Where Chaos theory meets other disciplines

Oliver Knill
February 7, 2008
Part I: Examples of dynamical systems which exhibit chaos

- the Lorentz system
- The logistic map
- The ABC flow
- The Standard map
- The quadratic map
- The Newton method
- Billiard maps
In a second part, we look closer at connections to other fields:

- probability theory
- geometry
- astronomy
- sociology
- disaster prevention
- music composition
- poetry
- number theory
- chemistry
- mechanics
- crystallography
- cryptology
- choreography
differential equations in the plane do not exhibit chaos

$x' = y(r^2 - 1)$
$y' = -x(r^2 - 1)$

limit cycles and equilibria
\[
\begin{align*}
\dot{x} &= 10(y-x) \\
\dot{y} &= -xz + 28x - y \\
\dot{z} &= xy - z \frac{8}{3}
\end{align*}
\]

Lorenz Attractor
1963, Edward Lorenz
(studied math at Harvard)
The Lorentz flow is dissipative, the attractor has zero volume. The attractor is a prototype of a “strange attractor”.

Let's look at an example of a volume preserving dynamics, which also exhibits “random motion”.
\[
x = a \sin z + c \cos y \\
y = b \sin x + a \cos z \\
z = c \sin y + b \cos x
\]

\[a=13, b=4, c=7\]
\[x = a \sin z + c \cos y \]

\[y = b \sin x + a \cos z \]

\[z = c \sin y + b \cos x \]

\[a = 13, b = 4, c = 7 \]
from differential equations to maps.

The return map of the ABC flow is an area preserving map on the two dimensional torus.
\[x = a \sin z + c \cos y \]

\[y = b \sin x + a \cos z \]

\[z = c \sin y + b \cos x \]

\[a = 13, b = 4, c = 7 \]

Poincare return map
This motivates the study of area preserving maps in general. The simplest examples are maps of the form

\[
T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f(x) - y \\ x \end{bmatrix}
\]

\[
x_{n+1} + x_{n-1} = f(x_n)
\]

- \(f(x)\) polynomial: Henon type maps
- \(f(x)\) trigonometric polynomial: Standard type maps

Michel Henon

Chirikov, Taylor, Frenkel Kontorova
$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c x - x^3 - y \\ x \end{bmatrix}$

$1.9 < c < 2.9$

Henon map
Chirikov type maps.
\[T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c \sin(x) + 2x - y \\ x \end{bmatrix} \]

\[0 < c < 5 \]

Chirikov
One can not talk about maps without mentioning complex maps like $T(z) = z^2 + c$, where $c = u + i \ v$ is a complex parameter. One can rewrite this without complex numbers as

$$T \left[\begin{bmatrix} x \\ y \end{bmatrix} \right] = \left[\begin{bmatrix} x^2 - y^2 + u \\ 2 \times y + v \end{bmatrix} \right]$$

One can look for given (u,v), how fast $(0,0), T(0,0)$, $T(T(0,0))$ escapes to infinity. If the orbit stays bounded, one gets the Mandelbrot set.

(Brooks, Matelski, Mandelbrot, Douady Hubbard)
$T(z) = z^2 + c$

color point c

according on how fast orbit escapes

Mandelbrot parameter set. 1978
(Brooks Matelski, Hubbard Mandelbrot, 1980)
Historically, complex dynamics has been studied much earlier by French mathematicians. Systematically by Julia and Fatou. A particular system, the Newton method has been of interest already to Cayley in the 18’th century.
$$T(z) = z - \frac{f(z)}{f'(z)} \quad \text{for } f(z) = \frac{z^4 - 1}{z^3}$$

on the real axes

in the complex plane
Newton method for quartic polynomial, Cayley 1870
Billiards

historically one of the earliest encounters with Chaos are billiards.

Boltzmann (1844-1906) hard sphere gas
Artin (1898-1962) in 1924, billiard in hyperbolic plane
Hadamard (1865-1963)-Hedlund-Hopf, geodesic flow
Birkhoff (1884-1944) in 1927, model for 3-body problem
A brother of billiards is dual billiards.
every orbit bounded?
What is chaos?
SAN FRANCISCO, California (AP) — Police radio transcripts from the night of a deadly tiger attack revealed a chaotic scene at the San Francisco Zoo, as zookeepers struggled to sedate the animal and medics refused to enter until they knew they would be safe.

