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Abstract

Associated to a Thurston map f : S2 ! S2 with postcritical set P

are several di↵erent invariants obtained via pullback: a relation SP
f �

SP on the set SP of free homotopy classes of curves in S2 \P , a linear
operator �f : R[SP ]! R[SP ] on the free R-module generated by SP , a
virtual endomorphism �f : PMod(S2, P ) 99K PMod(S2, P ) on the pure
mapping class group, an analytic self-map �f : T (S2, P )! T (S2, P ) of
an associated Teichmüller space, and an analytic self-correspondence
X � Y �1 : M(S2, P ) ◆ M(S2, P ) of an associated moduli space.
Viewing these associated maps as invariants of f , we investigate rela-
tionships between their properties.

1



Contents

1 Introduction 2

2 Fundamental identifications 7
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Pullback invariants 11
3.1 No dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 When �
f

: @T
B

! @T
A

22

5 When �
f

: T
B

! T
A

is constant 23

6 Noninjectivity of the virtual homomorphism 28
6.1 Proof of Theorem 6.3 . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Proof of density, Theorem 6.4 . . . . . . . . . . . . . . . . . . 33

7 Finite global attractor for the pullback relation 34

8 Shadowing 39

9 Obstructed twists and repelling fixed points in @M
P

40
9.1 Obstructed twists . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2 Dynamical consequences . . . . . . . . . . . . . . . . . . . . . 43

1 Introduction

Thurston maps are orientation-preserving branched covers f : S2 ! S2 from
the oriented topological two-sphere to itself that satisfy certain properties.
They were introduced by Thurston as combinatorial invariants associated
to postcritically finite rational functions R : P1 ! P1, regarded as dynam-
ical systems on the Riemann sphere. A fundamental theorem of complex
dynamics is Thurston’s characterization and rigidity theorem [DH], which
(i) characterizes which Thurston maps f arise from rational functions, and
(ii) says that apart from a well-understood family of ubiquitous exceptions,
the Möbius conjugacy class of R is determined by the combinatorial class of
its associated Thurston map f . The proof of this theorem transforms the
question of determining whether f arises from a rational function R to the
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question of whether an associated pullback map �
f

: T
P

! T
P

, an analytic
self-map of a certain Teichmüller space, has a fixed point.

As combinatorial (as opposed to analytic or algebraic) objects, Thurston
maps, in principle, should be easier to classify than postcritically finite ra-
tional maps. For many years, the lack of suitable invariants for general
Thurston maps frustrated attempts toward this goal. In a ground-breaking
paper [BN1], Bartholdi and Nekrasheyvh introduced several new tools. One
innovation was to develop new algebraic tools from the theory of self-similar
groups to study the dynamics of a given Thurston map f : S2 ! S2. An-
other was to exploit the existence of an associated analytic correspondence
on the moduli space M

P

covered by the graph of �
f

. These new tools have
led to much better invariants for Thurston maps and to a better under-
standing of the pullback map �

f

, see [Nek1], [CFPP], [Koc1], [Koc2], [Pil3],
[BEKP], [HP1], [HP2], [Kel], [Nek2], [BN2], [Lod].

In this work, we deepen the investigations of the relationship between
dynamical, algebraic, and analytic invariants associated to Thurston maps.

Fundamental invariants. Let S2 denote a topological two-sphere, equipped
with an orientation. Fix an identification S2 = P1 = bC; we use S2 for
topological objects, P1 for holomorphic objects, and bC when formulas are
required. Let P ✓ S2 be a finite set with #P � 3 (in the case #P = 3,
the groups and spaces are trivial, so it is helpful to imagine at first that
#P � 4).

The following objects are basic to our study.

1. S
P

, the set of free homotopy classes of simple, unoriented, essential,
nonperipheral, closed curves in S2 \P ; the symbol o denotes the union
of the sets of free homotopy classes of unoriented inessential and pe-
ripheral curves. A curve representing an element of S

P

we call non-
trivial. A multicurve � on S2 \ P is a possibly empty subset of S

P

represented by nontrivial, pairwise disjoint, pairwise nonhomotopic
curves. Let MS

P

denote the set of possibly empty multicurves on
S2 \ P .

2. R[S
P

], the free R-module generated by S
P

; this arises naturally in the
statement of Thurston’s characterization theorem.

3. G
P

:= PMod(S2, P ), the pure mapping class group (that is, orientation-
preserving homeomorphisms g : (S2, P )! (S2, P ) fixing P pointwise,
up to isotopy through homeomorphisms fixing P pointwise). Each
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nontrivial element of G
P

has infinite order. The group G
P

contains a
distinguished subset Tw whose elements are multitwists; that is

Tw :=
[

� a multicurve on S

2\P

Tw(�)

where Tw(�) is the subgroup of G
P

generated by Dehn twists around
components of �. A multitwist is positive if it is a composition of
positive powers of right Dehn twists. Let

Tw+ :=
[

� a multicurve on S

2\P

Tw+(�)

where Tw+(�) is the subgroup ofG
P

generated by positive Dehn twists
around components of �. The support of a multitwist is the smallest
multicurve about which the twists comprising it occur; this is is well-
defined.

4. T
P

:= T (S2, P ), the Teichmüller space of (S2, P ), as in [DH]. It comes
equipped with two natural metrics, the Teichmüller Finsler metric
dTP and the Weil-Petersson (WP) inner product metric dWP

TP . The
metric space (T

P

, dTP ) is complete, and any pair of points are joined
by a unique geodesic. In contrast, (T

P

, dWP

TP ) is incomplete. The WP-

completion T
P

has a rich geometric structure [Mas] (see also [HK]); it
is a stratified space where each stratum T �

P

corresponds to a multicurve
� and consists of noded Riemann surfaces whose nodes correspond to
pinching precisely those curves comprising � to points. We denote by
@T

P

the WP boundary of T
P

.

5. M
P

:= M(S2, P ) is the corresponding moduli space. It is a complex
manifold, isomorphic to a complex a�ne hyperplane complement. The
natural projection ⇡ : T

P

!M
P

is a universal cover, with deck group
G

P

.

Given a basepoint ⌧~ 2 T
P

, there is a natural identification of G
P

with
⇡
1

(M
P

,m~) where m~ := ⇡(⌧~); the isomorphism ⇡
1

(M
P

,m~) ! G
P

proceeds via isotopy extension, while the isomorphism G
P

! ⇡
1

(M
P

,m~)
is induced by composing the evaluation map at those points marked by P
with an isotopy to the identity through maps fixing three points of M

P

; see
[Lod] for details.

A subgroup L < G
P

is purely parabolic if L ✓ Tw. In terms of the
identification G

P

$ ⇡
1

(M
P

,m~), L is purely parabolic if and only if the
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displacements of each of its elements satisfies inf
⌧2TP dTP (⌧, g.⌧) = 0 for all

g 2 L. A purely parabolic subgroup is complete if for each multitwist M 2 L
and each � 2 S

P

, we have � 2 supp(M) ) T
�

2 L where T
�

is the right
Dehn twist about �. A complete parabolic subgroup is necessarily of the
form Tw(�), the set of all multitwists about elements of �, where � is some
nonempty multicurve.

Let f : S2 ! S2 be an orientation-preserving branched covering map
with critical set ⌦

f

. Its postcritical set is

P
f

:=
[

n>0

f�n(⌦
f

);

we assume throughout this work that #P
f

<1. Suppose P ✓ S2 is finite,
P
f

✓ P , and f(P ) ✓ P ; we then call the map of pairs f : (S2, P )! (S2, P )
a Thurston map. Throughout this work, we refer to a Thurston map by the
symbol f , and often suppress mention of the non-canonical subset P .

The following objects are associated to a Thurston map f : (S2, P ) !
(S2, P ) via pullback:

1. a relation �
f

: S
P

[ {o}! S
P

[ {o},

2. a non-negative linear operator �
f

: R[S
P

]! R[S
P

],

3. a virtual endomorphism �
f

: G
P

99K G
P

,

4. an analytic map �
f

: T
P

! T
P

; this extends continuously to �
f

:
T

P

! T
P

by [Sel1, §4],

5. an analytic correspondence X � Y �1 : M
P

◆ M
P

; the double-arrow
notation reflects our view that this is a one-to-many “function”.

Precise definitions and a summary of basic properties of these associated
maps will be given in the next two sections.

Main results. The goal of this work is to examine how properties of
the objects in (1) through (5) are related. That such relationships should
exist is expected since there are fundamental identifications between various
elements associated to the domains of these maps; see §2. Our main results
include the following.

• We characterize when the map on Teichmüller space �
f

: T
P

! T
P

sends the Weil-Petersson boundary to itself (Theorem 4.1).
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• We characterize when the map on Teichmüller space �
f

: T
P

! T
P

is
constant (Theorem 5.1); the proof we give corrects an error in [BEKP].

• We show that the virtual endomorphism on the pure mapping class
group �

f

: G
P

99K G
P

is essentially never injective (Theorem 6.3).

• It is natural to investigate whether a Thurston map f induces an action
on projectivized measured foliations, i.e. on the Thurston boundary
of T

P

. Using Theorem 6.3, however, we show (Theorem 6.4) that
each nonempty fiber of the pullback map �

f

accumulates on the entire
Thurston boundary. This substantially strengthens the conclusion of
[Sel1, Theorem 9.4].

• We give su�cient analytic criteria (Theorem 7.2) for the existence of a

finite global attractor for the pullback relation S
P

f � S
P

on curves—
equivalently, for the action of the pullback map �

f

: T
P

! T
P

on
strata.

• We prove an orbit lifting result (Proposition 8.1) which asserts that
under the hypothesis that the virtual endomorphism �

f

is surjective,
finite orbit segments of the pullback correspondenceX�Y �1 on moduli
space can be lifted to finite orbit segments of �

f

.

• In the case when #P = 4, we relate fixed points of the various asso-
ciated maps (Theorem 9.1). If in addition the inverse of the pullback
correspondence is actually a function (i.e. the map X is injective),
sharper statements are possible (Theorem 9.2). Our results general-
ize, clarify, and put into context the algebraic, analytic, and dynam-
ical findings in the analysis of twists of z 7! z2 + i given in [BN1,
§6]. Using the shadowing result from Proposition 8.1, these results
also demonstrate that for certain unobstructed Thurston maps, one
can build finite orbits of the pullback map whose underlying surfaces
behave in prescribed ways. For example, one can arrange so that the
length of the systole can become shorter and shorter for a while before
stabilizing.

While motivated by the attempt at a combinatorial classification of dy-
namical systems, many of the results we obtain are actually more naturally
phrased for a nondynamical branched covering map f : (S2, A) ! (S2, B).
Where possible, we first phrase and prove more general results, (Proposition
3.1, Theorem 4.1, Theorem 5.1, Proposition 6.2, Theorem 6.3, and Theorem
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6.4); the aforementioned theorems then become corollaries of these more
general results.

Conventions. All branched covers and homeomorphisms are orientation-
preserving. Throughout, f denotes a branched covering of S2 ! S2 of degree
d � 2. The symbols A,B, P denote finite subsets of S2, which contain at
least three points.

Acknowledgements. We thank Indiana University for supporting the vis-
its of S. Koch and N. Selinger. S. Koch was supported by an NSF postdoc-
toral fellowship and K. Pilgrim by a Simons collaboration grant. We thank
A. Edmonds, D. Margalit, and V. Turaev for useful conversations.

2 Fundamental identifications

2.1 Preliminaries

Teichmüller and moduli spaces. The Teichmüller space T
P

= T (S2, P )
is the space of equivalence classes of orientation-preserving homeomorphisms
' : S2 ! P1, whereby '

1

⇠ '
2

if there is a Möbius transformation µ : P1 !
P1 so that

• '
1

= µ � '
2

on the set P , and

• '
1

is isotopic to µ � '
2

relative to the set P .

The moduli space M
P

= M(S2, P ) is the set of all injective maps ' : P ,!
P1 modulo postcomposition by Möbius transformations. The Teichmüller
space and the moduli space are complex manifolds of dimension #P � 3,
and the map ⇡

P

: T
P

! M
P

given by ⇡
P

: ['] 7! ['|
P

], is a holomorphic
universal covering map.

Note that since we have identified S2 = P1, both M
P

and T
P

have
natural basepoints represented by the classes of the inclusion and identity
maps, respectively.

Teichmüller metric. Equipped with the Teichmüller Finsler metric dTP ,
the space T

P

becomes a complete uniquely geodesic metric space, homeo-
morphic to the open ball B#P�3; it is not, however, nonpositively curved.

