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ABSTRACT. If G is a finite simple graph on which an arbitrary finite group A
of order n acts by automorphisms. When we look at G as a ramified cover
over the chain H = G/A, the Riemann-Hurwitz formula x(G) = nx(G/A) —
> zeq(ex —1) holds, where ey = 1+Ea¢1‘a<z):z(—1)k(”) and where x(G/A)
is the Euler characteristic of the chain. For a class of actions which we call
simple, the quotient H = G/A is a finite simple graph and Riemann-Hurwitz
relates the Euler characteristic of G and H. Cohomologically x(G/A) is the
average % > aca L(a) where L(a) is the Lefshetz number of the automorphism
a.

1. INTRODUCTION

The classical Riemann-Hurwitz formula relates the Euler characteristic of two
surfaces G and H, where G is a cover of H, where n is the number of sheets and
where e,, the ramification index, assumed to be nonzero only for finitely many points
x € G. The theorem is used in complex analytic [2] or algebraic-geometric settings
[5]. While folding is natural for Riemannian manifolds, the construction is not re-
stricted to surfaces only. For ”branched-and-folded” coverings, where the folds can
be more general [8]. In discrete settings the situation arrizes when groups act on
graphs. [1] have considered the Riemann-Hurwitz formula in a discrete setting using
Urakawa harmonic morphisms on graphs with multiple edges. They look at graphs
as discrete analogues of Riemann surfaces in which case the Euler characteristic is
g—1, where g = v; —vg + 1 is the genus of the graph and vy = |V|,v; = |E| are the
number of vertices and edges. In the continuum, orbifolds H = G/A are obtained
by factoring out a finite group A on a manifold G. The Riemann-Hurwitz formula
relates there the Euler characteristic of G with the one of H. A simple example
is to take two copies of a manifold H with boundary R and glue them along R,
leading to a manifold G without boundary on which one has a Z, action inter-
changing the two copies. The boundary R consists then of ramification points so
that x(G) = 2x(H)—x(R). Every compact two dimensional manifold is a branched
cover of the two sphere; already Riemann saw genus g Riemann surfaces as compact
2-branched covers of the projective line which are compactifications of a plane curve
y? = p(z) for a complex polynomial p of degree 2g + 1. Branched covers are used
in topology. A theorem of Hilden-Montesinos [6] assures that every compact three
manifold M is a n = 3 branched cover of a three dimensional sphere S3 branching
along a knot K. The Riemann-Hurwitz formula y(M) = 3x(S3) — x(K) is trivial
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there because all involved manifolds have zero Euler characteristic.

We explore the situation in a combinatorial graph theoretical framework [3] or
more generally for chains. Unlike in [1] which emulates complex analytic structures,
we look at the Euler characteristic >, _,(—1)*v; where vy are the k dimensional
complete graphs K41 in G. This means that the ramification index involves ar-
bitrary complete graphs. Already [1] have to look at vertical and horizonal multi-
plicities because in their situation ramifications can occur along vertices or edges.
Since graphs are more intuitive than chains, we will put some effort to make sure
that the quotient G/H is also a graph.

In general, if a group A acts on a graph G, then G/A is only a chain. Take C,, and
let Z,, act on it, then the quotient is the chain x + e, where x one vertex and e is the
edge. There is no second vertex so that G/A is not a graph. The quotient chain has
Euler characteristic 0 and there are no ramification points. For Ky with Z5 action
RR we get the same H = G/A and 0 = x(G) = 1 = 2x(H) — (—1) because the edge
is a ramification point with ramification index —1. For a triangle with Z3 action,
only the triangle is a ramification point with ramification index 1 fixed by 2 auto-
morphisms of A different from the identity so that 1 = x(G) = 3x(H) — 2. These
examples show that we can not avoid chains when looking at quotients. Chains also
naturally appear when taking boundaries of graphs: the outside star graph S; with
V ={x,a,b,c,d} for example has as a boundary the chain —4z +a+b+ ¢+ d. For
certain classes of graphs we can assure that boundaries are graphs again. These
geometric graphs are closer to the geometric graphs we know in the continuum.
A similar thing happens when forming quotients: if we add a bit more ”space” to
make sure that different parts of an orbit do not come to close, then G/H is a graph
again and G can be seen a n-fold cover of H for which at some points the cover
collapses. Ramification points = are vertices, edges or higher dimensional cliques
in G for which the orbit does not have the maximal cardinality n = |A|. If A is
an involution, then ramification points are the fixed points of the involution. In
the discrete, when taking quotients, an “emerging dimension phenomenon” appears
which is not present in the continuum. Taking quotients can increase the dimension
of the graph. The complete bipartite graph G = K3 3 where the fixed edges of the
evolution are removed is one dimensional having no triangles but admits a natural
A = Z5 action flipping the two sides. The quotient G/A is a triangle. For the
Riemann-Hurwitz formula to hold, we have to ignore the emergence of the triangle
which has amalgamated by the action but to see H as a chain with 3 vertices and 3
edges, then x(G) = —3 and x(H) = 0 and G/H is a chain with three vertices and
three edges and not a graph.

