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Abstract. A linear or multi-linear valuation on a finite abstract
simplicial complex can be expressed as an analytic index dim(ker(D))
−dim(ker(D∗)) of a differential complex D : E → F . In the dis-
crete, a complex D can be called elliptic if a McKean-Singer spec-

tral symmetry applies as this implies str(e−tD
2

) is t-independent.
In that case, the analytic index of D is χ(G,D) =

∑
k(−1)kbk(D),

where bk is the k’th Betti number, which by Hodge is the nullity
of the (k + 1)’th block of the Hodge operator L = D2. It can
also be written as a topological index

∑
v∈V K(v), where V is the

set of zero-dimensional simplices in G and where K is an Euler
type curvature defined by G and D. This can be interpreted as
a Atiyah-Singer type correspondence between analytic and topo-
logical index. Examples are the de Rham differential complex for
the Euler characteristic χ(G) or the connection differential com-
plex for Wu characteristic ωk(G). Given an endomorphism T of
an elliptic complex, the Lefschetz number χ(T,G,D) is defined
as the super trace of T acting on cohomology defined by D and
G. It is equal to the sum

∑
v∈V i(v), where V is the set of zero-

dimensional simplices which are contained in fixed simplices of T ,
and i is a Brouwer type index. This Atiyah-Bott result generalizes
the Brouwer-Lefschetz fixed point theorem for an endomorphism of
the simplicial complex G. In both the static and dynamic setting,
the proof is done by heat deforming the Koopman operator U(T ) to

get the cohomological picture str(e−tD
2

U(T )) in the limit t → ∞
and then use Hodge, and then by applying a discrete gradient flow
to the simplex data defining the valuation to push str(U(T )) to
the zero dimensional set V , getting curvature K(v) or the Brouwer
type index i(v).
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1. Simplicial complexes

1.1. A finite abstract simplicial complex is a finite set G of non-
empty sets which is closed under the operation of taking finite non-
empty subsets. A set x ∈ G with k+ 1 elements is called a k-simplex
or k dimensional face; its dimension is k. If H ⊂ G is a complex,
we say H is a sub-complex. The set of sub-complexes of G is a
Boolean lattice because both the union and intersection of a complex
is a complex and the empty complex is a complex. We often just write
simplicial complex for a finite abstract simplicial complex.

1.2. An example of a simplicial complex is the Whitney complex
of a finite simple graph (V,E). In that case, G = {A ⊂ V | ∀a, b ∈
A, (a, b) ∈ E}. The Barycentric refinement G1 of a complex G is the
subset G1 of of the power set 2G consisting of sets of sets in G, in which
any pair a, b either satisfies a ⊂ b or b ⊂ a. It is the Whitney complex
of the graph (V,E) = (G, {(a, b) | a ⊂ b or b ⊂ a}). In topology, one
can therefore mostly focus on Whitney complexes of graphs which are
more intuitive than sets of sets. The Barycentric argument shows that
almost nothing is lost by looking at Whitney complexes of graphs.

1.3. Not all simplicial complexes are Whitney complexes. We can for
example truncate a given complex at dimension d, removing all sets
of cardinality larger than d + 1 to get the d-dimensional skeleton
complex of G. For a Whitney complex of a graph, such a skeleton is no
more a Whitney complex in general. Take G = K3 for example which
is G = {(1, 2, 3), (1, 2), (2, 3), (1, 3), (1), (2), (3)}. The 1-dimensional
skeleton is the subcomplex H = {(1, 2), (2, 3), (1, 3), (1), (2), (3)} which
is no more the Whitney complex of a graph. The subcomplex H is a
discrete circle with Euler characteristic 0 while the complex G itself
is a two dimensional disc with Euler characteristic 1. Complexes can
appear in other ways also. The graphical complex of a graph consists
of all non-empty forests in G, subgraphs for which every connected
component is a tree. As any non-empty subset of a forest is a forest,
this is a simplicial complex. More general graph complexes, where
the sets are subsets of the edge set are considered in [2], which is also
a good introduction for abstract simplicial complexes.