WP metric. In contrast, when equipped with the WP metric dWP

TP , the

space T
P

is negatively curved but incomplete. The completion T
P

is a
stratified space whose strata are indexed by (possibly empty) multicurves.
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Each stratum is homeomorphic to the product of the Teichmüller spaces
of the components of the noded surface obtained by collapsing each curve
of � to a point. Indeed, this completion coincides with the augmented
Teichmüller space parametrizing noded Riemann surfaces marked by P (see
[HK]). It is noncompact, coarsely negatively curved, and quasi-isometric to
the pants complex; for an extensive overview, see [Wol].

Thurston compactification. For � 2 S
P

and ⌧ 2 T
P

let `
�

(⌧) denote
the length of the unique geodesic in the hyperbolic surface associated to ⌧ .
The map ⌧ 7! (`

�

(⌧))
�2SP defines an embedding T

P

! RSP
�0 which projects

to an embedding T
P

! PRSP
�0 . Thurston showed that the closure of the

image is homeomorphic to the closed ball B
#P�3

, and that the boundary
points may be identified with projective measured foliations on (S2, P ). A
comprehensive reference is [FLP]; cf. also the book by Ivanov [Iva1].

Fix a basepoint ⌧~ 2 T
P

; this gives rise to a basepoint m~ := ⇡(⌧~) 2
M

P

; recall that we then have an identification G
P

$ ⇡
1

(M
P

,m~). The
following folklore theorem is well-known.

Theorem 2.1 (Fivefold way) There are natural bijections between the fol-
lowing sets of objects:

1. multicurves � on S2 \ P

2. “purely atomic” measured foliations F(�) :=
P

�2� ⌫�, where ⌫� is the
delta-mass at �, which counts the number of intersections of a curve
with �.

3. complete purely parabolic subgroups L of G
P

;

4. strata T �

P

✓ T
P

;

5. certain subgroups of loops in moduli space (thought of as generated
by certain pure braids) and corresponding via “pushing” to complete
purely parabolic subgroups L of ⇡

1

(M
P

,m~).

The subgroups arising in (5) will be described shortly. The bijections are
given as follows:

(1) ! (2) Take the zero measured foliation if � is empty. Otherwise:
take a foliation of a regular neighborhood of � with the width (transverse
measure) of each neighborhood equal to 1—this gives the so-called normal
form of a measured foliation F obtained by collapsing the unfoliated regions
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onto their spines ([FLP, §6.5]); the result is unique, up to the natural White-
head equivalence on foliations. Alternatively: choosing a complex structure
on S2 \ P , one may apply a well-known result of Jenkins and Strebel (see
e.g. [DH, Prop. 4.2]) to obtain a corresponding quadratic di↵erential whose
closed horizontal trajectories provide the associated measured foliation.

(2) ! (1) If the foliation is the zero foliation, take � = o, the empty
multicurve; otherwise, take one core curve from each cylinder in the normal
form of the foliation.

(1) ! (3) Take the subgroup L := Tw(�) generated by Dehn twists
about elements of �.

(3)! (1) Take the union � of the core curves of the representing twists;
this is well-defined.

(1)! (4) We take those marked noded spheres in which precisely all the
curves comprising � correspond to nodes, and nothing else.

(3)! (4) The stratum T �

P

is the unique stratum in Fix(L) of maximum
dimension.

(4) ! (3) Given the stratum T �

P

, take the pointwise stabilizer L :=
Tw(�) = Stab

GP (T �

P

).
(3)! (5) We now describe this correspondence.

Let P := {p
1

, . . . , p
n

} ✓ S2, n := #P � 4. Recall that the configuration
space Config(S2, P ) is the space of injections P ,! S2; the inclusion P ✓ S2

gives a natural basepoint. Let ⇡ : Config(S2, P ) ! M
P

be the natural
projection and ⇡⇤ the induced map on fundamental groups. Let � be a
nonempty multicurve represented by curves � ✓ S2 \P . Below, we describe
a procedure for producing, for each � 2 �, a loop `

�

in Config(S2, P ) based
at P which projects to the right Dehn twist Tw(�). This procedure will
have the additional property that as elements of ⇡

1

(Config(S2, P )), given
�
1

, �
2

2 �, the elements represented by `
�1 , `�2 will commute.

The idea is based on simultaneous “pushing” (or Birman spin) of points;
see Figure 1. Suppose z

1

, . . . , z
m

2 D := {|z| < 1} are nonzero complex
numbers, pick r with max

i

{|z
i

|} < r < 1, set z
0

= 0, and consider the motion
t 7! z

i

(t) := exp(2⇡it)z
i

, t 2 [0, 1], i = 0, . . . ,m. This motion extends to an
isotopy of D fixing the origin and the boundary. Taking the result of this
extension when t = 1, the resulting “multi-spin” homeomorphism of the
plane is homotopic, through homeomorphisms fixing z

0

, z
1

, . . . , z
m

, to the
right-hand Dehn twist about the circle � := {|z| = r} surrounding the z

i

’s.
To see this, note that the extension of each individual motion z

i

(t) yields
a “spin” which is the composition of a left Dehn twist about the left-hand
component of a regular neighborhood of the circle traced by z

i

(t) with the
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Figure 1: Simultanteously pushing the points labelled 4 and 5 around the
point labelled 3 yields the right Dehn twist about the bold curve on the
outer side of the thin curve passing through point 5.

right Dehn twist about the corresponding right-hand component. The left
twist resulting from the motion of z

1

(t) is trivial, since this left boundary
component is peripheral, and for i = 1, . . . ,m � 1 the right twist from the
motion of z

i

cancels the left twist from the motion of z
i+1

.
Now suppose � is a nonempty multicurve. Choose an element � 2 �

among the possibly several components of � such that � does not separate a
pair of elements of �. Let V be a component of S2 \� whose closure contains
� (the component V is unique if #� > 1). Pick � 2 �. Then � bounds a
distinguished Jordan domain D

�

✓ V . Let {p
j0 , pj1 , . . . , pjm} = D

�

\ P
where 1  j

0

< j
1

< . . . < j
m

 n, so that j
0

is the smallest index
of an element of P in D

�

. Up to postcomposition with rotations about
the origin, there is a unique Riemann map � : (D

�

, p
j0) ! (D, 0). Set

z
i

= �(p
ji), i = 0, . . . ,m, and transport the motion of the z

i

constructed in
the previous paragraph to a motion of {p

i0 , pi1 , . . . , pim} in S2; it is supported
in the interior of D

�

. This motion gives a loop `
�

in the space Config(S2, P ).
By construction, `

�

projects to the right Dehn twist about � in the
pure mapping class group. Suppose �

1

, �
2

are distinct elements of �. If
D
�1\D�2 = ; then clearly the elements represented by `

�1 and `�2 commute.
Otherwise, we may assume D

�1 ✓ D
�2 . By construction, the loop `

�2 ,
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thought of as a motion of points in the disk D
�2 represents the central

element in the braid group on #P \D
�2 strands, so it commutes with the

element represented by `
�1 .

Remark: By choosing arbitrarily an element p1 2 P \ (S2 � D
�

), and
upon identifying S2 � {p1} with the plane R2, we may view the paths
constructed above as loops in the configuration space Config(R2, P � {p1})
whose fundamental group is then isomorphic to the pure braid group PB

n�1.

3 Pullback invariants

Many of the objects we are concerned with arise nondynamically. We first
define them in the nondynamical setting (§3.1), and then consider the same
objects in the dynamical case (§3.2).

3.1 No dynamics

Admissible covers. Suppose A,B ✓ S2 are finite sets, each containing at
least three points. A branched covering f : (S2, A) ! (S2, B) is admissible
if (i) B ◆ V

f

, the set of branch values of f , and (ii) f(A) ✓ B; we do not
require A = f�1(B).

For the remainder of this subsection, we fix an admissible cover f :
(S2, A)! (S2, B). To (f,A,B) we associate the following objects. Though
they depend upon all three elements of the triple, we indicate this depen-
dency by referring only to f , for brevity.

Pullback relation on curves. The pullback relation

S
B

[ {o} f � S
A

[ {o}

is defined by setting o
f � o and

�
1

f � �
2

if and only if �
2

is homotopic in S2 \ A to a connected component of the

preimage of �
1

✓ S2 \B under f . Thus �
f � o if and only if some preimage

of � is inessential or peripheral in S2 \ A. The pullback relation induces a
pullback function f�1 : MS

B

!MS
A

, by sending the empty multicurve on
(S2, A) to the empty multicurve on (S2, B) and � 7! f�1(�) := {�̃ 2 S

A

:

9� 2 �, �
f � �̃}; note that f�1(�) might be empty.
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The associated linear transformation. There is a linear transformation

�
f

: R[S
B

]! R[S
A

]

defined on basis vectors by

�
f

(�) =
X

�

f ��i

d
i

�
i

where d
i

:=
X

f

�1
(�)��'�i

1

deg(f : � ! �)
.

The pullback map. There is a map �
f

: T
B

! T
A

associated to an
admissible cover f : (S2, A) ! (S2, B). Let ' : (S2, B) ! (P1,'(B)) be
an orientation-preserving homeomorphism. Then there is an orientation-
preserving homeomorphism  : (S2, A) ! (P1, (A)), and a rational map
F : (P1, (A))! (P1,'(B)) so that the following diagram commutes;

(S2, A)
 

//

f

✏✏

(P1, (A))

F

✏✏

(A2, B)
'

// (P1,'(B))

we set �
f

: ['] 7! [ ]. It is well-known that this map is well-defined, holomor-
phic, and distance-nonincreasing for the corresponding Teichmüller metrics
on the domain and range [DH].

The virtual homomorphism.

Proposition 3.1 Let f : (S2, A)! (S2, B) be an admissible branched cov-
ering. Then the subset

H
f

:= {[h] 2 G
B

: 9 h̃, h � f = f � h̃, and h̃|
A

= id
A

}

is a finite-index subgroup of G
B

, and the function

�
f

: H
f

! G
A

, [h] 7! [h̃]

induced by lifting representatives is well-defined and a homomorphism.

Proof: The proof is complicated by the possibility that the associated
unramified covering map f : (S2, f�1(B)) ! (S2, B) might admit deck
transformations.

We first set up some notation that will be needed later. Let H
B

:=
Homeo+(S2, B) be the group of orientation-preserving homeomorphisms
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(S2, B)! (S2, B) which fix B pointwise, and define H
A

:= Homeo+(S2, A)
analogously. LetH{f�1

(B)} denote the group of orientation-preserving home-
omorphisms (S2, f�1(B))! (S2, f�1(B)) that send the set f�1(B) to itself,
possibly via a nontrivial permutation.

Next, we will make use of the following fact from algebra. If A,B,C
are groups with A < B, n := [A : B] < 1, and p : B ! C is a surjective
homomorphism, then the image p(A) has finite index in C. To see this,
write B = b

1

At . . .t b
n

A and apply the homomorphism p. We will also use
the fact that the intersection of a finite collection of finite-index subgroups
is again finite-index.

Let Q < H
B

⇥ H{f�1
(B)} be the subgroup of those ordered pairs of

homeomorphisms (h, h̃) such that h � f = f � h̃. Let Lift
f

denote the image
of Q under the projection to H

B

.
The group Q acts on the set f�1(B). The intersection

Q
A

:=
\

a2A
Q

a

of the stabilizers Q
a

, a 2 A, is the subgroup of Q consisting of pairs (h, h̃) for
which h�f = f � h̃ and for which the upstairs map h̃ fixes A pointwise. Thus
[Q : Q

A

] <1. Let Lift
f,A

denote the image of Q
A

under the projection to
H

B

.
Note that both Lift

f

and Lift
f,A

are “saturated” with respect to homo-
topy; that is, for h 2 Lift

f

, g 2 Lift
f,A

, and for all ◆
0

2 H
B

isotopic to the
identity relative to B, we have ◆

0

�h 2 Lift
f

and ◆
0

�g 2 Lift
f,A

. This follows
from the homotopy-lifting property for the covering map f : (S2, f�1(B))!
(S2, B). Indeed, there is a homeomorphism ◆ : (S2, f�1(B))! (S2, f�1(B))
which is isotopic to the identity (S2, f�1(B)) ! (S2, f�1(B)) relative to
f�1(B), so that ◆

0

�f = f �◆. Clearly, (◆
0

�h, ◆� h̃) 2 Q and (◆
0

�g, ◆� g̃) 2 Q
A

(where h̃ and g̃ are the respective lifts of h and g); therefore ◆
0

� h 2 Lift
f

and ◆
0

� g 2 Lift
f,A

.
Now consider the following commutative diagram:

G
A

Q
A

oo

⇤
✏✏

� �
// Q � � //

✏✏

H
B

⇥H{f�1
(B)}

✏✏

Lift
f,A

✏✏

� �
// Lift

f

✏✏

� �
// H

B

✏✏

H
f

�f

YY

� �
// Lift

f

/Homeo+
0

(S2, B) �
�

// G
B

13



The right-pointing horizontal arrows are inclusions. The left-pointing hori-
zontal arrow at top left is the composition of (i) projection onto the second
factor H{f�1

(B)} (by construction, this yields an element of H
A

), with (ii)
recording the isotopy class (yielding an element of G

A

). The vertical arrows
in the top row are projections onto the first factor H

B

. The vertical arrows
in the bottom row record the isotopy class as an element of G

B

. Thus the
vertical arrows are surjective by definition of their images.