Chains are to graphs what orbifolds are to manifolds, or algebraic stacks are
to schemes. Chains extend the category of graphs in such a way that it is closed
under forming boundary or taking quotients of group actions. Chains have been
introduced very early in topology because they are closed under the boundary op-
eration § which is dual to taking the exterior derivative d as integration f </ =
(32; aiwi, 3o, fiwj) = 30, aif; gives Stokes theorem [y df = [ f for chains which
also works for geometric graphs and is very close to the classical Stokes theorem
in the continuum. While graphs are known since Euler and chains since Poincaré,
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it seems not yet explored, which group actions A on a graph G produce graphs.
We start to address this question here and explore especially the relation between
Euler characteristics, which is the Riemann-Hurwitz formula.

The Riemann-Hurwitz identity is already a combinatorical result if no edges are
present. For a graph without edges, where the Euler characteristic is the cardinality
of the vertex set, it becomes the trivial identity |G| = 2|H| — |F| for the cardinality
of sets. Also more general ”exclusion-inclusion formulas” can be seen as Riemann-
Hurwitz formulas: the Burnside lemma or the Polya enumeration theorem. We
will also mention an application on sizings in group theory [9]: one can look at the
smallest Euler characteristic y(B) which a triangle free Cayley graph of a group B
can have. The Riemann-Hurwitz formula readily implies that if A is a subgroup of
B then x(A) > x(B).

2. RIEMANN-HURWITZ FOR CHAINS

A finite simple graph G = (V, E) is a finite graph without multiple connections
and no loops. An automorphism a of the graph G is a permutation a of V' which
preserves edge relations. Let A be a finite subgroup of the automorphism group
Aut(@). Let Gy denote the set of k-simplices in G. This means that Gy, is the set of
subgraphs K} of G. We can write G as a chain ), ay with a, € {0,1}Z, where
G = U; ;. For graphs, the Euler characteristic is defined as x(G) = Zj(—l)jvj,
where v; = |G,| is the cardinality of G;. For a chain G = )" a,x, define x(G) =
S (=1)*®)q, where k(x) is the dimension of 2. The action of A on G induces an
action on G as follows: if x = (xg,...,xx) is a clique, then a(x) = (axo, ..., azy).
We could but do not assume chains to have the property that any subsimplex is
included. For example, if a chain contains a triangle (z,y,z) we do not require
that the chain also contains the edges (x,y) for example. If a chain is a graph, the
naturally, this is the case.

Definition. The quotient G/A is a chain 3,3, cq /4%, where G;/A is the set
of equivalence classes of G; modulo A. We call G a branched cover of G/A.

A chain can for example consist of a triangle ¢ with no vertices and one edge e.
We would write G =t + e. This chain has Euler characteristic (—1)? + (—=1)! = 0.

Definition. A chain automorphism is a map a which permutes every of the simplex
sets Gj.

Again, we also do not require that a respects inclusion: if x C y, then a(z) does
not need to be a subset of a(y).

Definition. Given a chain automorphism and x € G we define the ramification
index e, = 1+ Za#l,a(w):m(_l)k(m)7 where k(z) = k if x € G. The sum R =
> .(ex —1) is called the ramification sum.

Definition. A cover G of G/A is called unramified if the ramification index is
zero everywhere. In this case, the cover G — H can be seen as a discrete fibre
bundle with structure group A.
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Theorem 2.1 (Riemann-Hurwitz for chains). Let G be a simple graph and let A
be an action on G of order n, then

X(G) =nx(H) =) (ex 1),

x

where e, =1+ Za#’a(w)zm(—l)km and k(x) + 1 is the dimension of x.
Proof. By the Burnside lemma, we know for every k that

)R SIS

a€A z€Gy,a(z)=x
Taking the alternate sum over k gives

D, > (D) =mx(H).

a€A z,a(x)=x

This gives
Z Z k(:c) + Z k(ac) _ nx(H)
a#l zeG reG
and 50 X(G) = nx(H) = e X (~)H) = nx(H) = ¥, ciew — 1). O
Remarks.