Zoo employees also initially questioned whether early reports of the December 25 attack were coming from a mentally unstable person, according to an 18-page log of communications from police dispatchers to officers and emergency responders at the scene.

Police spokesman Sgt. Neville Gittens declined to comment beyond the transcript released late Friday. Authorities have never indicated their response was hindered by any delays, and the police chief has praised officers for their quick action and collaborative work with the zoo staff.

Zoo officials on Saturday did not immediately return messages seeking comment.

The attacks killed 17-year-old Carlos Sousa Jr., whose throat was slashed while he tried to scare away the tiger. Two of Sousa's friends suffered bite and claw injuries. Paul Dhaliwal, 19, and Kulbir Dhaliwal, 23, were released from the hospital Saturday.

The first report of an attack — a male bleeding from the head — came in at 5:08 p.m.
PAKISTAN IN CRISIS

Pakistan 'in grip of chaos and anarchy'

Hopes for Jan. 8 vote dim as electoral offices torched, opposition renews call for boycott

Dec 30, 2007 04:30 AM

BILL SCHILLER
ASIA BUREAU

ISLAMABAD – Pakistan slumped deeper into chaos and recrimination yesterday as the death toll climbed and the prospects for a decisive Jan. 8 election in this blood-soaked country appeared to grow ever more remote.

Officials said at least 46 people have now died in riots, looting and shooting following the Thursday night assassination of charismatic opposition leader Benazir Bhutto.

Early today, two suspected suicide bombers prematurely detonated their bomb near the residence of a senior leader of the ruling party in Bahawalnagar in eastern Pakistan, police said. The men were not far from the residence of Ijazul Haq, a senior leader of the Pakistan Muslim League-Q party, when their bomb exploded and killed them, district police chief Zafar Abbas Rubbo told Associated Press.

Supporters of Benazir Bhutto's Pakistan People's Party light candles during a ceremony in Lahore, yesterday. Some 10,000 people chanted anti-government slogans while holding prayers for slain Pakistani opposition leader.

Email story
Print
Choose text size
Report typo or correction
Email the author
Kenya faces chaos after disputed Kibaki victory
By Barney Jopson in Nairobi
Published: December 30 2007 18:37 | Last updated: December 30 2007 18:37

Kenya was on the brink of chaos and its democratic credentials in tatters on Sunday night after Raila Odinga, the country’s main opposition leader, lost a hotly contested presidential election that both his party and independent observers said was not credible.

The east African country has been regarded as one of the continent’s most stable and open democracies, but its reputation crumbled over the weekend as the results of the poll were delayed, reports of irregularities multiplied, and violence flared.

The electoral commission said on Sunday that president Mwai Kibaki secured 46.7 per cent of the vote versus 44.3 per cent for Mr Odinga. Minutes later, as the president was sworn in for a second term in a hurried ceremony, riots broke out and killings were reported in Nairobi and other towns.

Earlier in the day Mr Odinga said: “Kenyans will not accept the results of a rigged election. No force will stop Kenyans attaining what they want. The river Nile is unstoppable. It must flow to the sea.” The government, which accused him of inciting violence, blocked the broadcast of an opposition press conference held after results were announced.

Koki Muli, head of the Institute of Education in Democracy, said: “This is the saddest day in the history of democracy in this country. It is a coup d’etat. The process does not have integrity and credibility. Do these people not care about legitimacy?”
Chaos (2008) - Video Release

Starring: Wesley Snipes, Ryan Phillippe, Jason Statham, Justine Waddell, Henry Czerny
Director: Tony Giglio
Studio: Lionsgate Home Entertainment
Rating: R
Genre: Action / Thriller
DVD Release Date: February 19, 2008