Since [Q : Q
A

] < 1 we conclude using the above algebra fact that
[Lift

f

/Homeo+
0

(S2, B) : H
f

] < 1. In the remainder of this paragraph, we
prove that [G

B

: Lift
f

/Homeo+
0

(S2, B)] < 1, from which it follows that
[G

B

: H
f

] is finite. Indeed, let d := degf , and consider all subgroups of
⇡
1

(S2, B) (up to conjugacy) of index d. Since ⇡
1

(S2, B) is finitely gen-
erated, there are finitely many such subgroups, hence finitely many such
conjugacy classes. The restriction f : S2 \ f�1(B) ! S2 \ B is a cover-
ing map, and so determines a conjugacy class ⇠ of subgroups of index d in
⇡
1

(S2, B) corresponding to loops in S2 \B that lift to loops in S2 \ f�1(B).
A homeomorphism h 2 H

B

determines an outer automorphism of ⇡
1

(S2, B),
so we obtain a homomorphism G

B

! Out(⇡
1

(S2, B)) and a corresponding
action of G

B

on the finite set of conjugacy classes of subgroups of index
d. The stabilizer (G

B

)
⇠

of ⇠ is therefore a finite index subgroup of G
B

.
From elementary covering space theory, a su�cient (and, actually, neces-
sary) condition for a homeomorphism h 2 H

B

to lie in the subgroup Lift
f

is that the class [h] of h in G
B

lie in the stabilizer (G
B

)
⇠

. We conclude that
Lift

f

/Homeo+
0

(S2, B) = (G
B

)
⇠

has finite index in G
B

.
Next, we show that the vertical arrow labelled ⇤ is an isomorphism. It

is surjective by definition. By definition, an element of the kernel is a pair
of homeomorphisms of the form (id

S

2 , h̃) with f = f � h̃ (so that h̃ is a
deck transformation of the covering f : S2 \ f�1(B) ! S2 \ B) and with
h̃|

A

= id
A

. We claim that this implies h̃ = id
S

2 . Since nontrivial deck
transformations have no fixed points, we will show that h̃ has a fixed point.
We do this by applying the Lefschetz fixed point formula. To deal with
compact spaces, let U = S2 \N

"

(B) (where N
"

(B) is an "-neighborhood of
B), and Ũ := f�1(U); then h̃|

˜

U

is a deck transformation of the covering of

compact spaces f : Ũ ! U . Since #A � 3 and by assumption h̃ fixes each
element of A, we have that the trace of h̃⇤ on H

1

(Ũ ,Z) is at least 2. By the
Lefschetz fixed point formula, this implies h̃ has a fixed point.

Next, we define the virtual endomorphism �
f

. Its domain is the subgroup
H

f

. Given a class ✓ 2 H
f

, to define �
f

(✓) 2 G
A

, choose a representing
homeomorphism h 2 Lift

f,A

. Since the vertical arrow (⇤) is an isomorphism,

14



there is a unique lift h̃ of h under f with the property that it fixes A
pointwise. We define �

f

(✓) := [h̃] 2 G
A

.
We now show in two ways that �

f

is well-defined. First: given two
pairs (h

1

, h̃
1

), (h
2

, h̃
2

) 2 Q
A

for which [h
1

] = [h
2

] in G
B

, we must show
[h̃

1

] = [h̃
2

] 2 G
A

. Consider the product (g, g̃) := (h�1
2

� h
1

, h̃�1
2

� h̃
1

). Since
up to isotopy f � g̃ = f , we have

�
f�g̃ = �

f

as maps T
B

! T
A

.

So for all ⌧ 2 T
B

,
�
g̃

(�
f

(⌧)) = �
f

(⌧)

which implies that �
g̃

has a fixed point. The action of �
g̃

on T
A

depends
only on the class [g̃] 2 G

A

, and this action is via a deck transformation of
the covering T

A

! M
A

. Using again the fact that a deck transformation
with a fixed point is the identity, this implies [g̃] = id 2 G

A

. Second: an
isotopy connecting h

1

and h
2

, which is constant and equal to the identity on
B, lifts by f to an isotopy which is constant on f�1(B), and which connects
h̃
1

to a lift h̃0
2

of h
2

. Since h̃
1

fixes A ✓ f�1(B) pointwise, so does h̃0
2

. We
have shown that such a lift is unique, hence h̃0

2

= h̃
2

and [h̃
1

] = [h̃
2

] 2 G
A

.
Finally, we claim that �

f

is a homomorphism. This follows from the
definition of �

f

and the fact that Lift
f,A

is a group under coordinatewise
composition. ⇤
Restricted virtual homomorphism and other definitions. Here, we
briefly comment on the di↵erence between the definition of virtual homo-
morphism given here and that of the virtual endomorphism given in [Pil3].

In [Pil3], the discussion treats only the dynamical setting of Thurston
maps, and the corresponding virtual endomorphism is defined di↵erently.
Here is the connection.

Given an admissible cover f : (S2, A) ! (S2, B), the restricted virtual
endomorphism, �0

f

: G
B

99K G
A

is defined as follows. Set A0 = f�1(B), and
let �00

f

: G
B

! G
A

0 be the virtual endomorphism given by Proposition 3.1;
denote its domain H 0

f

. The restricted virtual endomorphism �0
f

is defined
as the composition

H 0
f

�

00
f�! G

A

0 ! G
A

where G
A

0 ! G
A

is the map induced by forgetting points in A0 \A.
Now suppose A = B = P � P

f

where f is a Thurston map. The virtual
endomorphism G

P

99K G
P

of [Pil3] coincides with the restricted virtual
endomorphism �0

f

: G
P

99K G
P

.
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The virtual homomorphism changes in a predictable way under pre- and
post-composition by homeomorphisms.

Lemma 3.2 Let f : (S2, A) ! (S2, B) be an admissible covering map, let
i : (S2, B) ! (S2, B) be an orientation-preserving homeomorphism which
maps the set B to itself (not necessarily pointwise), let j : (S2, A)! (S2, A)
be an orientation-preserving homeomorphism which maps the set A to itself
(not necessarily pointwise). Then i�f�j : (S2, A)! (S2, B) is an admissible
cover with associated virtual homomorphism

�
i�f�j : GB

99K G
A

with domain H
i�f�j ,

and

H
i�f�j = i�H

f

� i�1 and �
i�f�j(h) = j�1 ��

f

(i�1 �h� i)� j, h 2 H
i�f�j .

Proof: This follows immediately from the definitions. ⇤
Functional identities. The following are two fundamental functional iden-
tities relating the virtual homomorphism, the linear map, and the pullback
map.

We begin with some notation. If � = {�
1

, . . . , �
m

} is a multicurve and
a
1

, . . . , a
m

2 Z we set

w :=
mX

i=1

a
i

�
i

and M
w

:= T a1
1

· · ·T am
m

where T
i

is the right Dehn twist about �
i

; this is well-defined since the T
j

’s
commute pairwise.

The result [Pil3, Thm. 1.2], phrased and proved for Thurston maps,
generalizes in a completely straightforward way to the following result; note
that the more restrictive domain is referred to below.

Theorem 3.3 For any multitwist M
w

2 dom(�0
f

), we have �
f

(w) 2 Z[S
A

],
and

�0
f

(M
w

) = �
f

(M
w

) = M
�f (w)

. (1)

From the definitions (see also [BEKP] and [Koc2]) we have

�
f

(h · ⌧) = �
f

(h) · �
f

(⌧), 8 h 2 H
f

. (2)
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The Hurwitz space W
f

. This discussion is extracted from [Koc2]. Con-
sider the space

Rat
d

⇥
�
P1

�
B ⇥

�
P1

�
A

where Rat
d

denotes the space of rational maps of degree d,
�
P1

�
B

denotes

the space of all injective maps ' : B ,! P1, and
�
P1

�
A

denotes the space of
all injective maps ' : A ,! P1 (we are abusing notation). This space is a
smooth a�ne variety.

The group Aut(P1)⇥Aut(P1) acts on the space in the following way:

(µ, ⌫) · (F, i
B

, j
A

) 7!
�
µ � F � ⌫�1, µ � i

B

, ⌫ � j
A

�
.

This action is free, and we consider the geometric quotient
⇣
Rat

d

⇥
�
P1

�
B ⇥

�
P1

�
A

⌘
/
�
Aut(P1)⇥Aut(P1)

�
;

it follows from geometric invariant theory that this is a complex manifold of
dimension 2d+ 1 +#A+#B � 6 (for details, see [Koc2]).

Consider the map

!
f

: T
B

!
⇣
Rat

d

⇥
�
P1

�
B ⇥

�
P1

�
A

⌘
/
�
Aut(P1)⇥Aut(P1)

�

given by !
f

: [�] 7! [F,�|
B

, |
A

] where

• � : (S2, B)! (P1,�(B)) and  : (S2, A)! (P1, (A)) are orientation-
preserving homeomorphisms, and

• F := � � f � �1 : (P1, (A))! (P1,�(B)) is the rational map at right
in the diagram defining the pullback map �

f

.

In other words, !
f

records the algebraic data of �
f

, up to appropriate equiv-
alence.

Following [Koc2], the Hurwitz space associated to f : (S2, A)! (S2, B)
is W

f

:= !
f

(T
B

). It is a complex manifold of dimension #B � 3, and the
map !

f

: T
B

!W
f

is a holomorphic covering map.

The moduli space correspondence. The Hurwitz space W
f

associated
to f : (S2, A)! (S2, B) is equipped with two holomorphic maps (see Figure
2):

X : W
f

!M
A

given by [F,�|
B

, |
A

] 7! [ |
A

] and

Y : W
f

!M
B

given by [F,�|
B

, |
A

] 7! [�|
B

].
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T
B

⇡B

✏✏

�f
//

!f

""

T
A

⇡A

✏✏

W
f

Y

||

X

""

M
B

M
A

Figure 2: The fundamental diagram associated to any admissible covering map

f : (S2, A)! (S2, B); this diagram commutes.

We may think of these as comprising one multivalued map X � Y �1 :
M

B

◆ M
A

; note that the direction of this correspondence is the same as
that of �

f

: T
B

! T
A

, i.e. it corresponds to pulling-back complex structures.
We call the pair of maps

(X : W
f

!M
A

, Y : W
f

!M
B

)

the moduli space correspondence associated with f : (S2, A)! (S2, B). The
following results are proved in [Koc2].

Proposition 3.4 The map ⇡
B

factors as ⇡
B

= Y � !
f

, and the space W
f

is isomorphic (as a complex manifold) to T
B

/H
f

.

Thus deg(Y ) = [G
P

: H
f

], the index of dom(�
f

) in the pure mapping class
group.

Corollary 3.5 The map Y : W
f

!M
B

is a finite covering map.

Proof: This follows from Proposition 3.1. ⇤
On the one hand, the map Y : W

f

! M
B

is always a covering map.
On the other hand, the map X : W

f

!M
A

may have diverse properties:
it can be e.g. constant, injective but not surjective, or a surjective ramified
covering; see [BEKP].

We say that admissible covers f : (S2, A) ! (S2, B) and g : (S2, A) !
(S2, B) are (A,B)-Hurwitz equivalent if there are homeomorphisms h 2 H

B

,
and h̃ 2 H

A

so that h � f = g � h̃.
While �

f

depends on the admissible cover f : (S2, A) ! (S2, B), the
correspondence on moduli space depends only on the (A,B)-Hurwitz class
of f .

18



Proposition 3.6 The Hurwitz space W
f

is equal to the Hurwitz space W
g

if and only if f and g are (A,B)-Hurwitz equivalent.

Remark: The classical notion of Hurwitz equivalence requires only that
h � f = g � h̃ for some pair of orientation-preserving homeomorphisms h, h̃
which are not required to fix any finite set pointwise. Thus, (A,B)-Hurwitz
equivalence is a finer equivalence relation than classical Hurwitz equivalence.
For example, any pair of quadratic maps f, g are Hurwitz equivalent, but
it is possible to arrange a suitable choice of A = B = P

f

= P
g

so that
f, g are not (A,B)-Hurwitz equivalent; see [Koc1, Remark 7.3.3] and [Koc2,
Example 2.9].