1) The Euler characteristic of a group is sometimes defined as 1/|A|. The Riemann-
Hurwitz theorem can therefore be read as x(G) = x(G/A) * x(A) — R.

2) While chains are natural and the proof is easy, chains are not as intuitive as
graphs. A drawing of a graph defines all the higher dimensional structures it con-
tains, to visualize chains we would have to write integers a, beside each simplex x
it contains.

3) There is a similarity between the problem to form moduli spaces, where the
existence of automorphisms produces problems and needs to enlarge the category.
This was the emergence of stacks.

3. SIMPLE ACTION

Under which conditions is G/A again a finite simple graph? The following is
similar to a definition done in [4], where quotient graphs are used to find isospectral
graphs.

Definition. An action A on a graph G is called simple if (i) for any adjacent
vertices x,y in G the images [z], [y] in G/A are adjacent but different. (ii) for any
edges x,y which intersect in a vertex but are not included in a triangle, the images
[x], [y] still intersect in one vertex but are not included in a common triangle.

Lemma 3.1. For a simple action, the quotient chain G/A is a simple graph and
X(G/A) is the Euler characteristic as a graph.

Proof. Every simplex in G/A is defined as an equivalence class of simplices in G.
We can form a graph H = (W, F'), where W is the set [Gg] of equivalence classes
Go/A and where F is the set [G1] of equivalence classes in G /A. We claim that the
set Hy, of k-simplices in H corresponds to the set [G}] of simplices in G /A. Let
([x1],- .., [zk]) be in Hy. Pick a representative x; of [z1] then chose a representative
29 near x7 which maps to [z3] then pick a representative both adjacent to xy,xo
which maps to [z3] etc. Because the action is simple, every edge ([z], [y]) in the
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triangle comes from a lifted edge. The triangle (x,y, z) maps to a triangle T in
[G2]. And the map from [Gx] — Gi/A defined by [(x1,...,zk)] = ([z1],- .., [zk]) is
a bijection. O

There are three basic mechanisms which make an action fail to be simple: form-
ing loops, forming double edges and forming triangles. Here are examples of actions
which are not simple:

Examples.
1) A = Z, acting on G = K produces a one point graph H = G/A with a loop.
2) A = Z5 acting on G = C4 produces a two point graph H = G/A which has a
double edge.
3) Z4 acting on the wheel graph W, produces a chain with a triangle, two vertices,
one edge and one self loop. The quotient is not a graph any more.
4) The antipodal involutive group on the octahedron produces a quotient which is
not a graph any more.
5) Z, acting on the utility graph produces a triangle with three loops.
6) The Z; action rotating an octahedron G around a symmetry axes through a
pentagonal face has as as quotient a graph H which contains two self-loops and a
double connection. We have x(G) = —10 and x(H) = —2. There are no ramifica-
tion points.

Remark. If the quotient produces a triangle which does not lift to triangles in
G, then this must come through an addition of an edge to two connected edges. It
is not possible to have three pairwise disconnected edges in G which project down
to a triangle.

Theorem 3.2 (Riemann-Hurwitz for graphs). Let G be a simple graph and let A
be a simple action on G of order n, then

X(G) = nx(H) = (e — 1),

where e, = 1 + Zaﬂ’a(m)zm(_l)k(ﬂ)-

Proof. The result follows directly from Theorem (2.1) because graphs are chains.
The only thing which has changed is that x(H) is the Euler characteristic of a
graph which however agrees with the Euler characteristic as a chain. ([l

(1) A= Z, acting on G = C,, is not simple. The quotient H = G/A is a graph
with a loop and x(H) = 0. There are no fixed points.

(2) A= Z, acting on G = Cy,, is not simple. The quotient H = G /A is a double
connection x = x. There are two edges of distance 2 which afterwards have
distance 0 but are distinct.

(3) A = Z, acting on G = (3, is not simple. The quotient H = G/A is a
triangle. There are two edges of distance 2 which afterwards have distance
1.

