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Here are some annotations about the lecture.

The abstract

”The mathematics of low dimensional chaos the-
ory is now over 100 years old. The subject got
a popularity boost about 30 years ago when per-
sonal computers became widely available. While
the field has lost some of its fancy, it has inspired
and influenced other disciplines both in mathemat-
ics and beyond. This took place not only because
of the beautiful results which were achieved but
also because it became a prototype where a fresh
point of view invigorated a mathematical field, ex-
cited the general public and inspired other scien-
tific areas. In this highly illustrated and accessible
talk, we take a pedestrian walk through some ex-
amples and see how the subject has inspired other
disciplines. We will see examples from mathemat-
ical fields like geometry or number theory, wave
motion physics, celestial dynamics in astronomy
and mathematical areas like population dynam-
ics in sociology, financial predictions in economics,
music, visual art or film. The story is an example
on how crossing scientific boundaries has boosted
the creativity on both sides.”

Geometry: About chaos

The theory of dynamical systems traditionally aims to predict the outcome of future events. As
Henry Poincaré already realized early in the 20’th century, this goal is often futile, even for low
dimensional systems: there are systems for which the computation to a given precision needs
an effort which grows exponentially with time. He made his case for the three body problem
already. Many definitions of chaos are known. For Hamiltonian systems, chaos can be defined
as the positivity of Lyapunov exponents on a set of positive measure or the positivity of metric
entropy. In a Birmingham conference, I had suggested a spectral definition for interpolating
between ”integrable” and chaotic. Integrable means point spectrum, chaotic means absolutely
continuous spectrum. The crux is to investigate this for all invariant measures.

The lecture illustrates chaos with an experiment, which I first showed with Mathematica in 1994
in a class at Caltech: the two maps T (x) = 4x(1−x) and S(x) = 4x−4x2 do not produce the same
orbit, even when done with a computer algebra system to high accuracy. One can rephrase this
as the fact that computers do not obey the associativity law. The reason are rounding errors,
which happen in a different way. These rounding errors propagate in time and become of order
1 afte n steps where eλn10−17 = 1 which means we expect them after n = log(1017)/ log(2) = 57
steps. This is pretty close to what we see in the experiments.

Chaos: low dimensional maps

The fact that it is difficult to understand even the simplest two dimensional maps fascinated
me early on and I worked myself for more than a decade on the problem to show that the map
T (x, y) = (2x+ c sin(x)− y, x) is chaotic in the sense that DT n(x, y) grows exponentially for a set
of positive measure. The problem is still open. I myself have tried geometric, variational methods,
complex analysis and spectral methods to solve this. I produced the phase space pictures with a C
program ”chirikov” I had written 10 years ago. It is pretty fast but still it takes a while to compute
a reasonable picture of the phase space because the return time to a set increases like 1/area. The
movie about the Henon map with the deformed parameter was done with Mathematica.

Geometry: The pedal map

The pedal map is a dynamical system on the set of triangles. A triangle is maped into its pedal
triangle. The system was introduced in 1988 by Kingston and Synge [?]. Peter Lax noticed in
1990 that this map is chaotic [4]. The shape of a triangle is determined by its three angles α, β, γ.
It can be represented by a point in an equiliateral triangle, the barycentric coordinates of which
are the angles. This map is conjugated to a Bernoulli shift. It is completely chaotic and of the
same type then the logistic map with c = 4.

Sociology: Evolution of evil

Can moral principles be explained dynamically? Is there an evolutionary process in which certain
moral standards emerge naturally? A primitive model to investigate this question is to take a
group of ”people” and let them interact. Divide them up into ”good” people and ”bad” people.
Good people cooperate and trade fairly leaving both moderately happy. Bad people cheat and
take advantage of good people. What will win? If people interact with neighbors and adjust their
moral principles to the neighbor who does best in the current situation. The cellular automaton
shown in the lecture is the May-Nowak automaton. I programmed this in Mathematica using the
same colors as used in Nowak’s book [6]. Mathematica is an ideal tool to investigate such things.
The actual computation of the movies took a few hours during the night. It was more time than
the actual programming.

Mechanics: the falling stick



I had implemented this system in javascript and in flash a few years ago as a web entertainment.
The simulated had been done there as a two particle system, which are glued together with a
well potential which keeps the particles at a constant distance. The particles bounce at the floor
as usual. Using finite particle dynamics works pretty well for simulations with dissipation. The
advantage is that one has a very simple system. The Mathematica code for the simulation for
this talk took me several days of programming. There is no momentum or angular momentum
conservation which helps to evolve the system. There is energy conservation however. What
happens at the impact? The trick to evolve the system is to use different pictures. There is the
particle picture where two particles have momentum and velocity. Then there is the rigid body
picture, where the situation is described by the height of the center of mass and the angle. The
code uses both systems. In the free fall case, without interaction, the rigid body picture is used.
For the interaction, the particle system is used. One of the difficulties is to detect when one of
the particles hits the ground. One has to find accurate roots of transcendental functions, which is
geometrically the intersection of an accelerated epicycle with a line. This system is very natural
because if we throw a coin, we use it as a random number generator. A higher dimensional version
is throwing a dice. In the later case, we have a free falling rigid body which reflects at a plane.