Two definitions of the virtual homomorphism. Choose a basepoint
w~ 2 W

f

and set µ~ := X(w~), µ̃~ := Y (w~). Using the identity maps
to define corresponding basepoints for T

A

, T
B

, we obtain identifications (see
[Lod, Section 2.2]) G

A

$ ⇡
1

(M
A

, µ̃~) and G
B

$ ⇡
1

(M
B

, µ~). It can be
shown (cf. [Lod, Theorem 2.6]) that the virtual homomorphism �

f

: G
B

99K
G

A

, under these identifications, coincides with the induced maps X⇤�(Y⇤)�1
on fundamental groups.

Augmented Teichmüller space and the extension of �
f

. The proof of
[Sel1, Prop. 4.3] shows that �

f

is uniformly Lipschitz with respect to the WP
metric, and therefore extends to the WP completion. The action of the deck
group corresponding to the covering map ⇡

B

: T
B

!M
B

(respectively ⇡
A

:
T
A

!M
A

) extends to the space T
B

(respectively T
A

). The fundamental
diagram becomes

T
B

⇡B

✏✏

�f
//

!f

!!

T
A

⇡A

✏✏

W
f

Y

}}

X

!!

M
B

M
A

(3)

where

W
f

:= T
B

/H
f

, M
B

:= T
B

/G
B

, and M
A

:= T
A

/G
A

.

The proof of [Sel1, Prop. 6.1] shows

�
f

(T �

B

) ✓ T f

�1
(�)

A

. (4)
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3.2 Dynamics

We briefly mention the relevant objects in the dynamical setting.

Thurston maps. We will often be concerned with the special case where
A = B = P � P

f

. We will require the notion of the orbifold associated to a
Thurston map f : (S2, P )! (S2, P ). Following [DH], we note that there is
a smallest function ⌫

f

over all functions ⌫ : S2 ! N [ {1} such that

• ⌫(x) = 1 if x /2 P , and

• ⌫(x) is a multiple of ⌫(y) ·deg(f, y) for all y 2 f�1(x); here the second
factor is the local degree of f at y.

Indeed, one simply sets ⌫(x) to be the least common multiple of the set of
local degrees of iterates of f at all points that are iterated preimages of x.
The orbifold of f is O

f

(S2, ⌫
f

); it is hyperbolic if the Euler characteristic

�(O
f

) = 2�
X

x2P

✓
1� 1

⌫
f

(x)

◆

is negative. We say that f has Euclidean orbifold if it does not have hyper-
bolic orbifold. If #P

f

� 5, then the orbifold of f is necessarily hyperbolic.
Maps with Euclidean orbifolds are classified in [DH].

Pullback relation on curves. Just as in the nondynamical setting, the
pullback relation induces a pullback function f�1 : MS

P

!MS
P

. A mul-
ticurve is invariant if f�1(�) ✓ � or f�1(�) = ;; it is completely invariant
if f�1(�) = �.

The Thurston linear transformation. The Thurston linear transforma-
tion

�
f

: R[S
P

]! R[S
P

]

is defined just as before, with A = B = P .
There is one key di↵erence in the dynamical setting, which is Thurston’s

Characterization Theorem [DH, Theorem 1].

Theorem 3.7 (Thurston’s characterization) If O
f

is hyperbolic, then
f is equivalent to a rational map R if and only if for every invariant (equiv-
alently, every) multicurve �, the spectrum of the linear map

�
f,�

:= �
f

|R[�] : R[�]! R[�]

lies in the open unit disk; in this case, R is unique, up to conjugation by
Möbius transformations.
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If there is an invariant multicurve � ✓ S2 \ P for which the criterion in
Theorem 3.7 fails, then � is a called a Thurston obstruction.

The pullback map. The pullback map �
f

: T
P

! T
P

is defined as before.
When O

f

is hyperbolic, the criterion in Theorem 3.7 is equivalent to the
existence of a fixed point of �

f

in T
P

. Some kth iterate �k
f

is a strict, non-
uniform contraction (when P = P

f

, [DH, Prop. 3.3(b)] asserts that k = 2
will do). So if a fixed point exists, it is unique, the map f is equivalent
to a rational map R (unique up to conjugacy by Möbius transformations),
and the projection of the fixed point to moduli space corresponds to the
geometry of the corresponding subset of the dynamical plane of R. When O

f

is Euclidean, the relationship between the existence of Thurston obstructions
and the dynamics on Teichmüller space is more subtle; cf. [Sel2]. However,
with the exception of the well-known integral Lattés maps induced by the
endomorphisms z 7! n · z on complex tori, a fixed point of �

f

, if it exists, is
unique.

The virtual endomorphism. There are a finite index subgroup H
f

< G
P

and a virtual endomorphism

�
f

: G
P

99K G
P

given by �
f

: [h] 7! [h0]

where h, h0 2 Homeo+(S2, P ), and h � f = f � h0.
The Hurwitz space W

f

. We have the same fundamental diagram as in
Figure 2, with A = B = P , and we have maps

X : W
f

!M
P

and Y : W
f

!M
P

.

In the dynamical setting, we can iterate the moduli space correspondence
X � Y �1 : M

P

◆ M
P

.

Augmented Teichmüller space and the extension of �
f

. Considering
the Diagram (3), the proof of [Sel1, Prop. 6.1] shows again that �

f

(T �

P

) ✓
T f

�1
(�)

P

. In particular, completely invariant multicurves (those satisfying
f�1(�) = �) correspond to strata invariant under �

f

. Selinger [Sel1, Thm.
10.4] shows that if f is obstructed, then under suitable hypotheses (all pieces
in the corresponding canonical decomposition having hyperbolic orbifold),
again there is a unique fixed point ⌧̂ 2 T

P

to which all iterates converge.
However, there exist both obstructed and unobstructed maps f for which �

f

has periodic points in @T
P

. Indeed, understanding the dynamical behavior
of �

f

: T
P

! T
P

is a main motivation for this work.
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4 When �f : @TB ! @TA
We return to a nondynamical discussion. The main result of this section is
the following characterization of when the pullback map preserves the WP
boundary.

Theorem 4.1 Let f : (S2, A) ! (S2, B) be an admissible cover. The fol-
lowing are equivalent.

1. For each � 2MS
B

, f�1(�) 6= ;.

2. For each � 2 S
B

, � /2 ker(�
f

)

3. ker(�
f

) \ Tw+ ✓ G
B

is trivial.

4. The pullback map �
f

on Teichmüller space satisfies �
f

: @T
B

! @T
A

.

5. The pullback correspondence X � Y �1 : M
B

◆ M
A

on moduli space
is proper.

If #A = #B, and if any of the conditions above hold, the pullback corre-
spondence X � Y �1 : M

B

◆ M
A

is surjective.

In (5), properness means that for each compact K ✓ M
A

, the set
Y (X�1(K)) ✓ M

B

is compact. Since Y is a finite covering map, this is
equivalent to the properness of the map X.

Proof: The equivalence of (1) and (2) is immediate from the definitions.
The equivalence of (2) and (3) follows immediately from the definitions,

Equation 1, the nonnegativity of �
f

, and the fact that �
f

preserves the
positivity of twists. Indeed, from [Pil3, Thm. 1.2] we have the following.
Suppose � = {�

1

, . . . , �
n

} is a nonempty multicurve on S2 \B, a
1

, . . . , a
n

2
Z
>0

, w :=
P

a
i

�
i

2 Z
+

[S
B

], and M
w

:= T a1
1

· . . . · T an
n

is the corresponding
positive multitwist; here T

i

is the right Dehn twist about �
i

. If M
w

2 H 0
f

,
then by Equation (1)

�
f

(M
w

) = M
�f (w)

.

So
�
f

(M
w

) = id () �
f

(w) = 0.

Since �
f

is a nonnegative linear operator and a
i

> 0 for each i, we conclude
from the definition of �

f

that

�
f

(M
w

) = id () f�1(�) = o.
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We now show (1) () (4). Recall that the WP boundary @T
B

is a union
of strata corresponding to nonempty multicurves on S2 \ B. By Equation
(4)

�
f

(T �

B

) ✓ T f

�1
(�)

A

.

In particular,
�
f

(T �

B

) ✓ @T
A

() f�1(�) 6= o,

which yields (1) () (4).
Now we show that failure of (4) implies failure of (5). Suppose for some

nonempty multicurve � there exist ⌧
n

! ⌧ 2 T �

B

while ⌧̃
n

:= �
f

(⌧
n

) !
⌧̃ := �

f

(⌧) 2 T
A

. But then in moduli space µ
n

:= ⇡
B

(⌧
n

) ! 1 while
µ̃
n

:= ⇡
A

(�
f

(⌧
n

)) ✓ X � Y �1(µ
n

) does not, showing that properness of the
pullback correspondence fails.

Now suppose that (5) fails. Then there exist µ̃
n

! µ̃ in M
A

and and
µ
n

! µ 2 @M
B

such that µ̃
n

2 X � Y �1(µ
n

). Consider Diagram 3. There
exists w 2W

f

with Y (w) = µ, X(w) = µ̃. We see from Diagram 3 that for
any ⌧ 2 @T

B

with !
f

(⌧) = w, �
f

(⌧) 2 ⇡�1
A

(µ̃) 2 T
A

and (4) fails.
It remains to prove surjectivity of X �Y �1 under the assumptions #A =

#B, and that e.g. Condition (5) holds. Since X � Y �1 is proper, it is not
constant.

Recall that M
B

is isomorphic to a hyperplane complement; in particu-
lar, it is a Stein manifold and, hence, the finite cover W

f

of M
B

also is a
Stein manifold of the same dimension. Therefore, the preimage under X of
any point is totally disconnected and, by properness, compact. Since X is
analytic, we conclude that the preimage is discrete as well, hence finite. Be-
cause #A = #B, the complex manifolds W

f

and M
A

have equal dimension,
so the map X : W

f

!M
A

is open because it has discrete fibers. A continu-
ous proper map between locally compact Hausdor↵ spaces is closed. Hence
the image X(W

f

) is both open and closed in M
A

and so X : W
f

!M
A

is
surjective. ⇤

5 When �f : TB ! TA is constant

Theorem 5.1 Let f : (S2, A) ! (S2, B) be an admissible cover. The fol-
lowing are equivalent:

1.
f � is constant

2. �
f

: R[S
B

]! R[S
A

] is constant
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3. �
f

: G
B

99K G
A

is constant

4. �
f

: T
B

! T
A

is constant

5. X � Y �1 : M
B

◆ M
A

is constant

In [BEKP], the previous theorem is proved in the dynamical setting for
f a Thurston map. The same ideas for the proof apply in the nondynamical
case. However, in [BEKP], there is a mistake in the proof that (2) ) (3).
The assumption (2) is equivalent to the assumption that every curve, when
lifted under f , becomes inessential or peripheral. Even if this holds, it need
not be the case that every Dehn twist lifts under f to a pure mapping class
element. We give an explicit example after the proof of Theorem 5.1.
Proof:

In [BEKP] the logic was: (1) ) (2) ) (3) ) (4), and failure of (1)

implies failure of (4). Also, condition (1) is stated as “
f � is empty”; and

condition (5) is omitted.
Here is the revised logic:

• (4) () (5),

• (1) () (2),

• (3)) (2),

• (3) () (4), and

• failure of (4) implies failure of (1).

We immediately have that (4) () (5) from the fundamental diagram,
Figure 2, and (1) () (2) follows immediately from the definitions.

To show that (3)) (2), we show failure of (2) implies failure of (3). If
�
f

is not constant, then there exists a simple closed curve � 2 S
B

which
has an essential, nonperipheral simple closed curve � 2 S

A

as a preimage
under f . Some power of the Dehn twist about � lifts under f to a product
of nontrivial Dehn twists. The hypothesis implies that the lifted map is
homotopically nontrivial, so �

f

is not constant.
For the remaining implications, we will make use of the following facts:

First recall the functional identity from (2):

�
f

(h · ⌧) = �
f

(h) · �
f

(⌧), 8 h 2 H
f

,
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recall that W
f

is isomorphic (as a complex manifold) to T
B

/H
f

(Proposition
3.4), and recall Corollary 3.5 which states that Y : W

f

! M
B

is a finite
cover.

Second, note that a bounded holomorphic function on a finite cover of
M

B

is constant. To see this, recall that M
B

is isomorphic to the comple-
ment of a finite set of hyperplanes in Cn where n = #B� 3. Let L 2 Cn be
any complex line which intersects M

B

. This intersection is isomorphic to
a compact Riemann surface punctured at finitely many points. If eL is any
component of the preimage of L under a finite covering, then eL is also iso-
morphic to a compact Riemann surface punctured at finitely many points.
By Liouiville’s theorem, the function is constant on eL. Since L is arbitrary,
the function is locally constant, hence constant.

To establish (3)) (4), suppose (3) holds. Then �
f

: T
B

! T
A

descends
to a holomorphic map

�
f

: W
f

! T
A

.