2. Valuations

2.1. Assume we are given a simplicial complex G. An integer-valued
function X from the Boolean lattice of sub-complexes to the integers
is called a valuation if X(A ∪ B) + X(A ∩ B) = X(A) + X(B). Ex-
amples of valuations are vk(H) counting the number of k-simplices in
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H. We don’t really insist in general to have X integer valued. One
could assume X to take values in an Abelian group. According to the
discrete Hadwiger theorem [3], the linear space of valuations of a
complex is (d + 1)-dimensional, where d is the maximal dimension of
the complex. A basis is {vk(G)}dk=0. If f(A) = (v0(A), . . . , vd(A)) is

the f-vector of A, then X(A) = 〈X, f(A)〉 =
∑d

i=0 Xivi(A).

2.2. An example of a valuation is the Euler characteristic χ(G) =∑
x∈G ω(x) with ω(x) = (−1)dim(x) for a simplex x. It is invariant un-

der Barycentric refinements and comes from the only eigenvector of
eigenvalue 1 of the transpose ST of the Barycentric refinement op-
erator Sij = i!Stirling2(j, i) mapping the f -vector of G to the f -vector
of its Barycentric refinement G1. Other examples of valuations are the
number of 0-dimensional points in G or the volume, the number of
sets in G of cardinality d + 1 if G has dimension d. Also the other
eigenvectors of the Barycentric refinement operator can be of topolog-
ical interest. For geometric graphs, discrete manifolds, in particular,
half of the eigenvectors lead to valuations which are zero. They are re-
lated to Dehn-Sommerville invariants. On the other hand, a Betti
number A→ bi(A) is no valuation in general.

2.3. A multi-linear valuation X is function of Gk = G×G× · · · ×
G which is a valuation in each of the k coordinates [12]. Examples
of bilinear valuations are vkl(G), counting the number of ordered
pairs of simplices (a, b) of dimension k and l which intersect. By a
generalization of the discrete Hadwiger theorem, if G has dimension
d, then the valuations vk,l(G) with 0 ≤ k ≤ l ≤ d + 1 form a basis
for the linear space of bilinear valuations. If vkl(G) is the symmetric
f-matrix encoding the intersection data, then every bilinear valuation
can be written X(A,B) =

∑
i,j Xijvij(G), where Xij is a symmetric

(d + 1) × (d + 1) matrix. Similar statements hold for any k-linear
valuation.

2.4. An example of a bilinear valuation is the Wu intersection num-
ber [12] ω(A,B) =

∑
x∼y ω(x)ω(y), where the sum is over all ordered

pairs of elements x ∈ A, y ∈ B which intersect. The Wu character-
istic is then ω(G) = ω(G,G). Wu characteristic has many important
properties: it is invariant under Barycentric refinements, if x is a sim-
plex, then ω(x) = (−1)dim(x), and if G is a discrete manifold with (d−1)
dimensional boundary, then ω(G) = χ(G)− χ(δG). Also higher order
Wu characteristics ωk exist. The first one, ω1, is the Euler charac-
teristic χ, the second ω2 is the bilinear Wu characteristic. Each of these
characteristic has its own differential complex and its own cohomology.
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This is useful, as now not only the valuations, but also the Betti num-
bers are combinatorial invariants. Unlike simplicial cohomology which
is invariant under homotopy, the finer connection cohomologies related
to ωk are not.

3. Calculus

3.1. Given a finite abstract simplicial complex G, equipped with an
orientation of the simplices, one can look at the linear space Λk(G) of
anti-symmetric functions on the set of k-simplices. The initial choice of
the orientation of G is a basis selection. It is a gauge choice as custom
in linear algebra which does not affect interesting quantities. The ori-
entations on each simplex x ∈ G do not have to be compatible so that
every abstract simplicial complex G can be oriented. A complex can
be called compatibly orientable, if there is a choice of orientation
which is compatible: if x ⊂ y are simplices in G, then the orientation
of x is inherited from the orientation of y. As in the continuum, exam-
ples like the Möbius strip or Klein bottle show that not all complexes
possess a compatible orientation. But every simplicial complex can
be oriented similarly as any vector space can be equipped with a basis.

