Lecture 7: Numerical Integration I, 9/20/2021

Numerical Methods

7.1. Numerical methods were used long before computers have entered our lives. The goal is to get solutions to integration problems even if an analytic solution is missing. Early motivations were astronomy or the task to compute volumes of bodies. The Simpson method mentioned here was already used by Johannes Kepler. His Fassregel allowed to compute the volume of wine barrel as the height h times an average of the cross sections A, B at both ends and the center C. Kepler got $h(A + 4C + B)/6$, which is the Simpson method. He noticed in his work Nova Stereometria doliorum vinariorum that the formula gives even exact results for pyramids, sphere, elliptical paraboloids or hyperboloids.

Left and Right Riemann Sum

7.2. The integral $\int_{a}^{b} f(x) \, dx$ can be evaluated numerically by Riemann sums:

Definition: For a fixed division x_0, \ldots, x_n, the sum $L = \sum_{k=0}^{n-1} f(x_k)\Delta x$ is called the **left Riemann sum** and $R = \sum_{k=1}^{n} f(x_k)\Delta x$ is called the **right Riemann sum**.

Figure: Left and right Riemann sum illustration.

Trapezoid Rule

Definition: The average $T = (L + R)/2$ between the left and right hand Riemann sum is called the **Trapezoid rule**. Geometrically, it sums up areas of trapezoids instead of rectangles.
Calculus and Differential equations

The trapezoid rule does not change things much as it sums up almost the same sum. For the interval \([0, 1]\) for example, with \(x_k = k/n\) we have

\[
R - L = \frac{1}{n} [f(1) - f(0)] .
\]

Figure: Trapezoid rule

SIMPSON RULE

Definition: The Simpson rule computes the sum

\[
S_n = \frac{1}{6} \sum_{k=1}^{n} [f(x_k) + 4f(y_k) + f(x_{k+1})] \Delta x ,
\]

where \(y_k = (x_k + x_{k+1})/2\) is the midpoint between \(x_k\) and \(x_{k+1}\).

7.3. The Simpson rule gives the actual integral for quadratic functions: for \(f(x) = ax^2 + bx + c\), the formula

\[
\frac{1}{v-u} \int_{u}^{v} f(x) \, dx = [f(u) + 4f((u + v)/2) + f(v)]/6
\]

holds exactly.

7.4. With a bit more calculus one can show that for smooth functions the Simpson rule is \(n^{-4}\) close to the actual integral. For 100 division points, this can give accuracy to \(10^{-8}\) already.

MONTE CARLO

7.5. If we choose \(n\) random points \(x_k\) in \([a, b]\) and look at the sum divided by \(n\) we get the Monte Carlo method.

Definition: The Monte Carlo integral is the limit \(S_n\) to infinity

\[
S_n = \frac{(b-a)^2}{n} \sum_{k=1}^{n} f(x_k) ,
\]

where \(x_k\) are \(n\) random points in \([a, b]\).

ERROR

7.6. We will see in the lecture and worksheet that the error for left or right Riemann sums is \(M(b-a)^2/(2n)\), where \(M\) is a bound for the maximal absolute value of the derivative of \(f\) in \((a, b)\).
On the radar

- HW 6: Integration problems is due Wednesday.

Oliver Knill, knill@math.harvard.edu, Math 1b, Harvard College, Fall 2021