BUY THE POSTER

SYNOPSIS:
The film is described as a bank heist tale of a rookie and veteran cop, played by Phil, where the bank robber (Snipes) who knows too much about the inner workings of the police has a personal connection to one of the cops. – The Hollywood Reporter

PHOTOS:

THERE ARE NO PICTURES AVAILABLE FOR THIS MOVIE

TRAILERS & CLIPS:
Possibly the simplest demonstration of “chaos” is an experiment with interval maps.
• $T(x) = 4x (1-x)$
• $S(x) = 4x - 4x^2$

we start with the same point!
difference
The bifurcation diagram of the logistic map is shown. The logistic map is defined by the equation:

$$ T(x) = c \times x \times (1-x) $$
In the rest of the talk, we look at examples which lead to other fields.

- probability theory
- geometry
- astronomy
- sociology
- disaster prevention
- music composition
- poetry
- number theory
- chemistry
- mechanics
- crystallography
- cryptology
- choreography
probability: random walks

dependence and independence
planimetry: the pedal map

A dynamical system on the set of triangles

Kingston and Singe, analyzed by P.D Lax
the barycentric description of a triangle is a point inside an equilateral triangle.
map on the red triangle expands
map on the green triangle expands
map on the blue triangle expands
map on the orange middle triangle reflects and expands
symbolic dynamics
level 1
symbolic dynamics level 2.

encodes in which of the 4 triangles we are after 2 steps
symbolic dynamics level 3.

... every triangle is coded by which of the 4 original triangles it visits.
something unexplored?

Explore the map on triangles if one replaces orthogonal lines by angle bisectors.
astronomy: planetary motion

Source: NASA
Asteroid May Hit Mars in Next Month
By ALICIA CHANG – 1 day ago

LOS ANGELES (AP) — Mars could be in for an asteroid hit. A newly discovered hunk of space rock has a 1 in 75 chance of slamming into the Red Planet on Jan. 30, scientists said Thursday.

“These odds are extremely unusual. We frequently work with really long odds when we track ... threatening asteroids,” said Steve Chesley, an astronomer with the Near Earth Object Program at NASA's Jet Propulsion Laboratory.

The asteroid, known as 2007 WD5, was discovered in late November and is similar in size to an object that hit remote central Siberia in 1908, unleashing energy equivalent to a 15-megaton nuclear bomb and wiping out 60 million trees.

Scientists tracking the asteroid, currently halfway between Earth and Mars, initially put the odds of impact at 1 in 350 but increased the chances this week. Scientists expect the odds to diminish again early next month after getting new observations of the asteroid's orbit, Chesley said.

"We know that it's going to fly by Mars and most likely going to miss, but there's a possibility of an impact," he said.

If the asteroid does smash into Mars, it will probably hit near the equator close to where the rover Opportunity has been exploring the Martian plains since 2004. The robot is not in danger because it lies outside the impact zone. Speeding at 8 miles a second, a collision would carve a hole the size of the famed Meteor Crater in Arizona.

In 1994, fragments of the comet Shoemaker-Levy 9 smashed into Jupiter, creating a series of overlapping fireballs in space. Astronomers have yet to witness an asteroid impact with another planet.

We estimate such impacts occur on Mars every...
Friday February 1, 2008:

2007 TU24 (610 m diameter) zooms by in a distance of 550,000 km, comes back in 2027.

Science News

Asteroid To Make Rare Close Flyby Of Earth January 29

ScienceDaily (Jan. 24, 2008) — Scientists are monitoring the orbit of asteroid 2007 TU24. The asteroid, believed to be between 150 meters (500 feet) and 610 meters (2,000 feet) in size, is expected to fly past Earth on Jan. 29, with its closest distance being about 537,500 kilometers (334,000 miles) at 12:33 a.m. Pacific time (3:33 a.m. Eastern time). It should be observable that night by amateur astronomers with modest-sized telescopes.
January 30, 2008: 2007 WD 5 (610 m diameter) zooms by Mars.

Asteroid: MARS ATTACK
by Barry Artiste | December 21, 2007 at 09:40 am | 6551 views | 3 comments

It will be interesting to view this as a televised asteroid attack if scientists are proven correct in their assertion that an asteroid impact on Mars would be on a scale of 15 megaton nuclear bomb.