3.2. The space Λk(G) is also called the space of discrete k-forms on
G. It has dimension vk(G). We think of each Λk(G) as a fiber bundle
over G. We can extend a form f from sets in G to sub-complexes
of G to get signed valuations f(A) =

∑
x∈A f(x) which still satisfy

f(A∩B) + f(A∩B) = f(A) + f(B). Evaluating a signed valuation is
integration f(A) =

∫
A
f .

3.3. The integration of signed valuations corresponds to geometric
measure theory, while the integration of valuations corresponds to
geometric probability theory=integral geometry. The former is
orientation sensitive like line or flux integrals in school calculus. The
later does not depend on the orientation and relates to integrations
in calculus, like arc length or surface area. In the discrete, it can be
important to be aware of the difference and distinguish integration of
valuations and integration of signed valuations.

3.4. The exterior derivatives dk : Λk(G) → Λk+1(G) are linear
transformations which extend to a linear transformation d on the graded
vector space Λ = ⊕Λk, the vector space of discrete differential
forms. A differential form is just a function from G to R satisfy-
ing f(T (x)) = sign(T )f(x) for any permutation T of the simplex x.
The boundary operation δ maps a sub complex A to its boundary
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chain δA, where the orientation of δA is now compatible with the ori-
entation of A. The image δA of a complex is not a complex any more
in general. For A = xu + yu + zu + x + y + z + u for example, then
δA = (u− x) + (u− y) + (u− z) = 3u− x− y− z. A signed valuation
f can be extended linearly to the group of chains on G however.

3.5. The exterior derivative d defines what we will call a discrete el-
liptic complex D = (d + d∗) : E → F : the non-zero eigenvalues of
the Hodge operator D2 restricted to the space E of even forms, are in
bijective correspondence with the eigenvalues of D2 restricted to the
space F of odd forms. When talking about an elliptic complex, we
have three things: a linear map D = d + d∗ incorporating all exterior
derivatives dk, where d2 = 0, a domain E and a co-domain F . The
exterior derivatives dk can be rather general however.

3.6. If f is a signed valuation, Stokes theorem is f(δA)) = df(A).
For example, if A is a two-dimensional connected sub-complex of G
equipped with a compatible orientation and having the property that
every unit sphere S(x) in A is either a circular graph Cn with n ≥ 4 or a
linear graph Ln with n ≥ 2, then A is called a surface. The boundary
δA is then a curve, a one-dimensional complex consisting of finitely
many circular directed graphs. Stokes theorem is then the classical
Stokes theorem from school calculus. If A is a sub-complex for which
every unit sphere is either a 0-sphere (a 2-point graph without edges),
or a 1-point graph P1, then every connected component has either 0 or
2 boundary points and

∫
A
df =

∫
δA
f is the fundamental theorem

of line integrals. If A is a sub-complex for which every unit sphere
is a 2-sphere or a 2-disc, then the boundary δA is a discrete closed
2-manifold, a complex for which every unit sphere is a circular graph.
In that case, Stokes theorem corresponds to the classical divergence
theorem.

3.7. Every differential complex D = d + d∗ defines a flavor of cal-
culus. In each case, Stokes theorem is the defining relation for the
boundary operation δ. The boundary δx of a simplex x is now no
more given by a collection of simplices or chain. It must be probed
with functions f(δx) = df(x). The boundary δx can now be more
extended unlike in classical or in connection calculus, where in the
quadratic case, the boundary δ acts on pairs of intersecting simplices
as δ(x, y) = (δx, y)− (x, δy).

3.8. A example where the boundary δ is no more in sync with the
geometric boundary is if D(t) = dt + d∗t + bt is an isospectral Lax
deformation D′ = [B,D] with B = d− d∗ of the Dirac operator d+ d∗.
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[10, 9] This is a deformation dt+d∗t of a complex. The boundary δtA of
a geometric object A is now not a linear combination of simplices any
more. Stokes theorem f(δA)) = df(A) is still a definition. But now,
a traditional line integral of df along a closed loop is no more zero in
general as a closed loop can not be written as a linear combination
of boundaries of simplices any more. We speculated here in an earlier
version that this could lead to new field. Actually, no new fields have
appeared. The reason is that the kernels of d and d∗ both do not change
under the isospectral deformation.

