equivalence class

of normal Rs−n-bundle νs−n and a θ-structures on νs−n, up to the equivalence relation given

by concordance of all data and increasing s.

If N is an (n+1)-dimensional topological manifold with θ-structure, then its boundary ∂N

inherits a θ-structure by picking an interior collar. A cobordism between two n-dimensional

compact topological manifolds with θ-structure (M, ζ) and (M ′, ζ ′) is an (n+ 1)-dimensional

compact topological manifold with θ-structure (N, ξ) such that (∂N, ∂ξ) ∼= (M, ζ) t (M, ζ ′).

Example 4.13. If ζ and ζ ′ are concordant θ-structures on M , then (M, ζ) is cobordant to

(M, ζ ′). To see this, take the cobordism M × I with θ-structure given by the concordance.

Definition 4.14. The cobordism group ΩTop,θ
n of n-dimensional closed topological manifolds

with θ-structure on the stable normal bundle is given by the set of homeomorphism classes of

such n-dimensional manifolds, up to cobordism of such (n+ 1)-dimensional manifolds.

Exercise 4.2. Let BSTop(n) be the classifying space of oriented Rn-bundles, and STop the

associated sequential tangential structure. Understand with help of other sources why ΩSTop
2

is 0 (giving a complete proof is highly non-trivial).

We can now state the Pontryagin-Thom theorem.

Theorem 4.15 (Pontryagin-Thom for topological manifolds). There is an isomorphism

ΩTop
n
∼= πn(MTop)

More generally, if θ : B → BTop is a sequential tangential structure, then

ΩTop,θ
n

∼= πn(Mθ)

This is a generalization to topological manifolds of the classical Pontryagin-Thom theorem

for smooth manifolds.

Example 4.16. If we take θ to be B = (∗)n≥0 as before (it may be convenient to replace ∗
by ETop(n) though), i.e. study topological manifolds with framed stable normal bundles,

then the Pontryagin-Thom theorem for topological manifolds tells us that ΩTop,fr
n

∼= πn(S).

But from the Pontryagin-Thom for smooth manifolds, we also know that ΩDiff,fr
n

∼= πn(S).

In particular, we conclude that every topological manifold with framed stable normal bundle

is cobordant to a smooth manifold. That is, we have proven that

ΩTop,fr
n

∼= πn(S) ∼= ΩDiff,fr
n

Remark 4.17. The result of the previous remark can also be proven by noting that the

total space of a normal microbundle is an open subset of M × Rs−n and inherits a smooth

structure from being an open subset of Rs. Now apply the local product structure theorem.

That is, we may also prove:

ΩTop,fr
n

∼= ΩDiff,fr
n

∼= πn(S)

This can be reinterpreted in terms of smoothing theory (or for n = 4 Lashof-Shaneson-

Quinn stabilized smoothing theory [LS71]). Smoothing theory as in Theorem 1.10 says

that for n 6= 4, the set of smooth structures on M up to concordance is in bijection with
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vertical homotopy classes of lifts of M → BTop to BO. The framed version says that smooth

structures together with a stable framing up to concordance are in bijection with homotopy

classes of lifts of M → BTop to ∗.
Such lifts are also in bijection with the concordance classes of the stable tangent microbun-

dle. These are in turn in bijection with the concordance classes of framings of the stable

normal microbundle. This follows from the stable uniqueness of normal bundles, Theorem

3.14. We conclude that each element of ΩTop,fr
n is represented by a manifold equipped with a

smooth structure and smooth framing of the stable normal bundle, unique up to concordance.

Applying the same argument to cobordisms, we see that for n 6= 4 there is a bijection{
smooth n-dim M with stable

framed normal bundle

}
cobordism

−→

{
topological n-dim M with stable

framed normal microbundle

}
cobordism

Note that smoothing theory actually proves the stronger result that a topological manifold

M with framed stable normal microbundle admits an essentially unique smooth structure

with framed stable normal bundle. No cobordism is needed!

4.3. Outline of the proof. We will only give a proof in the case n ≥ 6, for which we

have established microbundle transversality, and the trivial sequential tangential structure

BTop = (BTop(n))n≥0 to avoid additional notation. It is essentially the same proof as in

the smooth case, using the tools we have obtained in the previous lecture.

Our first goal is to describe maps

C : ΩTop
n → πn(MTop)

I : πn(MTop)→ ΩTop
n

4.3.1. The Pontryagin-Thom collapse map. The map C is the so-called Pontryagin-Thom

collapse map. We saw before that any n-dimensional compact topological manifold M admits

a locally flat embedding into Rs with a normal microbundle νs−n. Using the Kister-Mazur

theorem, its total space E ⊂ Rs can be assumed to be the total space of an Rs−n-bundle.

The quotient Rs/(Rs \ E) is naturally homeomorphic to Th(νs−n).

We can classify νs−n by a map f : M → BTop(s− n), i.e. f∗γs−n ∼= νs−n. Thus we have

an induced map Th(νs−n)→ Th(γs−n) and by composition we obtain a map

cs : Ss → Rs/(Rs \ E) ∼= Th(νs−n)→ Th(γs−n)

sending ∞ to ∞.

If we take the embedding M ↪→ Rs ↪→ R× Rs, then we may take νs+1−n to be ε⊕ νs−n,

classified by M → BTop(s − n) → BTop(s + 1 − n), and use this data to construct cs+1.

Then the following diagram commutes

S1 ∧ Ss S1∧cs //

∼=
��

S1 ∧ Th(γs−n)

��

Ss+1
cs+1

// Th(γs−n+1)

Thus taking its pointed homotopy class and letting s→∞, we get an element of πn(MTop).