But it is well-known (see e.g. [Hub]) that T
A

is isomorphic as a complex
manifold to a bounded domain of Cn, so the discussion above implies that
�
f

is constant.
To establish that (4)) (3), suppose h 2 H

f

. If �
f

⌘ ⌧ is constant, the
deck transformation defined by �

f

(h) fixes the point ⌧ , hence must be the
identity, so �

f

is constant.
To establish that not(4) ) not(1), we first prove a lemma of perhaps

independent interest. Below, by a bounded set we mean a set with compact
closure.

Lemma 5.2 Let f : (S2, A) ! (S2, B) be an admissible covering map.
Then the image of �

f

: T
B

! T
A

is either a point, or unbounded in T
A

. In
the latter case, actually ⇡

A

(�
f

(T
B

)) is unbounded in M
A

.

Proof: The fundamental diagram in Figure 2 implies that

�
f

(T
B

) is bounded in T
A

() ⇡
A

(�
f

(T
B

)) is bounded in M
A

() X(W
f

) is bounded in M
A

.

Because a bounded holomorphic function on W
f

is constant, X(W
f

) is
bounded in M

A

if and only if it is a single point, or (by Figure 2) if and
only if the image of �

f

is a single point. ⇤

Suppose now that �
f

: T
B

! T
A

is not constant (i.e., failure of (4)).
Lemma 5.2 implies that X(W

f

) is not contained in any compact subset of
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M
A

. Consider the diagram in Equation (3). This means that the image
X(W

f

) contains at least one point on the boundary @M
A

, hence �
f

(T
B

)
contains at least one point in @T

A

. We see that there exists a boundary
stratum T �

B

that is mapped to a boundary stratum of T
A

. Hence, f�1(�) 6=
o, which means

f � is not constant. ⇤
Remark: One may prove the last implication in a more direct and elemen-
tary way by observing that if X(W

f

) is unbounded, then there are points
⌧̃ = �

f

(⌧) on whose underlying Riemann surfaces X
⌧̃

exist annuli of arbi-
trarily large modulus. Pushing such an annulus forward under the natural
map X

⌧̃

! X
⌧

yields a fat annulus on X
⌧

. The core curves of these annuli

must be nontrivial and provide a pair �
f � �̃.

Example. Consider the postcritically finite rational map f : P1 ! P1

defined by

f(z) = 2i

✓
z2 � 1 + i

2

◆
2

,

with postcritical set P = {0, 1,�1,1}. It factors as f = g � s where s(z) =
z2. Its mapping properties are shown in Figure 3 In this case, �

f

: T
P

! T
P

is constant (as proved in [BEKP]), Y : W
f

! M
P

is a degree 2 covering
map, and X : W

f

!M
P

is constant. Because Y has degree 2, the subgroup
H

f

has index 2 in G
P

, so there is a Dehn twist h 2 Homeo+(S2, B) that
does not lift to a homeomorphism h0 2 Homeo+(S2, A). Thus even if �

f

:
T
P

! T
P

is constant, the index [G
P

: H
f

] may be greater than 1.
One may see this directly. Let �

0

be the boundary of a small regular
neighborhood D of the segment [0, 1] ✓ C. Let h

0

: P1 ! P1 be the right
Dehn twist about �

0

.

Claim: If h
1

: P1 ! P1 satisfies h
0

� f = f � h
1

(i.e. h
1

is a lift of h
0

under
f) then h

1

62 G
P

.

Proof: We argue by contradiction. We may assume h
0

is supported on an
annulus A

0

(see Figure 3) surrounding a bounded Jordan domain D
0

whose
boundary is �

0

, and an unbounded region U
0

. Easy calculations show that
the inverse image of D

0

under f consists of two bounded Jordan domains
D±

1

each mapping as a quadratic branched cover onto D
0

and ramified at

the points c± := ±
q

1+i

2

(the positive sign corresponding to the root with

positive real part), both of which map to the origin under f . The domain
D+

1

contains two preimages of the point 1, namely +1 and +1+ip
2

, while

its twin D�
1

also contains two preimages of the point 1, namely �1 and
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Figure 3: The mapping properties of f . The points in grey are �1, 0,+1.
The annulus A

0

is shown in dark gray at right.

�1+ip
2

. The points ±1 2 D±
1

belong to P , so if h
1

: (P1, P ) ! (P1, P ) is

a homeomorphism fixing P pointwise is a lift of h
0

, then h
1

(1) = 1 and
h
1

(�1) = �1.
Since f : D±

1

� {c±} ! D
0

� {0} are both unramified coverings, and
h
0

: D
0

�{0}! D
0

�{0} is the identity map, we conclude h
1

: D±
1

�{c±}!
D±

1

� {c±} is a deck transformation of this covering fixing a point, hence is
the identity on D±

1

.
The preimage of the annulus A

0

is a pair of disjoint, non-nested annuli
A±

1

with an inner boundary component �±
1

equal to @D±
1

. Since f : A±
1

! A
0

is quadratic and unramified, and, by the previous paragraph, the restriction
h
1

|
D

±
1
= id

�

±
1
, we must have h

1

6= id on the outer boundary components of

A±
1

; indeed, h
1

there e↵ects a half-twist.
The preimage of U

0

under f is a single unbounded region U
1

, which
is homeomorphic to the plane minus two disks and three points; it maps
in a four-to-one fashion, ramified only at the origin. The restriction f :
U
1

� {f�1(0)} ! U
0

� {�1} is an unramified covering map, so h
1

: U
1

�
{f�1(�1)}! U

1

� {f�1(�1)} is a deck transformation of this covering. By
the previous paragraph, it is distinct from the identity.

We will obtain a contradiction by proving that h
1

: U
1

� {f�1(�1)} !
U
1

�{f�1(�1)} has a fixed point; this is impossible for deck transformations
other than the identity. We use the Lefschetz fixed point formula. By re-
moving a neighborhood of1 and of �1, and lifting these neighborhoods, we
place ourselves in the setting of compact planar surfaces with boundary, so
that this theorem will apply. Under h

1

, the boundary component near infin-
ity is sent to itself, as are the outer boundaries of A±

1

and the boundary com-
ponent surrounding the origin (since the origin is the uniquely ramified point
of f over U

0

). The remaining pair of boundary components are permuted
amongst themselves. The action of h

1

: U
1

� {f�1(�1)}! U
1

� {f�1(�1)}
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on rational homology has trace equal to either 3 or 5. A fixed point thus
exists, and the proof is complete. ⇤

Remark: There exists a lift h
1

of h
0

under f . First, there is a lift h0 of
h
0

under g, obtained by setting h0 = id on the preimage of U
0

. This extends
to a half-twist on the preimage A0

0

of A
0

under g, which then in turn extends
to a homeomorphism fixing the preimage D0

0

of D
0

under g; inside D0
0

, this
homeomorphism interchanges the points 1, i which are the primages of 1. It
is then straightforward to show that h0 lifts under s by setting h

1

= id on
U
1

and extending similarly over the annuli A±
1

and the domains D±
1

.

6 Noninjectivity of the virtual homomorphism

In this section, we begin with a nondynamical discussion about the injectiv-
ity of the virtual homomorphism �

f

: G
B

99K G
A

associated to an admissible
covering map f : (S2, A)! (S2, B).

It follows from Lemma 3.2 that �
f

: G
B

99K G
A

is injective if and only
if �

i�f�j : GB

99K G
A

is injective.

Lemma 6.1 Let f : (S2, A)! (S2, B) be an admissible cover. If �
f

: T
B

!
T
A

is injective, then �
f

: G
B

99K G
A

is injective.

Proof: Suppose h 2 ker(�
f

). Then from the functional identity (2) we
have �

f

(h · ⌧) = �
f

(⌧) for all ⌧ 2 T
B

and so non-injectivity of �
f

implies
non-injectivity of �

f

. ⇤
Remark. We are not aware of any examples of an admissible covering map
f : (S2, A) ! (S2, B) where �

f

: G
B

99K G
A

is injective but �
f

: T
B

! T
A

is not.
Our discussion naturally breaks up into three cases depending on #A and

#B. We treat the first two cases in the proposition below. The remaining
case where #A = #B is treated in Theorem 6.3.

Proposition 6.2 Let f : (S2, A) ! (S2, B) be an admissible covering map
with virtual homomorphism �

f

: G
B

99K G
A

.

1. If #B > #A, then �
f

is not injective.

2. If #B < #A, then �
f

is injective if A = f�1(B).

Proof: We begin with a proof of (1) due to D. Margalit. Let G
max

 G
B

be a maximal abelian subgroup of G
B

. The rank of G
max

is #B � 3 by
Theorem A in [BLM]. Let H

max

be a maximal abelian subgroup of H
f

, the
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domain of �
f

. Because H
f

has finite index in G
B

, the rank of H
max

is also
equal to #B�3 (Theorem 6.4C, [Iva2]). If �

f

were injective, then �
f

(H
max

)
would be an abelian subgroup in G

A

of rank #B � 3. But the rank of any
abelian subgroup of G

A

is bounded above by #A� 3, and since #B > #A
by hypothesis, the virtual homomorphism �

f

cannot be injective.
We now prove (2). The Teichmüller spaces T

A

, T
B

are each canonically
isomorphic to the Teichmüller spaces where the points in A and B repre-
sent punctures. Under the hypothesis that A = f�1(B), the pullback map
�
f

: T
B

! T
A

is induced by lifting complex structures under an unramified
covering map. It is well-known that in this case �

f

is a global isometry with
respect to the Teichmüller metrics (a Teichmüller mapping  corresponding
to a quadratic di↵erential q lifts to a Teichmüller mapping corresponding to
a lifted quadratic di↵erential) and is therefore injective. By Lemma 6.1, �

f

is injective. ⇤
Remark: Condition (2) is su�cient but not necessary. For example, in
the dynamical setting, if A = B = P

f

, and f : (S2, P
f

) ! (S2, P
f

) is a
Thurston map, and if f has Euclidean orbifold, then �

f

is injective. This is
immediately clear in the case where #P

f

= 3. In the case where #P
f

= 4,
the result follows from Lemma 6.1, and from the fact that �

f

: T
Pf ! T

Pf

is an automorphism [DH].

For the remaining case, we will require a nondynamical version of the
notion of hyperbolic orbifold (see Section 3.2). Let f : (S2, A) ! (S2, B)
be an admissible cover with #A = #B. We say that f has potentially
hyperbolic orbifold if there are orientation-preserving homeomorphisms i, j
with

j�1 : (S2, A)! (S2, j�1(A)), and i : (S2, B)! (S2, i(B)),

so that P := j�1(A) = i(B), and i � f � j : (S2, P )! (S2, P ) is a Thurston
map with hyperbolic orbifold. Note that if #A = #B, then it is easy to find
homeomorphisms j and i so that f : (S2, P ) ! (S2, P ) is a Thurston map;
the content of this definition is that some such Thurston map has hyperbolic
orbifold.

Theorem 6.3 Let f : (S2, A)! (S2, B) be an admissible cover with #A =
#B � 4, and suppose that f has potentially hyperbolic orbifold. Then the
virtual homomorphism �

f

: G
B

99K G
A

is not injective: its kernel contains
a pseudo-Anosov element.

Because f has potentially hyperbolic orbifold, there are homeomorphisms
i, j with j�1 : (S2, B) ! (S2, P ) and i : (S2, A) ! (S2, P ) so that F :=
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i�f � j : (S2, P )! (S2, P ) is a Thurston map with distinguished set P , and
this Thurston map has hyperbolic orbifold. We will prove that the virtual
endomorphism �

F

: G
P

99K G
P

associated to F is not injective. It will then
follow from Lemma 3.2 that the virtual homomorphism �

f

: G
B

99K G
A

is
not injective, concluding the proof.

The proof of this theorem will use both analytic and algebraic arguments.
From this, we will derive

Theorem 6.4 Let f : (S2, A)! (S2, B) be an admissible cover with #A =
#B, and suppose that f has potentially hyperbolic orbifold. Then the closure
in the Thurston compactification of each nonempty fiber of �

f

: T
B

! T
A

map contains the Thurston boundary of T
B

.

6.1 Proof of Theorem 6.3

We begin with some preliminary results of independent interest.
Suppose f : (S2, A)! (S2, B) is an admissible covering map with virtual

homomorphism �
f

: G
B

99K G
A

; as before, let H
f

< G
B

be the domain of
�
f

. Let d
B

be the Teichmüller distance on T
B

, and let d
A

be the Teichmüller
distance on T

A

.
Recall that every element g of G

B

has a minimal displacement given by

�
B

(g) := inf
⌧2TB

d
B

(⌧, g · ⌧) 2 [0,1).

Define the analogous object �
A

for G
A

. Also recall that we have the func-
tional identity

�(h · ⌧) = �
f

(h) · �(⌧), 8 h 2 H
f

.