4. Differential complexes

4.1. A discrete differential complex is defined as a sequence of
linear maps d : Ek → Ek+1 with dk+1dk = 0 with E =

⋃
k E2k and F =⋃

k E2k+1. To be more concrete, the finite dimensional vector spaces
Ek are required to be subspaces of tensor products of the de-Rham
complex Λk or connection complex. We ask this so that the individual
fibers are local. A complex defines a Dirac operator D =

∑
i di + d∗i

with domain E and co-domain F . In the case of the de Rham complex
Λk, we can take E the set of even forms and F the set of odd forms.

4.2. Given a differential complex, the analytic index of the Dirac op-
erator D : E → F . is defined as dim(ker(D)) − dim(ker(D∗)) =
dim(E) − dim(F ). For example, for the connection complex of or-
der n, for which Λk(G) has as dimension the number of n-tuples of
simultaneously intersecting simplices adding to dimension k, then the
analytic index of D is the n’th Wu characteristic. If E = F = Λ(G),
then the analytic index is zero as the kernel of D and D∗ agree.

4.3. Examples.
1) Let E be the linear space of even differential forms and F the linear
space of odd differential forms. The analytic index of D = (d + d∗) is
the Euler characteristic χ(G).
2) Let E = Λk(G) and F = {0}. Then, the analytic index of D = dk
is vk.
3) Let E = Λ = ⊕kΛ2k and F = {0} and D =

∑
i a2id2i with ai 6= 0,

di = 0 for all i, then the analytic index of D is
∑

i v2i. This is clearly
not an elliptic complex.
4) The analytic index d0 + d1 mapping even forms E = ⊕Λ2k to odd
forms F = ⊕Λ2k+1 is b0 − b1, if G is equipped with the 1-skeleton sim-
plicial complex. For G = K3 with this complex χ(G) = 0 as the two
dimensional simplex does not count, the complex is a discrete circle.
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4.4. If A is a sub simplicial complex of G, we have a sub differential
complex D|A : E|A → F |A. Any subcomplex A of G with the same
base V =

⋃
x∈G x has its own Euler characteristic χ(A) =

∑
x∈A ω(x)

which can be written as
∑

i(−1)kbi(A), where bi are the Betti numbers
of the sub differential complex.

Lemma 1. For any discrete differential operator D : E → F , the
map which assigns to a sub-complex A the analytic index of D|A is a
valuation. Every linear or multi-linear valuation can be represented as
an analytic index of some differential complex.

Proof. The kernels A → ker(di|A) of di are valuations. So are the
kernels of d∗i and the sums. To get a linear valuation vk(A) counting
the number of k-dimensional simplices in A, take Ek = Λk(G) and all
other Ej = 0. Then let all dj = 0. Now, dimker(dk|A)−dimker(d∗k|A) =
dim(Ek) = vk(A).
To get vij for example, let all Ek be zero except Ei+j which is the vector
space of all functions on (x, y) with dim(x) = i, dim(y) = j. Let all
Fk = {0}. Let all dk = 0. Now, ker(D)− ker(D∗) = vij. �

4.5. The reason to focus on Fredholm indices rather then the nullity
of the operator itself is that they have a chance of staying bounded
in continuum limits and also because i(AB) = i(A) + i(B). In finite
dimensions, the Fredholm indices is just i(A) = dim(E) − dim(F ),
independent of A. This follows from the rank-nullity theorem and
the fact that the row and column ranks of a finite matrix A are the
same.

4.6. In the discrete, Atiyah-Singer or Atiyah-Bott like results still have
some interest as we can equate both with cohomological data as well
as topological data with the valuation, at least if the complex is ellip-
tic. Classically, ellipticity is defined by the symbols of the differential
operators. Instead of trying to translate a continuum definition to the
discrete, we have chosen to define ellipticity in the simplest way to have
the proofs work.