(4) A = Z, acting on G = C},, is simple for any k > 4 The quotient is the
circular graph Cj. This is an example of an unramified cover.

(5) A = Zy acting on G obtained from Cg with 4 diagonals is not simple
(Figure). The quotient contains a tetrahedron.
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(6) A = Z5 acting on an octahedron flipping poles is simple. The quotient is
a wheel graph W4. We have 4 fixed vertices with e, — 1 = 1 and 4 fixed
edges with e; —1 = —1. We have x(G) = 2 = 2 % x(H). This generalizes:
take two copies of a graph H and share them along a subgraph B. Then
X(G) = 2x(H) — x(B).

(7) Z, acting on a star graph .S, is simple. The quotient is K5. The center
point has a ramification index e, = n. We have 1 = x(G) = nx(H)—(n—1).

(8) Z, acting on a wheel graph W,, is not simple. The quotient H is a chain
with two vertices, two edges and one triangle. The Euler characteristic is
1. The center point has ramification n — 1.

The next lemma is a simple criterion for an action to be simple. It tells that
if we avoid different points of an orbit to come too close to each other, then the
quotient is simple:

Lemma 3.3. A group A acting on graph G is simple if the minimal distance of
two distinct vertices in an orbit is 2.

Proof. Tt includes loops, double connections and the appearance of new triangles.
O

4. LIFTING A QUOTIENT TO GRAPHS

In order to avoid chains, we can use a triangularisation G’ of G for which G’ /A =
H' is a graph. We will do this in such a way that the Euler characteristic of G
agrees with the one of G’ and such that the ramification sum R does not change.
This shows that x(G) — R is equal to nx(H’).

Lemma 4.1 (Subdivision of simplex). Given a complete graph K, we can form
a refined graph K|, which is a triangularization of K, and such that the distance
between any two points on the boundary on different faces is at least 4 and such
that every edge has been subdivided into 4 edges. The Fuler characteristic of each
K/ is still 1.

Proposition 4.2 (Subdivision of graph). Given any graph G we can form a refined
graph in which every K, is triangulated. The Euler characteristic of G' is the
same than the Fuler characteristic of G. We can refine in such a way that the
automorphism group of G’ is the same than G.

Proof. To break any additional symmetries we can make subdivisions at the sim-
plices of the corner. O

It is custom to call G’ homeomorphic to G in the case when the refinements are
done for graphs without triangles. The refinement procedure is topological in the
sense that other properties like dimension are preserved.

Definition. The ramification sum of an action A on G is defined as the sum
Y .(ex — 1), where e, =1+ Ea#,a(m:z(—l)k.

Lemma 4.3. Given a finite graph G and a group A of automorphisms of G, we
can find a homeomorphic graph G' which admits the same A action and for which
X(G) = x(G") and so that the ramification sum of (G, A) is the same than the
ramification sum of (G', A).
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Proof. The refinement of each simplex x is done in such a way that if x had been a
fixed point then the ramification index of this simplex is the sum of the ramification
simplices of all subsimplices. O

From the result on simple actions, we see that

Corollary 4.4. The number x(G) =5 (e, —1) is divisible by n. It is independent
of the simplicial refinement. It agrees with the Euler characteristic of G/A as a
chain.

Theorem 4.5 (Riemann-Hurwitz). Given a finite simple graph and an automor-
phism group A of order n on G, then

X(G) =nx(H) =) (es—1),

xT

where H = G'/A is any of the reqularized quotient graphs.

Remarks.
1) The Euler characteristic for chains has all properties of Euler characteristic: if G;
admit both a A action, then the union, the intersection, the product are defined and
a) If G, are disjoint then x(G1 UG3/A) = x(G1/A)+ x(G2/A), b) x(G1UG2/A) =
X(G1/A) + X(Ga/A) — X(Gr N Ga/A), <) X((Gr x Ga)/A) = x(G1/4) x x(Ga/A),
d) If G5 is an unramified cover of G of order k, then x(G2/A) = kx(G1/A).
2) How can we see whether a chain H can be written as G/A with some graph G?
Chains without vertices can not be written as G/A. Any graph H with additional
simple selfloops is an orbifold.
3) We can interpret x(G/A) as the average Lefshetz number L(a) of all automo-
morphisms on G [7].

5. EXAMPLES

If applied to sets, graphs without edges, ramification is the notion of compen-
sating over-counting when covering a space. Since Fuler characteristic generalizes
counting, it applies to situations like Burnside or Polya.