The following results are related; however, Proposition 6.5 and Corollary
6.7 involve nondynamical statements, while Corollary 6.6 and Corollary 6.8
involve dynamical statements.

Proposition 6.5 Let f : (S2, A) ! (S2, B) be an admissible cover. For
each h 2 H

f

we have
�
A

(�
f

(h))  �
B

(h).
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Proof: Fix " > 0. We have

�
B

(h) = inf
⇠

d
B

(⇠, h · ⇠) definition

> d
B

(⌧, h · ⌧)� " for some ⌧ 2 T
B

� d
A

(�
f

(⌧),�
f

(h · ⌧)))� " �
f

is distance nonincreasing

= d
A

(�
f

(⌧),�
f

(h) · �(⌧))� " functional identity

� inf
⇠

d
A

(⇠,�
f

(h) · ⇠)� " definition

= �
A

(�
f

(h))� " definition.

⇤

Corollary 6.6 Let f : (S2, P )! (S2, P ) be a Thurston map with hyperbolic
orbifold.

1. There exists k 2 N such that if h 2 H
f

�k is pseudo-Anosov, then

�
P

(��k
f

(h)) < �
P

(h).

2. If �
f

: T
P

! T
P

is strictly distance-decreasing and h 2 H
f

, then

�
P

(�
f

(h)) < �
P

(h).

Proof: Being pseudo-Anosov implies we can take ⌧ to realize the infimum
in the definition of �

P

(h), so that " in the previous proof is equal to 0. By
[DH, Cor. 3.4], there exists a k 2 N such that the kth iterate ��k

f

strictly
decreases Teichmüller distances. ⇤

Corollary 6.7 Let f : (S2, A)! (S2, B) be an admissible cover. Then the
virtual homomorphism �

f

: G
B

99K G
A

sends multitwists to multitwists.

Proof: There are no elliptic pure mapping class elements, so twists h are
characterized by the condition that �

B

(h) = 0 (or �
A

(h) = 0 if h 2 G
A

).
But �

B

(h) � �
A

(�
f

(h)) so �
B

(h) = 0) �
A

(�
f

(h)) = 0. ⇤

Corollary 6.8 Let f : (S2, P ) ! (S2, P ) be a Thurston map, and k as in
Corollary 6.6. If the orbifold of f is hyperbolic and h 2 H

f

�k is a pseudo-

Anosov element, then the mapping class ��k
f

(h) cannot be conjugate to h
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in G
P

. In particular ��k
f

(h) 6= h and �
f

(h) 6= h. If �
f

: T
P

! T
P

is
distance decreasing, then the mapping class �

f

(h) cannot be conjugate to h;
in particular �

f

(h) 6= h.

Remark. One can show Proposition 6.5 analytically in another way, via
the correspondence on moduli space and the definition of the virtual en-
domorphism in terms of the induced map on fundamental group deter-
mined by the correspondence. As before, choose basepoints w~, µ~, µ̃~ with
Y (w~) = µ~, X(w~) = µ̃~. Represent the mapping class h 2 G

B

by a loop
� in M

B

based at µ~. By suitable choice of basepoints we may assume the
length of the loop � is very close to �

B

(h). If h 2 H
f

, this loop lifts to a
loop �̃ based at w~; so the length of �̃ and of � are the same. The map
X : W

f

!M
A

cannot increase lengths, so we conclude that X(�̃) in M
A

under this projection has length which is at most that of � in M
B

.

Proof: (of Theorem 6.3) Let S
m

denote the m-times-punctured sphere. We
will need a few results about its extended (nonpure) mapping class group,
Mod(S

m

). The first is the following result of Bell and Margalit [BM, Thm.
1].

Theorem 6.9 Let m � 5. If H is a finite index subgroup of Mod(S
m

), and
⇢ : H ! Mod(S

m

) is an injective homomorphism, then there is a unique
g 2 Mod(S

m

) so that ⇢(h) = ghg�1 for all h 2 H.

Recall we are proving that if f : (S2, P ) ! (S2, P ) is a Thurston map
with hyperbolic orbifold, then the kernel of the virtual endomorphism �

f

:
G

P

99K G
P

contains a pseudo-Anosov element. Note that G
P

is canoni-
cally identified with a finite index subgroup of the full mapping class group
Mod(S

m

).
Assume first that #P � 5.
Suppose to the contrary that �

f

is injective. Let k be the integer of
Corollary 6.6. Then ��k

f

is also injective. By Theorem 6.9 applied to ⇢ = ��k
f

and H := H
f

�k , there is a unique g 2 G
P

so that ��k
f

(h) = ghg�1 for all
h 2 H. Since H is a finite-index subgroup of G

P

, it contains a pseudo-
Anosov element, h. But then ��k

f

(h) = ghg�1, contradicting Corollary 6.8.
Let N := ker(�

f

) and let H now denote the domain of �
f

. We have just
shown that N is nontrivial.

Now assume that #P = 4, so that M
P

and W
f

are each Riemann
surfaces of finite type. Assuming that �

f

is injective, Theorem 4.1 implies
X : W

f

!M
P

is proper and surjective; it is also open. It follows that X :
W

f

!M
P

is a finite branched covering. Let w~ 2W
f

, and m~ := X(w~)
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be basepoints, and consider X⇤ : ⇡1(W
f

, w~) ! ⇡
1

(M
P

,m~). Suppose X⇤
is injective.

Let p : Z !M
P

be the covering of M
P

induced by the image subgroup
X⇤(⇡1(W

f

, w~)). By elementary covering space theory, there exists a lift
X̃ : W

f

! Z of X satisfying p�X̃ = X. Since degrees of branched coverings
are multiplicative, X̃ is a finite branched covering. By construction, the
induced map on fundamental groups X̃⇤ is injective and surjective, hence
an isomorphism. Since M

P

is a thrice-punctured sphere, Z and W
f

are
punctured surfaces of strictly negative Euler characteristic, say �kZ ,�kWf ,
respectively. The fundamental groups of Z and W

f

are then free groups of
ranks respectively 1+kZ , 1+kWf . Since they are isomorphic (via X⇤), these
ranks coincide, hence so do the Euler characteristics of Z and W

f

. By the
Riemann-Hurwitz formula, the degree of X̃ must be 1. It follows that X̃ is
an unramified cover, and hence that X = p � X̃ is an unramified cover as
well.1 But then local inverse branches of X �Y �1 are isometries with respect
to the hyperbolic (equivalently, Teichmüller) metric. Taking a composition
of two such branches, we obtain again an isometry. This is impossible, since
the orbifold of F is assumed hyperbolic, so that �

f

and, hence, that X �Y �1
have second iterates that are contractions.

We conclude that in both cases N is nontrivial. Since S
m

is torsion-free,
N is infinite. The next results we need concern the notion of irreducibility:
a subgroup H < Mod(S

m

) is reducible if there exists a nonempty multicurve
which is stabilized by every element of H. A subgroup containing a pseudo-
Anosov element cannot be reducible. Hence any finite-index subgroup H <
Mod(S

m

) is irreducible, since given any pseudo-Anosov element, some power
will be a pseudo-Anosov element which lies in H. By [Iva1, Cor. 7.13], the
subgroup N is irreducible, and by [Iva1, Cor. 7.14], N contains a pseudo-
Anosov element.2 ⇤

6.2 Proof of density, Theorem 6.4

We will prove that if f : (S2, A)! (S2, B) is an admissible map with #A =
#B and potentially hyperbolic orbifold, then the closure in the Thurston
compactification of each nonempty fiber of �

f

: T
B

! T
A

contains the
Thurston boundary of T

B

.
Let N = ker(�

f

); by Theorem 6.3, N contains pseudo-Anosov elements.
Suppose ⌧ 2 T

P

is an element of a nonempty fiber E of �
f

. Given a subgroup

1
The authors acknowledge Allan Edmonds for providing the above arguments in this

paragraph.

2
The authors acknowledge Dan Margalit for this reference.
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of G
B

, recall that its limit set in the Thurston boundary of T
B

is defined as
the closure of the set of fixed points of its pseudo-Anosov elements. For n 2
N we have �

f

(n ·⌧) = �
f

(⌧), so that E is N -invariant. Since pseudo-Anosov
elements have north-south dynamics on the Thurston compactification of
T
P

, the accumulation set of E in the Thurston compactification contains
the limit set ⇤(N). But N is a normal subgroup of H

f

so if x 2 ⇤(N) is a
fixed point of some n 2 N , then h · x is a fixed point of h � n � h�1 2 N for
all h 2 H

f

. Thus ⇤(N) is H
f

-invariant and it follows that ⇤(N) = ⇤(H
f

).
Since H

f

is of finite index in G
B

, we conclude ⇤(N) = ⇤(H
f

) = ⇤(G
B

),
which is equal to the Thurston boundary of T

B

. ⇤

7 Finite global attractor for the pullback relation

For the remainder of the article, we restrict to the dynamical setting; that
is, f : (S2, P )! (S2, P ) is a Thurston map with postcritical set P . In this
section, we establish conditions on f under which there exists a finite set

A ✓ S
P

such that A f � A and the orbit of each curve eventually falls into
A; we call A a finite global attractor.

In this paragraph, we state a known algebraic condition for the existence
of a finite global attractor. Suppose S is a finite generating set for a group
G. We denote by ||g|| the word length of g in the generators S.

Definition 7.1 The virtual endomorphism � : G 99K G is called contracting
if the contraction ratio

⇢ := lim sup
n!1

 
lim sup
||g||!1

||�n(g)||
||g||

!
1/n

< 1.

The contraction ratio of the virtual endomorphism � is independent of the
choice of generating set, and is an asymptotic property: � is contracting if
and only if some iterate of � is contracting. In [Pil3, Thm. 1.4], it is shown
that the algebraic criterion of contraction of the virtual endomorphism �

f

:

G
P

99K G
P

implies the existence of a finite global attractor for S
P

f � S
P

.

It is easy to construct examples of obstructed maps f for which S
P

f � S
P

does not have a finite global attractor—for example, there could be a large
essential subsurface ⌃ ✓ S2\P for which f |

⌃

= id
⌃

, leading to e.g. infinitely
many fixed curves. It is perhaps somewhat more surprising that one can
achieve this with an expanding map.
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Example: Let f be the Thurston map obtained by starting with the degree
four integral Lattès example and applying the “blowing up” surgery along
a single vertical arc joining two critical points (see Figure 4). The domain
and range spheres are each the union of the two squares A,B at the left side
of Figure 3 along their common boundary. The arrows go in the direction of
pulling back. The map f sends small topological quadrilaterals labelled A,B
to the large squares labelled A,B, respectively; their boundary edges e

i

map
to the boundary edge with the same label e

i

. As usual set P := P
f

. Then

the pullback relation S
P

f � S
P

has infinitely many fixed curves. To see
this, observe that the horizontal and vertical curves �

h

, �
v

are fixed. Since
�
f

(�
v

) = �
v

, it follows from [Pil2, Thm. 8.2] that if T 2 denotes a double
right Dehn twist about �

v

, then T 2 � f = f � T 2 up to homotopy relative

to P . Thus the curves �
n

:= T 2n(�
h

), n 2 Z are also each fixed by
f �.

We remark that since the subdivision rule describing f has mesh tending to
zero combinatorially, there exists by [CFP, Thm. 2.3] an expanding map g
homotopic to f relative to P arising as the subdivision map of the shown
subdivision rule.

It is therefore natural to restrict attention to the case when f is a ra-
tional map, in which case �

f

: T
P

! T
P

has a unique fixed point ⌧~; let
m~ = ⇡

P

(⌧~). Below, we give two di↵erent analytic conditions on the cor-

respondence X �Y �1 : M
P

◆ M
P

which imply that S
P

f � S
P

has a finite
global attractor. These properties depend only on the (A,B)-Hurwitz class
of f and not on the choice of base fixed point.

In preparation for stating our results, the following two paragraphs give
definitions.

A nonempty subset K ✓ M
P

is invariant under the correspondence
X�Y �1 ifX�Y �1(K) ✓ K. Consider the case when there exists a nonempty
compact invariant subset, K. This condition is quite strong. If K is such
a set, then so is any R-neighborhood of K, defined using the Teichmüller
metric, since lengths of paths do not increase under application X �Y �1. In
this case it follows that M

P

is exhausted by compact invariant connected
sets. Informally, then, the condition of having a nonempty invariant compact
subset may be thought of as asserting that the ends of moduli space are
repellors of X � Y �1. The relationship between the property of having a
nonempty invariant compact subset and other topological, dynamical, and
algebraic properties is investigated in [KPS].