4.7. A differential complex (D,E, F ) defined by maps Λk →dk Λk+1

is called an elliptic complex if L = (d + d∗)2 has the property that
the spectrum of non-zero eigenvalues of L on E is the same than the
spectrum of non-zero eigenvalues of L on the odd forms F . We wrote
”spectrum” rather than ”set” to stress that also the multiplicities of the
eigenvalues have to be the same. The simplest proof of McKean-Singer
[15] relies on this symmetry [1] and can be adapted to the discrete [7].
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5. Theorems

5.1. The discrete version stated here only requires knowledge of finite
sets and finite matrices. It is a first attempt to emulate those classical
theorems, risking of course to appear preposterous.

5.2. Given an elliptic differential complex D : E → F over a simplicial
complex G. The analytic index of D is dim(ker(D))− dim(ker(D∗)).
The cohomological index of D is

∑
i(−1)kbk(G,D,E, F ), where bk

are the Betti numbers defined by the cohomology of D. The cur-
vature of a pairwise intersecting simplex tuple x = (x1, . . . , xk) is∏

j ω(xj). The curvature of a vertex v ∈ V is defined as K(v) =

(
∑

x∈Gk(v) i(x))/
∑

x∈Gk(v) 1), where both sum is over the set Gk(v) of

pairwise intersecting k tuples (x1, . . . , xk), v ∈
⋃
xj. The topological

index is then defined as
∑

v∈V (G) K(v). In the Gauss-Bonnet case,

K(v) = 1− V0
2

+ V1
3
− V2

4
+ · · · , where Vk(v) is the number of k-simplices

in the unit sphere S(x) (often called link in the simplicial complex
literature). This formula [4] appeared already in [14]. Almost a hun-
dred year old is the planar case where the curvature is 1− d(v)/6 with
vertex degree d(v) appeared in the context of graph colorings.

Theorem 1 (Atiyah-Singer like). The analytic index of D is equal to
the cohomological index and equal to the topological index.

Proof. The super trace str(e−tD
2
) is independent of t. For t = 0 it

is the super trace of 1 which is the analytic index of D. Now apply
the heat kernel deformation to make the Euler-Poincaré equivalence to
cohomological data. For t → ∞, the non-zero eigenspace of D2 dies
out and only the kernels survive. Since by Hodge, the dimensions of
the kernels of L restricted to k-forms is bk(G), the super trace in the
limit t→∞ is the cohomological index.
The topological index is obtained by pushing the defining combinatorial
data located on simplices to the zero dimensional part of space. This
can be done in various ways. The above definition of K(v) does this
by distributing each value equally to its vertices [4]. An other extreme
case is Poicaré-Hopf [5] which lets the curvature flow along the gradient
of a function f having the effect that curvature remains as integer
index. �

5.3. Atiyah-Bott is a Lefschetz type result which relates a cohomolog-
ically defined Lefschetz number with a sum of indices of fixed points of
the endomorphism of an elliptic complex. The proof in [8] for Whitney
complexes works for general simplicial complexes. Simpler is a heat
deformation approach.
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5.4. Let T be an automorphism of the elliptic complex. The Lefschetz
number of T is the super trace of the linear map induced on cohomol-
ogy. Let Fix(T ) be the set of elements in G which are fixed under T and
let V (T ) denote the set of vertices which contain an element in Fix(T ).
Define for x ∈ Fix(T ) the index i(x) as (−1)dim(x)det(T |x)Tr(D|x). The
index of v ∈ V is then defined as i(v) =

∑
x∈G,v∈x i(x)/(dim(x) + 1).

Theorem 2 (Atiyah-Bott like). The Lefschetz number of T is equal to
the index sum over all fixed points.

Proof. Also here, there are two deformations: the first Euler-Poincaré
deformation equates a sum of fixed point indices with the Lefschetz
number, the second, the Gauss-Bonnet or Poincaré-Hopf deformation
expresses this Lefschetz number as an integral of curvature over space,
where in the Poincaré-Hopf case, the curvature is a divisor. Averag-
ing the curvature over all locally injective functions gives the Euler
curvature. �

5.5. In the elliptic case, the cohomological data do not change when
making a topological deformation like a Barycentric refinement. The
curvature data however change. This can be exploited for fixed point
results. The Atiyah-Singer or Atiyah-Bott theorems allow for more
flexibility as one can chose also the elliptic complex. The de Rham
complex or the more general connection complexes are the guiding
examples.