1 Inclusion-Exclusion. Let G be the union of two sets U,V which have
the same cardinality. Let T be a permutation of G which exchanges U, V.
The Euler characteristic of G is the cardinality of x(G) = |U U V|. The
group A generated by the involution 7' has two elements. The quotient
H = G/A has the Euler characteristic x(H) = |U| = |V|. The ramification
index of a point is e, = 2 if x is a fixed point and 1 else. The Riemann
Hurwitz formula x(G) = 2x(H) — > cn(ex — 1) is nothing else than the
inclusion-exclusion formula |[U U V| = |U| 4 |V| — |U N V|. This goes over
to graphs. Assume a graph G is the union of two isomorphic graphs U,V
which intersect in a graph U NV. The group A is again the involution and
H = G/A is isomorphic to U. The Riemann-Hurwitz formula tells

X(G) =2x(U) =) (ex — 1)

T
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Every simplex in the intersection is a ramification point and we get the
inclusion-exclusion formula for Euler characteristic x(G) = x(U) + x(V) —
x(UNV).

Examples with involutions. Take a line graph of length n which has
n + 1 vertices and n edges and reflect it. If n is even, there is fixed vertex,
for odd n there is a fixed edge. The involution group A has a fixed vertex
or edge. The ramification index of a fixed vertex x is e, = 2. We have
X(G) =1and x(H) =1and n = 2 and x(G) = 2x(H) — 1. If n is odd,
then the quotient G/A is a line graph with one loop of Euler characteristic
0. The loop edge is a fixed point with ramification index —1. Then x(G) =
2x(H) + 1. Take now two copies of a line graph which are glued together
along some subgraph U. The quotient graph G/A is a line graph. The
graph G has x(G) = 1 — g where g is the number of holds. Each vertex or
edge in U is a fixed point and the ramification sum is x(U) = g + 1. Now
1—g=x(G)=2x(H)—x(U)=2-1—(g+1). If G is a circular graph G of
even length and A acts by involutions fixing vertices, we have a line graph
H as a quotient and two ramification points and 0 = x(G) = 2x(H) — 2. If
G is an octahedron and A is the reflection group at the equator, then The
quotient H is the wheel graph Wy and 2 = x(G) = 2x(H) — (4 —4). The
ramification sum is the Euler characteristic of the fixed point set which is a
circular graph. For G = K5, then A = S5 is the full automorphism group.
H is the one vertex loop of Euler characteristic 0.

Burnside lemma. Since the Burnside lemma is used to prove Riemann-
Hurwitz, it is no surprise that one can prove Burnside with Riemann-
Hurwitz: assume a group A of order n acts on a graph G without edges.
The Euler characteristic of the set G is x(G) = |G|. The Riemann-Hurwitz
formula

Gl =n|G/Al =) (es —1)
zeG
simplifies to
0=n|G/A| - e,
zeG

which is n|G/A| = Y .o ex. Since e, = > 4 X(x) where X%(x) = 1
if x is fixed by a or 0 else and X® is the number of elements fixed by a is
Y owec X(x), we have

Se o= LY xw

z€G z€G a€A

= Z ZX“(Q:)

a€AxzeG

- Y.

acA
Therefore n|G/A| =37 ,c 4 |X®| which gives the Burnside lemma

G/Al= (1/1A]) D 1x°].

acA
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4 Redfield-Polya enumeration theorem. Colored sets can be modeled
by sets G = XY which are graphs without edges. Over each vertex we have
a fibre Y whose elements are called colors. Let A be an automorphism
subgroup of Aut(X) and assume that it has n elements. The Riemann-
Hurwitz formula simplifies to n|G/A| = > _sex = D ,c4 |X?. In this
case, | X¢| = |Y]® where ¢(a) is the number of cycles of a. This leads to
the simplest version of the Redfield-Polya enumeration theorem:

1
/A== ST Y|

a€A

This popular theorem in combinatorics allows to count colorings of things
modulo some symmetries. For example if G is the cube and we have |Y| = 3
colors, and if A be the set of rotations of the cube. Then n = 24 and the
formula counts the number of cubes modulo rotations.