Asteroid could collide with Mars in late January: astromomers

This image provided by NASA's Hubble Space Telescope shows a close-up of the red planet Mars when it was closest to the Hubble Space Telescope - just 88 million kilometers away from Earth on Dec. 18, at 11:45 p.m. Universal Time (6:45 p.m. EST). (THE
Henry Poincaré

image credit right: AIP New Methods of Celestial Mechanics, Intro by D. Goroff

Mathew Holman and Joe Christy
dual star system on ellipse with small eccentricity

\[z'' = \frac{-z}{(z^2 + r^2)^{3/2}} \]
Sitnikov theorem: for every sufficiently small eccentricity, there exists m, such that for any choice of numbers like $d_1, d_2, d_3, ... > m$, there exists an initial condition such that the first planet year is d_1, the second d_2 etc...
Cosmology: blackhole collision

partial differential equations, much much more complicated
...much too complicated. Let's look at something simpler.
number theory: primes

are there some regularities in the distribution of primes?
<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>64</td>
<td>63</td>
<td>62</td>
<td>61</td>
<td>60</td>
<td>59</td>
<td>58</td>
<td>57</td>
<td>90</td>
</tr>
<tr>
<td>66</td>
<td>37</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>33</td>
<td>32</td>
<td>31</td>
<td>56</td>
<td>89</td>
</tr>
<tr>
<td>67</td>
<td>38</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>30</td>
<td>55</td>
<td>88</td>
</tr>
<tr>
<td>68</td>
<td>39</td>
<td>18</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>29</td>
<td>54</td>
<td>87</td>
</tr>
<tr>
<td>69</td>
<td>40</td>
<td>19</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>28</td>
<td>53</td>
<td>86</td>
</tr>
<tr>
<td>70</td>
<td>41</td>
<td>20</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>27</td>
<td>52</td>
<td>85</td>
</tr>
<tr>
<td>71</td>
<td>42</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>51</td>
<td>84</td>
</tr>
<tr>
<td>72</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>83</td>
</tr>
<tr>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
</tr>
</tbody>
</table>

Ulam Spiral
The code conspiracy
angular cumulative distribution function of primes (blue) and integers (red).
Number theory: Dickson system

A dynamical system on the set of natural numbers

\[T(n) = \text{sum of proper factors of } n \]

\[T(6) = 1+2+3 = 6 \quad \text{fixed point of } T \]
A dynamical system on the set of natural numbers
Number theory: Collatz system

A dynamical system on the set of natural numbers
Collatz system

\[T(n) = \begin{cases}
\frac{n}{2} & \text{n even} \\
3n + 1 & \text{n odd}
\end{cases} \]

Example:

6 - 3 - 10 - 5 - 16 - 8 - 4 - 2 - 1
Mechanics: from particle motion
To falling coins
solid state physics: crystals

Order and disorder
Sociology: spatial dynamics

Does it pay off to cooperate? The May-Novak
CA
Every person changes to become the guy with the best payoff in its neighborhood.

\[\begin{bmatrix} 1 & 0 \\ b & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix} \]

- \(x \): number of bad neighbors
- \(y \): number of good neighbors
- \(p \): payoff for good guy
- \(q \): payoff for bad guy
<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5b</td>
<td>3b</td>
<td>5b</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>3b</td>
<td>0</td>
<td>3b</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5b</td>
<td>3b</td>
<td>5b</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

For $b>1$, it has payed off to become bad in the neighborhood of the bad guy. We have a gang. Badness spreads.
Optics: wave front motion
Music: structure

Dynamical systems to generate or vary harmonies.
Bifurcation diagram of the logistic map

In[31]:=

\[
\text{n=100000; \text{f = Compile[\{x, t\}, Evaluate[(2.9+1.1*t/n) \times (1 - x)\}]])}
\]

\[
\text{ListPlay[FoldList[f, Random[], Range[n]], SampleRate \rightarrow 5000]}
\]
CellularAutomaton 90

In[35]:= Sound[SoundNote[DeleteCases[3 Range[31] Reverse[##], 0] - 48, .1] & @ Transpose[CellularAutomaton[90, {{1}, 0}, 30]]]
random melodies
random accords
Phillipp Fischer

fractal music 2

inspired by Martin Gaertner and Diana Debby (Tufts)
Improvisation principle:

there are certain transitions which work, others which do not work. Just take a random choice of a good transition.
This is a Markov chain. Let's try that.

