Homework 28: Differential equations

This homework is due on Monday, April 16, respectively on Tuesday, April 17, 2018.

1 a) Find the general solution to $f' = 30 \log(t) + 20e^{-5t}$. b) Find the general solution to $f'' = 1/\sqrt{1+t^2}$.

Solution:

a) We just integrate

$$f(t) = \int 30 \log(t) + 20e^{-5t} dt = 30(t \log(t) - t) - 20e^{-5t}/5 + C .$$

b) We integrate to get $f' = \arcsin(t) + c_1$, then integrate again to get $\sqrt{1-t^2} + t \arcsin(t) + c_1 t + c_2$.

2 a) Find the solution to $f' - 5f = e^{7t}$ by inverting the operator D - 5.

b) Find the solution again, this time with the cookbook: find first the solution of f' - 5f = 0, then make a guess for a special solution.

Solution:

a) We have $\lambda = 5$, so

$$f = Ce^{5t} + e^{5t} \int_0^t e^{-5s} e^{7s} ds = Ce^{5t} + e^{7t}/2$$

b) The homogeneous solution is $f = Ce^{5t}$. For the special solution, try Ae^{7t} . Plugging it into the equation gives A = 1/2. Thus the general solutions are $\frac{1}{2}e^{7t} + Ce^{5t}$.

- 3 a) Find the general solution of $f'' + 225f = e^{44t} + t$.
 - b) Find the general solution of $f'' + 225f = \cos(15t)$.
 - c) Find the general solution of $f'' + 225f = \cos(10t)$.

d) Why does the solution in b) behave differently than the solution in c).

Solution:

The homogeneous equation f'' + 225f = 0 in all cases can be solved by $(D^2 + 225)f = (D + 15i)(D - 15i)f = 0$. Thus the solutions are $c_1e^{15it} + c_2e^{-15it}$, or equivalently $C_1\cos(15t) + C_2\sin(15t)$ with some other constants C_1, C_2 .

a) To find a special solution, we try $Ae^{44t} + Bt + C$. The solution is $C_1 \cos(15t) + C_2 \sin(15t) + e^{44t}/2161 + t/225$.

b) To find a special solution, try $A\cos(15t)$. Does not work. We have to put a t and need to try $At\cos(15t) + Bt\sin(15t)$. The solution is $C_1\cos(15t) + C_2\sin(15t) + t\sin(15t)/225$.

c) To find a special solution, try $A\cos(10t)$ and get A. $C_1\cos(15t) + C_2\sin(15t) + \cos(10t)/125$.

4 a) Find the general solution to f'' - 10f' + 25f = 500t. b) Find the general solution to $f'' - 10f' + 25f = 4e^{5t}$

Solution:

The homogeneous equation f'' - 10f' + 25f = 0 can be solved by $(D^2 - 10D + 25)f = (D - 5)^2f = 0$. Because D - 5 appears twice, the solutions are $C_1te^{5t} + C_2e^{5t}$.

a) Plugging in Ax + B gives the special solution 8 + 20x.

b) We can not use e^{5t} nor te^{5t} . Plugging in At^2e^{5t} gives the special solution $2e^{5t}t^2$. The general solution is $C_1te^{5t} + C_2e^{5t} + 2e^{5t}t^2$.

5 a) Find the general solution to $f''' - 2f'' - f' + 2f = \sin(3t)$. b) Find the general solution to $f''' - 2f'' - f' + 2f = e^t + e^{-t}$.

Solution:

The homogeneous equation f''' - 2f'' - f' + 2f = 0 can be solved by $(D^3 - 2D^2 - D + 2)f = (D - 2)(D - 1)(D + 1)f = 0$. The solutions are $C_1e^{2t} + C_2e^t + C_3e^{-t}$. a) We have $(D^3 - 2D^2 - D + 2)(\sin(3t)) = 20\sin(3t) - 30\cos(3t)$, and $(D^3 - 2D^2 - D + 2)(\cos(3t)) = 30\sin(3t) + 20\cos(3t)$. A solution can then be $\frac{2}{130}\sin(3t) + \frac{3}{130}\cos(3t)$, and the general solution is $\frac{1}{65}\sin(3t) + \frac{3}{130}\cos(3t) + C_1e^{2t} + C_2e^t + C_3e^{-t}$. b) Because e^t and e^{-t} already appear as solutions to the homogeneous equation, our first guesses are te^t and te^{-t} . We have $(D^3 - 2D^2 - D + 2)(te^t) = -2e^t$ and $(D^3 - 2D^2 - D + 2)(te^{-t}) =$ $6e^{-t}$. Thus $-\frac{1}{2}te^t + \frac{1}{6}te^{-t}$ is one solution and the general solution is $-\frac{1}{2}te^t + \frac{1}{6}te^{-t} + C_2e^t + C_3e^{-t}$.

Differential equations

To solve a differential equation (D-3)f = 0 we write it as f' = 3f and know that $f = Ce^{3t}$ is a solution, where C is a constant. In this section, we use the variable t and write f(t) as f(t) often represents a quantity which changes in time. We write f'(t) = d/dtf(t) or Df to simplify writing. To solve a differential equation like $(D^2 + 2D - 15)f = 0$, we factor the polynomial and write (D-3)(D+5)f = 0 which has solutions satisfying (D+5)f = 0 and (D-3)f = 0. The linear space of solutions to (D-3)(D+5)f = 0 is therefore given by functions $f(t) = Ae^{-5t} + Be^{3t}$, where A, B are constants. To find the solution to the inhomogeneous equation like $(D-3)f = e^t$, we can invert the operator $D - \lambda = D - 3$. Its inverse is explicitly given by

$$f(t) = Ce^{\lambda t} + e^{\lambda t} \int_0^t e^{-\lambda s} g(s) \, ds \; .$$

In the case $g(t) = e^t$, this gives $f(t) = Ce^{3t} + e^t/2$. To solve $(D-3)(D+5)f = e^t$, we have now to solve $(D+5)f = Ce^{3t} + e^t/2$ and therefore invert D+5 with the above formula. We get the general solution $f(t) = C_1e^{3t} + C_2e^{-5t} + (-1/12)e^t$. This general operator method works universally, but it can be a bit tedious. In a handout, we show how to get a special solution using a "cookbook recipe". This is how engineers solve the systems.