5 Complete graphs. Let G be the complete graph K3. The automorphism
group is S3. Now H = G/A is a chain with 1 vertex, one edge, one triangle.
The Euler characteristic is 1. The ramification index of a vertex x it is
e, = 2!. For the complete graph K, with automorphism group S,, the
quotient chain has Euler characteristic 1 if n is odd and 0 if n is even. In
this case, the ramification index of every k-simplex is e; = kl(n — k)!. The
Riemann-Hurwitz formula is for odd n,

1:nb1—§:<z>(—nmwMW—kﬂ—u

k

and for even n,
1=nl-0- ) (DR R — B = 1)
(1)

6 Cyclic graphs. For a cyclic graph G = C,, with n > 4 the automorphism
group is the dihedral group D,,. The quotient graph is a one loop graph.
For p,q > 3, the cyclic graph C),, is an unramified cyclic cover of degree
g over the cyclic graph H = (), with A = Z,;. The Euler characteristic is
zero for both. The group A is generated by T(z) = aP on G = Cp,. If
we let the cyclic group Z, act on C,, then the quotient graph G/A is a
one loop graph of Euler characteristic 0. The cyclic graph C), is a n fold
ramified cover over the one loop graph 1 — 1 which contains one edge and
one vertex and has Euler characteristic 0. The Riemann-Hurwitz formula is
0 = x(G) = n-0—0. Now let Z, act on Cs,, by rotation. The quotient graph
is now a two point graph with two edges. This example shows that the G/A
can have multiple connections. Let now Z,, act on C3, by rotation. The
quotient graph is a three point graph with three vertices and three edges.
The quotient graph G/H is not a graph any more, even if we allow multiple
connections and loops. The reason is that as a graph, the G/H would have
a triangle. But the triangle should not be included. This is the simplest
example where G/H falls into the larger category of chains.

7 Two dimensional geometric graphs. A graph G is two dimensional
geometric, if every unit sphere is a cyclic graph. We also assume that the
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graph is connected and that there is an orientation on triangles which in-
duces an orientation on edges which cancel on adjacent triangles. This is
a purely graph theoretical description of a two dimensional compact ori-
entable manifold. If we embed every wheel graph in G with a two dimen-
sional disc we can consider them as charts of a two dimensional compact
manifold M and G is a triangularization of M. It is well known that M
can be seen as a quotient S?/A for some finite group of homeomorphisms
of order 2 with 2¢g + 2 ramification points. We do not need the continuum
however and stay in the graph theoretical setup and show that every two
dimensional oriented geometric graph can be deformed to be a two dimen-
sional geometric graph G which permits a Zs action A such that G/A is a
two dimensional geometric sphere and such that the involution has 2¢g 4 2
fixed vertices and no other fixed simplices. The Riemann-Hurwitz formula
is
2-29=2%2—(29+2).

Examples of discrete varieties Graphs for which the unit sphere is
one or zero dimensional at every point are models for algebraic curves.
Points for which the unit sphere is a circular graph are regular points and
other points are singular points. For a figure 8 graph for example, most
points have unit spheres of Euler characteristic 2 but there is a singular
point x where the unit sphere S(z) has Euler characteristic 4. Take a
wedge sum G of n spheres, joined at a single vertex. Take a cyclic group
A = Z, acting on G has one fixed point. The quotient H = G/A is a
sphere. Now x(G) = nx(H) — (n — 1) = n+ 1. This reflects the fact that
HY =1 H' =0,H? = n. We could take n three dimensional spheres and
glue them along a circle. The ramification sum in this case is zero.
A discrete d dimensional sphere G = S% as a branched cover of degree n = 2
over the d dimensional disc H. The ramification points form a (d — 1)-
dimensional sphere R = S9!, The sum over all ramification indices is
X(R). The Riemann-Hurwitz formula shows

X(8%) = 2x(D) = x(ST 1) =2 - x(s77) .
This is the recursion formula for the Euler characteristic of the sphere.
The projective plane.
The sphere G is a unramified two fold cover of the projective plane H. This
is the same for graph versions. Indeed x(G) =2 = 2 - x(H). The simplest
discrete example is the octahedron, on which the north-south reflection acts.
The equator Cy consists of fixed points. The Riemann-Hurwitz formula tells
that the quotient has Euler characteristic 1. It is a disc. An other involution
reflects around the center. This action is not simple. The quotient is a
chain which has 4 triangles, 6 edges and 3 vertices. It is not even a simple
graph. There are no ramification points. After doing the refinement G,
the quotient H' is a discretisation of the projective plane H, a finite simple
graph.
Hyperbolic graphs.
A graph is one dimensional, if every unit sphere is a discrete graph. It is
called hyperbolic if the degree at every point is larger than 2. Since the
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FIGURE 1. An example of a cyclic ramified cover G over H = C.
The automorphism a generating A has order 5. We have x(G) =
26 — —30 = —4 because there are no triangles in G. We have
X(H) = x(C®) = 0. There is one ramification point  of G where
T has order 5. Therefore e, = 5. The Riemann-Hurwitz formula
gives x(G) =5x(0) — (5 —1) = —4.