Mathematica program which generated this
Musical variations from a chaotic mapping

Diana S. Dabby
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

(Received 27 March 1995; accepted for publication 15 February 1996)

A chaotic mapping provides a technique for generating musical variations of an original work. This technique, based on the sensitivity of chaotic trajectories to initial conditions, produces changes in the pitch sequence of a piece. A sequence of musical pitches \(\{ p_i \} \), i.e., any piece ranging from Bach (or earlier) to contemporary music, is paired with the \(x \)-components \(\{ x_j \} \) of a Lorenz chaotic trajectory. Each \(p_i \) is marked on the \(x \) axis at the point designated by its \(x_j \). In this way, the \(x \) axis becomes a pitch axis configured according to the notes of the original composition. Then, a second chaotic trajectory, whose initial condition differs from the first, is launched. Its \(x \)-components trigger pitches on the pitch axis (via the mapping) that vary in sequence from the original work, thus creating a variation. There are virtually an unlimited number of variations possible, many appealing to expert and nonexpert alike. © 1996 American Institute of Physics. [S1054-1500(96)00502-7]
Poetry:

Random words
Words with correlations
Real poems

When is a poem good?
Two poems. Can you find the author?
O mistress mine, where are you roaming?
O stay and hear! your true-love's coming
That can sing both high and low;
 Trip no further, pretty sweeting,
Journey's end in lovers' meeting--
 Every wise man's son doth know.
What is love? This not hereafter;
Present mirth hath present laughter;
 What's to come is still unsure:
In delay there lies no plenty,--
Then come kiss me, Sweet and twenty,
Youth's a stuff will not endure.
the mellow rose gave us the graceful misery
a happy flower gave you a burning desire
you desired a sad girl
she cried kindly
the rose danced
the delicate flower felt me
a mellow girl fondled us passionately
a sweet despair died from the spiritless girl
a spiritless kiss surrendered passionately
the nice girl danced burning
ADAM

(*Mathematica by O. Knill, adapted from Java program by Nandy Millan *)

Adjectives={placid,mellow,nice,sad,happy,noisy,cold,warm,beautiful,delicate,
 sweet,soft,graceful,pretty,captivating,desiring,linguishing,fragile,exquisite,
 graceful,deafening,spiritless,heartbroken,stormy,carnal,frenetic,burning};
Adverbs={soon,late,desperately,passionately,slowly,softly,carefully,tenderly,quickly,kindly};
Articles={the,a}; Ditverbs={gave,told}; Opronouns={me,you,him,her,us,them}; Spronouns={I,you,he,she,we};
Itverbs={cried,fell,died,came,anguished,surrendered,shouted,whispered,danced,dreamed};
Nouns={heart,girl,mouth,love,lover,flower,sun,breeze,rose,kiss,misery,despair,
 passion,desire,warmth,fire,flame,fantasy};
Preps={from,for,with,in} Pronouns={I,you,he,she,it,we,they,me,him,her,us,them};
Tverbs={loved,kissed,touched,felt,desired,cuddled,fondled,enjoyed};
Verbs={loved,escaped,sang,cried,hoped,fell,died,came,slept,shouted,kissed,touched,felt,
 whispered,danced,desired,dreamed}