We will call a length metric ` on M
P

WP-like if its lift ˜̀ to T
P

has
the property that the identity map defines a homeomorphism between the
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Figure 4: (Image byW. Floyd.) The horizontal curve is fixed under pullback,
as are all elements of its orbit under iteration of a double Dehn twist about
the vertical curve.
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completions of T with respect to ˜̀ and with respect to the WP metric.
This implies, in particular, that (M, `) has finite diameter. We say that
the pullback correspondence X � Y �1 on M

P

is uniformly contracting with
respect to an WP-like length metric ` on M

P

if there is a constant 0  � < 1
such that for each curve � : [0, 1] !M

P

of finite length, and each lift �̃ of
� under Y , we have `(X � �̃)  � · `(�), where `(�) is the length of �.

Theorem 7.2 Suppose f : (P1, P ) ! (P1, P ) is a rational Thurston map
with hyperbolic orbifold.

1. If the correspondence X � Y �1 : M
P

◆ M
P

has a nonempty compact

invariant subset, then �
f

is contracting, and the pullback relation
f �

has a finite global attractor.

2. If the correspondence X � Y �1 : M
P

◆ M
P

is uniformly contracting
with respect to a WP-like length metric `, then under iteration of the

pullback relation
f �, every curve becomes trivial, i.e. the set {o}

consisting of the trivial curves (inessential and peripheral) is a finite
global attractor.

Examples.

1. The correspondence induced by the Rabbit polynomial f(z) = z2+ c
R

satisfies the hypothesis in (1). As shown in [BN1, §5.1], the map X is
an inclusion, and in coordinates identifyingM

P

with P1\{0, 1,1}, the
map Y �X�1 is given by the restriction of the critically finite hyperbolic
rational function g(w) = 1 � 1

w

2 to the complement of {0,1,±1}.
The Julia set K of g is then a nonempty compact invariant subset for
X � Y �1 = g�1. Theorem 7.2(1) implies that the pullback relation on
curves has a finite global attractor. It is computed in [Pil3, §8] using
algebraic techniques.

The same arguments apply in the case of preperiod 2, period 1 quadratic
polynomials; see [BN1, §7.2] and [Pil3, §9].

2. The correspondence induced by the dendrite Julia set polynomial f(z) =
z2 + i satisfies the hypothesis in (2). As shown in [BN1, §6.2], the
map X is an inclusion, and in coordinates identifying M

P

with P1 \
{0, 1,1}, the map Y � X�1 is given by the restriction of the crit-
ically finite Lattès-type subhyperbolic (but not hyperbolic) rational
function g(w) = (1 � 2/w)2 to the complement of {0,1, 1, 2}. The
map g defines a self-orbifold-cover of the Euclidean (2, 4, 4)-orbifold
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(see [DH, §9]) which uniformly expands the corresponding Euclidean
metric ` by the factor |1 + i| =

p
2. The identity map of M

P

de-
fines a homeomorphism between the completions with respect to the
Weil-Petersson and Euclidean metric, and it follows easily that ` is
WP-like. Theorem 7.2(2) implies that under iterated pullback, each
curve becomes trivial. This is established in [Pil3, §9] using algebraic
techniques. Guizhen Cui (personal communication) has pointed out
that there is an elementary proof of this fact: it is easy to see that any
curve which does not surround the unique 2-cycle in P

f

must become
trivial, and any curve which does must, by the Schwarz-Pick lemma,
have geodesic representative which strictly shrinks under pullback.

3. The correspondence induced by f(z) = 3z

2

2z

3
+1

, studied in [BEKP, §4]
satisfies the hypotheses of neither (1) nor (2) above. The analysis in
[Lod], however, shows that nonetheless the pullback relation on curves
has a finite global attractor.

Proof: Since f is assumed rational, �
f

: T
P

! T
P

has a fixed point which
we denote by ⌧~; it projects to w~ 2W

f

and m~ 2M
P

.
We first prove (1) by showing that the virtual endomorphism �

f

: G
P

99K
G

P

is contracting, and appealing to [Pil3, Theorem 1.4]. To see that �
f

is
contracting, recall that �

f

is also the virtual endomorphism on ⇡
1

(M
P

,m~)
given by (X � Y �1)⇤ = X⇤ � Y ⇤, where Y ⇤(�) is the lift under Y of a loop
� 2 ⇡

1

(M
P

,m~) based at w~ 2 W
f

. Equip M
P

with the Teichmüller
metric (equivalently, by Royden’s theorem, the Kobayashi metric) and W

f

with the lift of this metric. Given a smooth loop in M
P

based at m~ in
the domain of the virtual endomorphism, it lifts under Y to a loop of the
same length in W

f

and projects to a loop in M
P

, whose length is strictly
shorter. The space M

P

is a hyperplane complement, so its fundamental
group is generated by a finite collection S of loops. The union of these
loops lies in some invariant compact subset K; we may assume K is a
compact submanifold with smooth boundary. In K, the word length ||g||

S

with respect to S is comparable to the infimum of lengths of loops in K
representing g. Since K is compact and invariant, and since the orbifold
of f is hyperbolic, the second iterate of the correspondence is uniformly
contracting on K. It follows that lengths of such liftable loops in K, and
hence the word lengths of the corresponding group elements, are uniformly
contracted under iteration and so �

f

is contracting.
We now prove (2). Let ˜̀ denote the lifted WP-like metric. Results of

[Sel1, §4] imply that the pullback map �
f

extends to the Weil-Petersson
completion T

P

, which, by the WP-like property of `, coincides with the ˜̀
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completion of T
P

. The hypothesis implies that �
f

is uniformly contracting
with respect to ˜̀, and hence that under iteration, each point in T

P

converges
exponentially fast to ⌧~ under iteration. Now let � be a multicurve on S2\P .
Proposition [Sel1, Prop. 6.1] implies that for each multicurve �, the pullback

map �
f

sends the stratum T �

P

to the stratum T f

�1
(�)

P

.
Define the complexity of �, denoted (�), to be the distance between ⌧~

and the stratum T �

P

with respect to the lifted metric ˜̀. The admissibility of
` implies

1. for all �, (�) <1, and

2. there exists r
0

> 0 such that for all � 6= ;, (�) > r
0

.

The hypothesis, the admissibility of `, and the fact that �
f

(T �

P

) ✓ T f

�1
(�)

P

implies

3. there exists � < 1 such that for all �, (f�1(�))  � · (�).

From (1), (2), and (3), it follows that given any multicurve �, there exists
n 2 N such that (f�n(�)) = 0 and hence that f�n(�) is trivial.

Hence under iterated pullback, each multicurve becomes trivial. It fol-
lows that every curve becomes trivial under iterated pullback.

⇤

8 Shadowing

In this section, we briefly consider one consequence of surjectivity of the
virtual endomorphism; this will be used in §9.2 below.

Proposition 8.1 Let f : (S2, P ) ! (S2, P ) be a Thurston map. Suppose
that �

f

: G
P

99K G
P

is surjective. Then any finite orbit segment of the
correspondence X � Y �1 : M

P

◆ M
P

is covered by an orbit segment of the
pullback map �

f

: T
P

! T
P

.

Proof: Let µ
1

2 M
P

, and let µ
2

2 X(Y �1(µ
1

)) ✓ M
P

. By the Funda-
mental Diagram, Figure 2, there exist ⌧ 0

1

, ⌧ 0
2

2 T
P

so that �
f

(⌧ 0
1

) = ⌧ 0
2

, and
⇡
P

(⌧ 0
1

) = µ
1

and ⇡
P

(⌧ 0
2

) = µ
2

. Let ⌧
2

2 ⇡�1
P

(µ
2

). Then there exists g 2 G
P

so that ⌧
2

= g · ⌧ 0
2

. Since �
f

: G
P

99K G
P

is surjective, there exists h 2 G
P

so that �
f

(h) = g. Define ⌧
1

:= h · ⌧
1

. Then

�
f

(⌧
1

) = �
f

(h · ⌧ 0
1

) = �
f

(h) · �
f

(⌧ 0
1

) = g · ⌧ 0
2

= ⌧
2

.

The claim now readily follows by induction.
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9 Obstructed twists and repelling fixed points in
@MP

If f is a Thurston map with #P = 4, then the projection maps Y,X :
W

f

!M
P

extend to holomorphic maps Y,X : W
f

!M
P

' P1 yielding
a holomorphic correspondence on the compactified moduli space X � Y �1 :
P1 ! P1.

9.1 Obstructed twists

Theorem 9.1 Let f : (P1, P ) ! (P1, P ) be a rational Thurston map with
hyperbolic orbifold. Suppose #P = 4.

Then the following conditions are equivalent.

1. There exists g 2 G
P

, a twist T , and a nonzero k 2 Z such that f⇤ :=
g � f commutes up to homotopy with T k.

2. There exists g 2 G
P

such that f⇤ := g � f has an obstruction � := {�}
for which �

f

(�) = �.

3. There exists an element g 2 G
P

, a twist T , and a nonzero integer k
such that (T k)g 2 H

f

and �
f

((T k)g) = T k.

4. There exist curves �
1

, �
2

in P1 \ P such that (i) g(�
1

) = �
2

for some
g 2 G

P

, and (ii) �
f

(�
1

) = �
2

.

5. There exists a point 0 2 @M
P

and a single-valued branch µ 7! �(µ) of
the pullback correspondence X � Y �1 near 0 such that �(0) = 0 and,
in suitable local holomorphic coordinates for which 0 is the origin,
�(µ) = aµ+O(µ2), where 0 < |a| < 1.

Proof: (1) () (2) We take the elements g to be the same.
Condition (1) is equivalent to the condition that T k � f⇤ = f⇤ � T k

up to homotopy, i.e. that T k 2 dom(�
f⇤) and �

f⇤(T
k) = T k. In turn

this is equivalent to the condition that for some k0 with |k0| � |k| we have
T k 2 dom(�0

f

) and �
f⇤(T

k

0
) = T k

0
. Denote by � the core curve of T . Put

w = k0� so that the multitwist M
w

:= T k

0
.

If Condition (1) holds, then equation (1) implies

�
f⇤(Mw

) = M
w

) �
f⇤(w) = w ) �

f⇤(k
0�) = k0� ) �

f⇤(�) = �

by linearity, and so � is an obstruction for f⇤ with eigenvalue 1.
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Now suppose condition (2) holds, with the obstruction being given by �.
Choose k0 2 Z so T k

0 2 dom(�0
f⇤
). Again by equation (1) we have

�
f⇤(�) = � ) �

f

(k0�) = k0� ) �
f⇤(T

k

0
) = T k

0

as required.
(1) () (3) By applying Lemma 3.2 with i = g and j = id, for any

g 2 G we have

�
f

((T k)g) = T k () �
g�f (T

k) = T k.

(4) () (2) This follows immediately from the observation that �
g�f (�) =

�
f

(g�1(�)).
(1)) (5) If T k �f⇤ = f⇤ �T k up to homotopy then �

T

k ��
f⇤ = �

f⇤ ��Tk .
Let � be the core curve of the twist T , let � = {�}, and consider the quotient

H/hz 7! z + 2ki ' T
P

/kTw(�) ' D⇤

which we identify with the punctured disk. Then �
f

descends to an analytic
map

�
f⇤ : D⇤ ! D⇤.

The fundamental diagram becomes

T
P

✏✏

�f⇤
// T

P

✏✏

D⇤

⇡P

✏✏

�f⇤
//

!f

""

D⇤

⇡P

✏✏

W
f

Y

||

X

""

M
P

M
P

.

where the vertical arrows are covering maps. Since � is f⇤-invariant, the
induced map �

f⇤ extends over the origin, yielding an analytic map

�
f⇤ : (D, 0)! (D, 0).
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For convenience of notation, we denote by 0 the corresponding end of M
P

and of W
f

. We obtain a commutative diagram of analytic maps

(D, 0)

⇡P

✏✏

�f⇤
//

!f

((

(D, 0)

⇡P

✏✏

(W
f

[ {0}, 0)
Y

vv

X

((

(M
P

[ {0}, 0) (M
P

[ {0}, 0).

Since f has hyperbolic orbifold, �
f⇤ 62 Aut(D). By the Schwarz Lemma,

its derivative at the origin therefore satisfies |(�
f⇤)
0(0)| < 1. Taking inverse

branches near the origin, we have

(X � Y �1)0(0) = (⇡
P

� �
f⇤ � ⇡�1

P

)0(0) = �0
f⇤(0)

and so the pullback correspondence X � Y �1 has an attracting fixed point
in the boundary of moduli space.