sum of the degrees is by Euler’s handshaking lemma twice the number of
edges, the Euler characteristic is x(G) =v —e=v —>__ d(z)/2 and since
d(xz) > 2 we have x(G) < 0. Examples: For a cube G, we have x(G) = —4.
If A of the cube generated by rotations around the diagonal. There are
two fixed points and the ramification sum is 4. It has order n = 3. The
simple quotient graph H has Euler characteristic 0. The fixed vertices have
ramification index 2 and indeed

—4=x(G)=3x(H)—2-2.

An other example is the dodecahedron G. Take the cyclic group generated
by a rotation by 27 /5 around an axes through the center of the faces. We
have x(G) = 20 — 30 = —10 and n = 5. The quotient H = G/A is not
a simple graph. It is line graph with two loops at the end and a double
connection. Its Euler characteristic is x(H) = —2.

Discrete torus. A discrete torus G = C}, x C; has translational symme-
tries. Assume p,q > 4. Since rotation in one direction does not have fixed
point, it can be seen as an unramified cover over H = (), with structure
group A = C.

Star and wheel graphs. Let G be a star graph with n 4+ 1 vertices and
n edges. It carries a cyclic automorphism group of order n turning the
spikes. The center point is the ramification point with index e, = n. The
quotient graph H is a two point graph K5 with Euler characteristic 2. The
Riemann-Hurwitz formula gives 1 = x(G) = nx(H) — (n — 1).

The wheel graph G = W, is a discrete analogue of the unit disc. It also has
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FIGURE 2. The Cayley graph G of the dihedral group D(5,2)
which is a finitely presented group (u,v|u® = v?> = 1). The au-
tomorphism a : x — vz shows that G can be thought of as a n = 2
fold cover of H = G/A = Cs. The ramification points are the
connecting edges. They have the ramification index e, = 2. The
Riemann-Hurwitz formula gives

~5=10—15=x(G) =2x(H) = > (2 —1)=2-0-5.

x

Euler characteristic 1 and a cyclic group A = Z,, acting on it. The quotient
H = G/A is a chain of Euler characteristic 1 consisting of 1 triangle, two
vertices, one edge and one loop. There is one branch point with ramification
index n—1. Now let Z, act on W, with ¢ > 3, then the quotient is a wheel
graph W, of Euler characteristic 1. Again we have x(G) = nx(G/A) — (n—

1).

6. APPLICATIONS

Spheres A convex polyhedron H defines a two dimensional graph if it is a
triangularization of a sphere.

Corollary 6.1. There is no connected unramified cover of a convex poly-
hedron H.

Proof. We have x(H) = 2. If there are no ramifications, we have x(G) =
ny(H) which is impossible for two dimensional graphs for which the Euler-
Poincaré formula shows x(G) = v—e+f = by—b1+bs = 2—b;. In particular,
the Euler characteristic can not be larger than 2. The Riemann-Hurwitz
formula shows that we need ramification points to get from ny(H) = 4 to
x(G) <2. 0
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Corollary 6.2. A triangularization of a sphere can only be an unramified
cover of order 2. In that case H is a triangularization of the projective
plane.

Proof. Let G be the cover. We have
2 = x(G) = nx(H)

which forces n to be be two and x(H) to be 1. Now we have a discrete
sphere with a ZZ5 action without fixed points. This is a discretization of
the projective plane. [

Sizings Groups can be represented in a vector space, presentated using
generators and relations or realizes as subgroups of a finite permutation
group. Groups can also be presented as symmetry groups of graphs. A
theorem of Frucht assures that any finite group as an automorphism group
of a finite simple graph. The Riemann-Hurwitz point of view is to look
at a group A as a subgroup of the automorphism group and to look at
G/A=H.

Definition. Let B be a finite group and S a set of generators which are
symmetric S = S™! and do not contain 1, then the Cayley graph of B is a
finite simple graph.