Adjective:=RandomChoice[Adjectives];Adverb:=RandomChoice[Adverbs];Ditverb:=RandomChoice[Ditverbs];
Itverb:=RandomChoice[Itverbs];Noun:=RandomChoice[Nouns];Opronoun:=RandomChoice[Opronouns];
Prep:=RandomChoice[Preps];Pronoun:=RandomChoice[Pronouns];Spronoun:=RandomChoice[Spronouns];
OPronoun:=RandomChoice[OPronouns];Tverb:=RandomChoice[Tverbs];Verb:=RandomChoice[Verbs];
Article:=RandomChoice[Articles]; Subject:=RandomChoice[{{Article,Noun},{Spronoun},{Article,Adjective,Noun}}];
Predicatelist:={{{Adverb},{Prep,Article,Adjective,Noun},{Prep,Opronoun},{Article,Adjective,Noun},
 {Opronoun},{Article,Adjective,Noun,Adverb},{Opronoun,Adverb},{Opronoun,Article,Adjective,Noun}};
Verblist:={{Itverb},{Itverb},{Itverb},{Tverb},{Tverb},{Tverb},{Tverb},{Ditverb}};
Predicate:=RandomChoice[Table[{{Verblist[[i]],Predicatelist[[i]]},i,Length[Verblist]]]];
Object:=RandomChoice[{{}, {Adverb}, {Subject}, {Opronoun}, {Prepsubject}}];
Verbobject:={Verb,Object}; Prepsubject:={Prep,Subject}; Subjectpredicate:={Subject,Predicate};
Continuation:=RandomChoice[{{},"and",Subjectpredicate}];
Sentence:=Flatten[RandomChoice[{{Subject,Verbobject,Continuation}}]]; Poem:=Do[Print[Sentence],{10}];
Poem
Fractal Art

generating “paintings”
Market:
'Father of Fractals' takes on the stock market

Seeing a snowflake pattern in the NASDAQ

Katharine Stoel Gammon, News Office Correspondent November 16, 2006

Benoit Mandelbrot is world-famous for making mathematical sense of irregular shapes—clouds that are not round, mountains that are not cones, coastlines that are not smooth, and now, stock markets that are not as simple as previously thought.

Mandelbrot, known as the "father of fractal geometry," spoke Nov. 8 to a crowd of more than 200 people in Room 10-250. His talk was the first in a series sponsored by the MIT Molecular Frontiers Club. Molecular Frontiers is a new international alliance of scientists, including several at MIT, intended to inspire young people to get involved in science. The title of Mandelbrot's lecture was "The Mandelbrot Set and Fractals in Finance."

Mandelbrot coined the term "fractals" in 1975 to describe shapes that appear similar at all levels of magnification and are also called "infinitely complex." Examples of fractal-like structures in nature include snowflakes, rivers, broccoli flowers and systems of blood vessels.
FMH: fractal market hypothesis.

Instead of Brownian motion (independence) have correlations.

Fractal dimension as a measure of volatility (standard deviation of security prize change).
BASED ON AN ORIGINAL IDEA BY
Brian Price and Mike Betar
Choreography

generating motion from dynamical systems
Using Chaos to Generate Variations on Movement Sequences

Elizabeth Bradley and Joshua Stuart
Department of Computer Science
University of Colorado
Boulder, Colorado, USA 80309-0430
lizb, stuartj@cs.colorado.edu
Chaos, 8:800-807 (1998)

Abstract

Josh Stewart, UC Santa Cruz

Using Lorentz attractor

Using Roessler attractor
What algorithm was used to generate these moves?
let's try:
where is the sweet spot for creativity?

periodic
integrable
boring

correlations
structure and
surprise

random
erratic
boring
Credits

- CAS: mathematica
- raytracing: povray
- spider uses povray code of Rafael Ghiglia, 2001
- mandelbrot: xaos fractal zoomer with additional scripts
- choreography sequence: bradley and Stuart (Colorado)
- trading sequence: Movie: “Trading Places”
- chaos sequence: Movie: “Jurassic Park”
- movie scene from “the bank”
- movie scene from “Grease”
- primes on Ulam spiral: movie “Code conspiracy”
- cellular automaton accord: wolfram research
- Blackhole merger: NASA
- Poem by William Shaespear
- Poem generator A.D.A.M. by Nandy Millar
- fractal paintings: Kelly Dietrich
- 3 body problem picture by Mathew Holman and Joe Christy in forword by D. Goroff to Poincare’s “Nouvelle Methods”.