Crystallography: nature of crystals

The word crystal is traditionally used for periodic point arrangements, often lattices. Around
1994, crystals with icosahedral symmetry were found and an entire new branch of solid state
physics started. These crystals were no more periodic, they were named quasicrystals [8]. A
mathematical theorem assures tells a fife fold rotational symmetry are impossible for periodic
crystals in the plane or in space: We have periodic crystals, quasicrystals for which one has no
periodicity but points spectrum turbulent crystals, where there is no point spectrum and finally
chaotic crystal, crystals with absolutely continuous spectrum. Again, also here, for systems with
higher dimensional time, the spectral point of view is perfect. I had been interested in crystals
because they are examples of dynamical systems in higher dimensional time and because I had
used these systems to look for dense sphere packings [3].

Number theory: The Catalan system

These slides were taken from a talk on perfect numbers given at the Math circle. Define T (x) =
σ(x)−x, the sum of all proper divisors of x. Because we have T (1) = 0 and σ(0) is not defined, we
could define T (0) = 0 and add so an other fixed point. Because T−1(1) is a prime, the entire set of
prime numbers is ending up in 0. Positive fixed points x of T are perfect numbers. Amicable

numbers are periodic orbits of period 2 of T . Periodic cycles of T are called aliquot cycles.
Periodic cycles of period larger than 2 are called sociable numbers. Periodic cycles of length
4, 5, 6, 8, 9 and 28 are known. It is conjectured that every orbit of the dynamical system T is
bounded. Eugene Catalan first studied this system the year 1888. Experimentally, one sees
that about 1 percent of all numbers, for which no end is known. I used this system for a math
circle talk. I think, it was the first time that the system has been illustrated on the Ulam spiral.

Complex Dynamics: Mandelbrot set

Even so this is a theme beaten to death, it is still fascinating. Also after having seen it for the
1000’th time. Producing the movie of the Mandelbrot and Newton method zooms were done with
the help of the program ”xaos”. This program allows to make movies while you zoom by hand
but unfortunately, there are bugs and the movies shake and rattle when you watch them. But
the program uses an external scripting language and I could use Mathematica to write the script
for xaos and then ran it. Xaos is a fantastic Mandelbrot zoomer. I know it since more than 10
years and even on my first PC, a pentium 2, it rocked. The author of the program wrote also
an addictive game ”xkoules”, which I still play. This guy knows how to program! I wish more in
linux would be written like this. There is a tendency to use scripting languages like Python for
much of the unix administration system.

Astronomy: The Sitnikov system

This system is covered in Moser’s book ”stable and random motion” [5] I like the system because
it is possible to demonstrate here without too much technicalities that a three body system is
chaotic. It is a restricted three body problem in the sense that the third body is assumed not to
influence the two suns. I do not even know whether the two suns stay bounded if one adds some
mass to the third body. In my lecture notes on n-body problems in 2005, you find more about it.

Economics: market prediction

The movie ”The Bank” suggests that dynamical systems theory and complex dynamics in par-
ticular allows to predict the stock market. This is of course rubbish but there are some serious
approaches to this. The ”fractal market analysis” approach [7] replaces the stochastic differential
equations approaches and suggests to model the financial data with fractals. Terms from Gaussian
approaches like standard deviation are replaced by fractal dimensions. The need for this could be
that the standard deviations are infinite. The risks are larger.

Art: generating art

Using mathematics to motivate or generate art is old. Mathematics appears in tiles like in Eschers
work. Fractals are an other source. One of the most amazing project is ”Electric Sheep”, a
collaborative art project by thousands of people all over the world. to collectively share the work
of creating morphing abstract animations known as ”sheep”. This collective ”android dream” is
an homage to Philip K. Dick’s novel ”Do Androids Dream of Electric Sheep?”

Music: generating random music

In college, I built from scratch a sequencer for my Atari computer attached by Midi to my electronic
piano. The sequencer was programmed in Pascal. Despite the fact that this machine was much
less powerful than PC’s today, it was able to analyze what I play and in real time produce random



Markovian music. Using random number generators and more generally Markov chains to generate
music is old. Randomness is a source for creativity. The theme has been explored by many artists.
It appears for example in the book [2]. An example of an article about the dynamical systems
perspective in music is [1].

Choreography: generating motion

The motion of the legs of the spider are indeed computed by the Lorentz system. The evolution
of the 8 systems of differential equations was done entirely with Povray. Evenso Povray is a ray
tracer, it is a Turing complete programming language. If Povray computes a movie, it forgets
about internal parameters, the only thing which changes from frame to frame is an internal clock
variable. To integrate differential equations, one has after every frame computation store the most
recent variables in an external file.

Credit

• CAS: mathematica

• Raytracing: povray

• Sider uses Povray code by Rafael Ghiglia, 2001

• Fractal zoomer with additional scripts

• Choreography sequence: bradley and Stuart (Colorado)

• Trading movie sequence: Movie: Trading Placess

• Chaos sequence: Movie: Jurassic Park

• Movie scene from the movie ”the bank”

• Crysis game scene demo, viewable on YouTube

• Movie scene from ”Grease” with John Travolta

• Primes on Ulam spiral: movie Code conspiracy

• Cellular automaton accord: wolfram research

• Black hole merger: NASA

• Poem by William Shakespeare

• Poem generator A.D.A.M. by Nandy Millar

• Fractal paintings: Kelly Dietrich

• 3 body problem picture by Mathew Holman and Joe Christy in forword by D. Goroff to
Poincare, Nouvelle Methods
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