In the remaining paragraphs, we prove that �0
f⇤
(0) 6= 0, and that (5))

(3).
We first discuss some specializations of the results in the “Fivefold Way”

Theorem 2.1 to the case #P = 4; cf. [Lod]. We may identify P = P
f

=
{0, 1,1,m~}, where m~ 2 X � Y �1(m~) (since f is rational). Recall that
there is a natural identification G

P

$ ⇡
1

(M
P

,m~) such that �
f

: G
P

99K
G

P

coincides with the virtual endomorphismX⇤�Y ⇤ of ⇡1(MP

,m~) induced
by the correspondence X � Y �1 : (M

P

,m~) ◆ (M
P

,m~). Under this
identification, a simple oriented loop �

loop

based at m~ in M
P

which is
peripheral and which encloses 0 on its left-hand side corresponds to the
right Dehn twist T about the right-hand boundary component �

curve

of a
regular neighborhood of �

loop

in P1 \ {0, 1,1,m~}. Denote by � the group
element of ⇡

1

(M,m~) corresponding to g. We see that

�
g�f (T

k) = T k () �
f

((T k)g) = (T k)g () (X⇤�Y ⇤)(�·�k
loop

·��1) = �k
loop

where · denotes concatenation of paths, ��1 is the path � traversed in the
opposite direction, and in the right-hand expression the path � is traversed
first.

Now suppose (1) holds, so that (X⇤ � Y ⇤)(� · �k
loop

· ��1) = �k
loop

. The

assumption that � · �k
loop

·��1 is in the domain of (Y ⇤) implies that the k-th
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power of a tiny peripheral simple closed curve surrounding 0 2 M
P

[ {0}
lifts under Y to a tiny simple closed curve surrounding 0 2W

f

[ {0}. Since
(X⇤ � Y ⇤)(� · �k

loop

· ��1) = �k
loop

, the tiny curve surrounding 0 2 W
f

[ {0},
obtained by lifting, maps by X to the k-th power of a simple closed curve
surrounding 0 2M

P

[ {0}. This shows that the local degree of the branch
of X �Y �1 at 0 is 1 and, hence, the derivative at this point does not vanish.
This finishes the proof of (1)) (5).

The proof of (5) ) (3) proceeds similarly. If (5) holds, then the local
degrees of X and Y at 0 are the same, say k. Thus under the correspondence
a k-th power of a tiny simple peripheral curve about 0 lifts under Y and
projects under X to a k-th power of a tiny simple peripheral curve about
0. Since free homotopy classes of curves correspond to conjugacy classes of
loops based at m~, we conclude that (X⇤�Y ⇤)(�·�k

loop

·��1) = �k
loop

for some
loop �

loop

surrounding 0 and some loop � based at m~. Thus (3) holds, and
the proof is complete. ⇤

9.2 Dynamical consequences

Theorem 9.2 Under the hypotheses and notation of Theorem 9.1, assume
further that the map X of the correspondence on moduli space is injective, so
that an inverse of the pullback map descends and extends to a holomorphic
self-map3 Y �X�1 : P1 ! P1. Then the following further properties hold.

I. For any Thurston map F : (S2, P )! (S2, P ) which is (P, P )-Hurwitz
equivalent to f , the associated virtual endomorphism �

F

on G
P

is sur-
jective.

II. The end 0 is a repelling fixed point of Y �X�1.

III. Conditions (1) and (3) hold with k = 1.

IV. The univalent pullback relation on curves induced by the rational map
f has arbitrarily long nontrivial orbits (necessarily comprised of dis-
tinct curves), whose elements are all homologous (and hence di↵er by
elements of G

P

) .

V. The collection of obstructed Thurston maps Tn�f⇤, n 2 Z, are pairwise
combinatorially inequivalent.

VI. For any � > 0 and any sequence "
1

> "
2

> . . . "
k

there exists ⌧
0

2 T
P

and iterates n
1

> m
1

> n
2

> m
2

> . . . > n
k

> m
k

such that (i)

3
A so-called “g-map”, in the language of the first author.
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⇡
P

(⌧
0

) = m~; (ii) for each i = 1, . . . , k,

`(⌧
ni) < "

i

, d(⇡
P

(⌧
mi),m~) < �

where `(⌧) is the length of the systole on the underlying Riemann sur-
face.

Proof:

I. Di↵erent choices of representatives in the (P, P )-Hurwitz class of f
lead to virtual endomorphisms which di↵er by inner automorphisms.
So (just to fix ideas) it su�ces to verify this for the case of the rational
map f , corresponding to the fixed point m~. But this is clear, since
the nonconstant inclusion X : W

f

,!M
P

of finitely punctured spheres
must induce a surjection on fundamental groups.

II. This follows immediately from condition (5) in Theorem 9.1.

III. The previous conclusion implies that Y is locally injective near 0, and
hence that a simple peripheral loop �

loop

in M
P

based at m~ surround-
ing the end 0 in M

P

on its left-hand side lifts under Y to a simple loop
in W

f

based at w~ surrounding the end 0 in W
f

. This implies that
the corresponding twist T lies in H

f

. Since X is injective and the end
0 in W

f

maps to the end 0 in M
P

, we have that �
f

(T ) is conjugate to
T via some g 2 G

P

, i.e. �
f

(T g) = T and so condition (3) of Theorem
9.1 holds with k = 1. The proof of the equivalence of (1) and (3) in
Theorem 9.1 shows that the integers k in (1) and in (3) are the same.

IV. The argument given below is due to L. Bartholdi. By the previous
assertion, we may suppose condition (3) in Theorem 9.1 holds with
k = 1, and let f, g, T,�

f

be as in the statement there. Recall that
G

P

is free, generated by any pair of Dehn twists whose core curves
intersect minimally. Choose such a twist S 2 G

P

so that G
P

= hS, T i.
Since �

f

is surjective, there exists T̃ := T g and S̃ 2 G such that
�
f

(T̃ ) = T,�
f

(S̃) = S. Since G
P

is free on the generators S, T , the
homomorphism defined by sending T 7! T̃ , S 7! S̃ is an injection
� : G

P

! G
P

giving a section of �
f

, i.e. �
f

� � = id
GP . For n 2 N let

w
n

= g · �(g) · . . . · ��(n�1)(g).

Then an easy induction argument shows

�
f

(Twn) = Twn�1 .

44



The elements Twn are primitive Dehn twists whose core curve C
n

lifts
under f to the core curve C

n�1 of Twn�1 . These curves must be pairwise
distinct (else f is obstructed) and pairwise homologous (since the twists
are pairwise conjugate). This proves (4).

V. We again suppose condition (3) in Theorem 9.1 holds with k = 1, and
let f, g, T,�

f

be as in the statement there.

Lemma 9.3 Suppose F is a Thurston map with hyperbolic orbifold
for which #P

F

= 4. If F is obstructed, it has a unique Thurston
obstruction � = {�}. If h � F = F � h up to homotopy for some
h 2 G

P

, then h(�) = �, preserving orientation.

Cf. [BN1, Prop. 6.10].

Proof: By the main result of [Pil1], there is an obstruction (called
the canonical obstruction of F ) that is disjoint from all other obstruc-
tions. But on a sphere with four marked points, any two distinct
essential nonperipheral curves intersect. A homeomorphism represent-
ing a pure mapping class that yields an automorphism of F up to
homotopy must send an obstruction to an obstruction, hence must fix
the unique obstruction, preserving orientation since (by pureness) each
disk it bounds must be mapped to itself. ⇤
Suppose n

1

, n
2

2 Z and Tn1�f⇤ is combinatorially equivalent to Tn2�f⇤
via g 2 G

P

, so that up to homotopy relative to P ,

g � Tn1 � f⇤ � g�1 = Tn2 � f⇤.

By construction, both Tn1 �f⇤ and Tn2 �f⇤ have a common obstruction,
� = {�}, which is the core curve of the twist, T . By Lemma 9.3,
g(�) = �, preserving orientation. Hence g = T l for some l 2 Z and

g � Tn1 � f⇤ � g�1 = T l � Tn1 � f⇤ � T�l = Tn2 � f⇤.

Since f⇤ commutes with T up to homotopy, we have

f⇤ � Tn1 = f⇤ � Tn2

and so n
1

= n
2

since the right action of G
P

on the set F of homotopy
classes of Thurston maps with postcritical set P is free ([Pil3, §3],
[Kam, Prop. 3.1]).

45



VI. Since Y is a covering map, the critical values of the map Y �X�1 lie
in the set of ends of M

P

. Since these ends must map to themselves,
we conclude that Y �X�1 is analytically conjugate to a subhyperbolic
rational map R with a repelling fixed point at the origin, 0; the point
m~ is also fixed and repelling. In particular, Y � X�1 is uniformly
expanding near its Julia set with respect to a complete orbifold length
metric.

Let V ✓ M
P

[ {0} be a simply-connected domain containing 0 and
m~. The expanding property implies that for r 2 N large enough,
there exist domains U

0

, U
m! compactly contained in V , and univalent

inverse branches of Rr giving analytic isomorphisms R�r
0

: V ! U
0

and
R�r

m!
: V ! U

m! that fix 0 and m~, respectively. The maps R�r
0

, R�r
m!

are branches of the rth iterate of X �Y �1; together with their domains,
we have a so-called iterated function system. By contraction, the fixed
points of these branches are unique.

In M
P

, the loci defined by the conditions `(⌧) < " and d(⇡
P

(⌧),m~) <
� contain neighborhoods of the end 0 and the basepoint m~ of M

P

.
Define a sequence of points µ

n

2 M
P

comprising an orbit under the
pullback correspondence as follows. Set µ

0

:= m~. Apply the branch
R�r

0

: V ! U
0

enough times so that the length of the systole becomes
less than "

1

. Now apply the branch R�r
m!

enough times so that the
resulting point lies in the neighborhood d(⇡

P

(⌧),m~) < �. Now again
apply the branch R�r

0

: V ! U
0

enough times so that the length of the
systole becomes less than "

2

, etc. In this fashion, we obtain a finite orbit
segment of the pullback correspondence in M

P

. By conclusion (I), the
virtual endomorphism �

f

on G
P

is surjective. Hence Proposition 8.1
applies. We conclude that the orbit in M

P

can be lifted to an orbit in
T
P

having the desired properties.

⇤
Example. Consider Example 2 from Section 7. As shown in [BN1, § 6.2],
the dendrite Julia set polynomial f(z) = z2 + i satisfies the hypothesis
of the previous theorem. Therefore all conclusions of the theorem follow,
moreover, the following is true. Recall that Y �X�1 is conjugate to the ra-
tional map g(w) = (1� 2/w)2, the Julia set of which is the entire Riemann
sphere. Therefore, the forward orbit of any point in M

P

under the pull-
back correspondence, which is the same as the backward orbit of Y �X�1,
is dense in M

P

. In other words, for any point ⌧ 2 T
P

, the projection
⇡
P

(
S

g2GP ,n2N{�nf (g · ⌧)}) of the union of �
f

-orbits of all points in T
P

, that
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are in the same fiber as ⌧ over M
P

, is dense in M
P

. This situation is some-
what surprising as we know that every particular orbit �n

f

(g · ⌧) converges
geometrically fast to the unique attracting fixed point ⌧~, which corresponds
to f . For this example, the statement of the conclusion (VI) in the last the-
orem can be further strengthened. We can find a point ⌧

0

in the fiber of
m~ that follows an arbitrary itinerary in the moduli space with an arbitrary
precision before converging to the fixed point.

References

[BN1] Laurent Bartholdi and Volodymyr Nekrashevych. Thurston equiv-
alence of topological polynomials. Acta Math. 197(2006), 1–51.

[BN2] Laurent Bartholdi and Volodymyr Nekrashevych. Iterated Mon-
odromy Groups of Quadratic Polynomials, I. Groups, Geometry,
and Dynamics 2(2008) 309–336.

[BM] Robert W. Bell and Dan Margalit. Injections of Artin groups.
Comment. Math. Helv. 82(2007), 725–751.

[BLM] Joan S. Birman, Alex Lubotzky, and John McCarthy. Abelian and
solvable subgroups of the mapping class groups. Duke Math. J.
50(1983), 1107–1120.

[BEKP] Xavier Bu↵, Adam Epstein, Sarah Koch, and Kevin Pilgrim. On
Thurston’s pullback map. In Complex dynamics, pages 561–583. A
K Peters, Wellesley, MA, 2009.

[CFP] J. W. Cannon, W. J. Floyd, and W. R. Parry. Finite subdivision
rules. Conform. Geom. Dyn. 5(2001), 153–196 (electronic).

[CFPP] J. W. Cannon, W. J. Floyd, W. R. Parry, and K. M. Pilgrim.
Subdivision rules and virtual endomorphisms. Geom. Dedicata
141(2009), 181–195.

[DH] A. Douady and John Hubbard. A Proof of Thurston’s Topological
Characterization of Rational Functions. Acta. Math. 171(1993),
263–297.

[FLP] A. Fathi, F. Laudenbach, and V Poénaru. Thurston’s work on sur-
faces. Translated by Djun Kim and Dan Margalit, to be published
by Princeton University Press.

47
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