Definition. Let B be a group. Define x(B) to be the smallest Euler char-
acteristic which a Cayley graph G of B can have. Let x2(B) be the smallest
Euler characteristic which a triangle free Cayley graph G of B can have.

Examples:
1) For a trivial group B we have x(B) = 1. 2) For a cyclic group C,, we
have x(B) < —n. 3) For a dyadic group D,, we have x(B) < —n. 4) If
B is a group of n elements and if S is the set of nonzero elements, then
the Cayley graph is the complete graph. We can therefore always have a
Cayley graph with x(G) = 1.

Definition. A sizing is an integer valued function which satisfies f(A) <
f(B) if A is isomorphic to a subgroup of B. [9].

Proposition 6.3 (—x2 is a sizing). x2(A) > x2(B) if A is a subgroup of
B.

Lemma 6.4 (Consequence of Riemann-Hurwitz). If G is a triangle-free
Cayley graph for a group B and A is a subgroup of B of order n, then the
chain H = G/A satisfies x(H) > x(G)/n.

Proof. The RH result shows x(G) = nx(H) — R where R > 0. O
Now to the proof of the proposition

Proof. Let G be a triangle free Cayley graph of B with minimal Euler
characteristic. For a connected triangle free graph, the Euler characteristic
is 1 — b; < 1 where b; is the first Betti number. The case when the Euler
characteristic is 1 means that the graph G is contractible and then H = G/A
is contractible too, meaning that x(H) = x(G) and implying x(G) < 0.
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Let A be a subgroup of B. Assume we have a Cayley graph H for A with
smaller Euler characteristic than x(G) that is x(H) < x(G) < 0. But then
X(H)n < x(G) contradicting the lemma. O

Remarks.
1) x(G) is not a sizing. The trivial group has x(G) = 1 and for G = S; the
range of Euler characteristics of Cayley graphs reaches 2 as the octahedron
can be realized as the Cayley graph of S3.
2) If G is the Cayley graph of a group of order n and the graph has a vertex
with valence > n/2 then G has a triangle.
3) Small Euler characteristic can be obtained by taking many generators
trying to avoid triangles. How small can x(G) or the sizing y2(G) become?

Hurwitz automorphism theorem

Definition. A graph G is called a “two dimensional geometric” if it is
simple, connected and orientable and the unit sphere to every point is a
circular graph Cy at every vertex.

Lemma 6.5. The Euler characteristic x(G) of a two dimensional ori-
entable geometric graph is 2 — 2g where g is called the genus of the surface.

Proof. The graph G is a triangularization of a two dimensional compact
manifold for which a classification by genus is well known. [

Definition. The curvature at an interior vertex of a two dimensional
graph is K =1—d/6. A graph has constant curvature if K(x) is the same
for every vertex.

Again, one can see by embedding the graph as a triangularization of a
constant curvature manifold that any two dimensional constant negative
constant curvature graph G can be written as G = M/B where M is the
infinite constant curvature graph and B is an automorphism group of M for
which M/B is finite. The graph M is a discrete analogue of the hyperbolic
plane.

Theorem 6.6 (Hurwitz Automorphism theorem). The mazimal order of
an automorphism group A acting simply and without ramification points on
a connected orientable two-dimensional constant negative curvature graph
is 84(g — 1).

Proof. The graph G has a discrete constant curvature plane as a universal
cover. The graph H = G/A is a constant curvature graph too and has has
a fundamental domain is a connected subgraph which is geometric with
boundary. The boundary can be seen as a polygon with vertices consisting
of points where the geodesic curvature is not zero. At each of those corner
points, the angle is 1/k; of the full circle. Let A be the group of order
n acting on G. The Euler characteristic of H = G/A is x(G)/n as a
graph. The Euler characteristic is 1 for the fundamental domain which is
a contractible graph with boundary. By Gauss-Bonnet, the number a of

vertices of in the interior satisfies
m

a(l—d/6)+ Y (1—2/k)=1.
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Because of Gauss-Bonnet applied to the graph G we have from Riemann-
Hurwitz:
nxa(l —d/6)=2—2g.

Putting these two equations together gives

m

(29— 1)/n=(m—1) =3 2/k >1/21

i=1

where the right estimate is an elementary arithmetic fact. Therefore n <

21(2 — 2g). Because we can have an additional involution, the estimate
doubles. g
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