This is C(M).
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Lemma 4.18. C(M) is well-defined.

Sketch of proof. The choices we made were a locally flat embedding, a normal Rs−n-bundle

and a classifying map. We saw that any two locally flat embeddings are isotopic if we

are allowed to increase the dimension arbitrarily. Similarly any two normal bundles can

be assumed concordant and any two classifying maps are homotopic. We leave it to the

reader to check that these isotopies, concordances and homotopies induce homotopies of

Pontryagin-Thom collapse maps.

For the invariance under cobordism, we use a relative version of the Whitney embedding

theorem to show that N may be embedded in Rs× [0,∞) so that ∂N is embedded in Rs×{0}
with normal microbundle and a normal microbundle of N in Rs × [0,∞) extending this

(which exists by a relative version of Theorem 3.14). Then C(N) provides a null-homotopy

for C(∂N). �

4.3.2. The transverse inverse image map. For the map I, we start with an element c ∈
πn(MTop). This is represented by a pointed homotopy class of maps cs : Ss → Th(γs−n).

We note that Th(γs−n) contains the 0-section, which has an Rn−s-bundle neighborhood. This

means we can apply our microbundle transversality theorem 3.19 to make cs microbundle

transverse to this 0-section.

Remark 4.19. There is an alternative to using a generalization of Theorem 3.19 for X

that are not manifolds. Since BTop(s− n) has finitely generated homotopy groups, we may

actually find manifolds Xs−n(k) with k-connected maps Xs−n(k)→ BTop(s− n), and one

may use these instead.

In particular, this says that (cs)
−1(0-section) is a compact topological submanifold of Rs

of codimension equal to the codimension of the 0-section, i.e. s− n. Thus we have obtained

an n-dimensional compact topological manifold M , which we denote I(c).

Lemma 4.20. I(c) is well-defined.

Sketch of proof. We made a choice of s, representative cs : Ss → Th(γs−n) and a transverse

perturbation of this map. We may assume that s′ = s by increasing one of them, and then

any two transverse perturbations cs and c′s are homotopic by a homotopy h. Then we can

apply a relative version of the transversality result to the homotopy h to obtain a map

h : Ss × [0, 1]→ Th(γs−n) transverse to the 0-section and equal to cs, c
′
s at 0, 1 respectively.

The inverse image of the 0-section under h gives a cobordism I(h) between I(cs) and I(c′s).

This argument also shows that I(c) only depends on the stable homotopy class of c. �

4.3.3. C and I are mutually inverse. There are two compositions to consider;

C ◦ I : πn(MTop)→ πn(MTop) and I ◦ C : ΩTop
n → ΩTop

n .

Lemma 4.21. We have that I ◦ C = id.

Proof. If we pick the representative Ss → Th(γs−n) appearing in the construction of the

stable map C(M), then we see that it already is microbundle transverse to the 0-section.

The inverse image is exactly M . �

Lemma 4.22. We have that C ◦ I = id.
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Sketch of proof. The inverse image I(cs) is an n-dimensional topological manifold M with an

embedding into Rs and a normal microbundle νs−n, by definition of microbundle transversality.

The map cs restricts to a map from M to BTop(s− n) and embeds each fiber of νs−n into a

fiber of γs−n.

If we shrink νs−n, we may assume that the image of cs is exactly the ε-bundle in γs−n
for some small ε > 0. We can then reparametrize the fibers of νs−n and scale the image

of cs, so that we can assume νs−n is an Rs−n-bundle and we have a map c′s : νs−n → γs−n
of Rs−n-bundles. We claim that if we use c′s to construct a map c̃s : Ss → Th(γs−n), this

is homotopic to cs preserving the base point ∞. To see that this is the case, note that c̃s
differs from cs by collapsing a larger neighborhood of ∞ and reparametrizing. This may be

seen to be homotopic to cs with some effort. �
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[RS67] C. P. Rourke and B. J. Sanderson, An embedding without a normal microbundle, Invent. Math.

3 (1967), 293–299. MR 0222904 20, 21

[RS70] , On topological neighbourhoods, Compositio Math. 22 (1970), 387–424. MR 0298671 20

[RS72] , Introduction to piecewise-linear topology, Springer-Verlag, New York-Heidelberg, 1972,

Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. MR 0350744 (50 #3236) 3

[Sie65] Laurence Carl Siebenmann, The obstruction to finding a boundary for an open manifold of

dimension greater than five, ProQuest LLC, Ann Arbor, MI, 1965, Thesis (Ph.D.)–Princeton

University. MR 2615648 3

[Tau87] Clifford Henry Taubes, Gauge theory on asymptotically periodic 4-manifolds, J. Differential

Geom. 25 (1987), no. 3, 363–430. MR 882829 9

[Var67] K. Varadarajan, Microbundles and disk bundles, Topology 6 (1967), 43–48. MR 0208619 18

[Wal99] C. T. C. Wall, Surgery on compact manifolds, second ed., Mathematical Surveys and Monographs,

vol. 69, American Mathematical Society, Providence, RI, 1999, Edited and with a foreword by

A. A. Ranicki. MR 1687388 3, 6

[Wal16] , Differential topology, Cambridge Studies in Advanced Mathematics, vol. 156, Cambridge

University Press, Cambridge, 2016. MR 3558600 2

E-mail address: kupers@math.ku.dk

Institut for Matematiske Fag, Københavns Universitet, Universitetsparken 5, 2100 København

Ø.


	1. Lecture 1: the theory of topological manifolds
	2. Intermezzo: Kister's theorem
	3. Lecture 2: microbundle transversality
	4. Lecture 3: the Pontryagin-Thom theorem
	References