6. Remarks

6.1. Both Atiyah-Singer and Atiyah-Bott are milestones in geome-
try which require a decent amount of technical background in func-
tional analysis, differential geometry and topology [17, 19]. Heat ap-
proaches have been established in the continuum [16], first by V.K.
Patodi. The above results have much less structure as they are de-
fined for general abstract finite simplicial complexes and don’t as-
sume that the geometries have any manifold type. The analytic in-
dex dimker(D) − dimker(DT ) for a finite dimensional linear operator
D : E → F is always just dim(E)− dim(F ) and so independent of D.
So, if we look at a discrete analogue of an elliptic complex, then the
analytic index is already the combinatorial quantity under considera-
tion.

6.2. Whether there is in the manifold case a refinement- averaging pro-
cedure which produces the classical results, is not clear at the moment.
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Especially the topological index has some flexibility still. The curva-
ture should depend naturally on the elliptic complex. If D = RD0R

∗,
where D0 is the connection Dirac operator, then the curvature can be
obtained as the expectation of the Poincaré-Hopf indices E[if ] where
the measure on the functions is the push forward of the uniform mea-
sure by R. So at least in the case of a Hamiltonian deformation of the
complex there is a natural way to deform the curvature by deforming
the measure on the space of functions and getting curvature through a
deformed expectation.

6.3. The mathematics underlying the geometry of finite sets is about
a century older than Atiyah-Singer. Combinatorial versions hardly
replace the continuum results but this note could one day lead to a
pedagogical entry point into the topic. I personally still struggle
to understand the Atiyah-Singer and the Atiyah-Bott index theorems.
The theorems 1 have not yet entered undergraduate courses. It will
probably need an other half of a century to achieve that. And this is
important: to cite Atiyah from [18]: ”The passing of mathematics on
to subsequent generations is essential for the future, and this is only
possible if every generation of mathematicians understands what they
are doing and distills it out in such a form that it is easily understood
by the next generation.”

6.4. The connection of discrete with the continuum needs still to be
explored. Maybe the discrete case can in a limiting case become the
continuum case. It is also possible that the discrete case remains a car-
icature 2. We think however that taking Barycentric limits combined
with a suitable smoothing process can lead to classical differential op-
erators which are Fredholm and have a finite index. But there are other
battles which need to be fought first in the discrete.

6.5. An other link between the discrete and continuum is integral ge-
ometry: if γ : [a, b] → M, t → r(t) is a smooth curve in a smooth

connected manifold M , let L(γ) =
∫ b
a
|r′(t)| dt denote its length.

Given a probability space (Ω, P ) of smooth functions ω on M one
can look at the random variable Nγ(ω) counting the number of in-
tersections of surfaces {ω = 0} with γ. Counting the number Nγ of
transitions from ω ≤ 0 to ω > 0 defines a Crofton pseudo metric
d(x, y) = infγ(x,y),Nγ∈L1(Ω,P ) E[Nγ], where the infimum is taken over all

1We mean of course a treatment with full proofs.
2There is an SNL sketch from 1992 with Tom Hanks of an “prize is right” show,

where a cordless telephone is sold to contestants. The deal was a traditional
phone, from which the cord has been cut.
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curves connecting x with y with the understanding that d(x, y) = ∞,
if there should be no γ for which Nγ is in L1. The Kolmogorov quo-
tient (MP , dP ) consists of all equivalence classes of the equivalence
relation given by d(x, y) = 0. For discrete measures P , one gets like
this discrete metric spaces and so finite simplicial complexes. Nash em-
bedding M into an ambient Euclidean space and taking a rotationally
invariant measure P leads to the Riemannian metric on M because it is
the Eucliden metric in the ambient space. As curvature in the discrete
can be expressed integral geometrically [6, 11], also Gauss-Bonnet type
results should go over. Bridging the functional analysis of the Dirac
and Laplace operators and the topological index both remain compli-
cated tasks and as the continuum is technical, no real short cut might
exist.

6.6. Elliptic differential complexes can be added and multiplied and
so extended to a ring over a fixed simplicial complex G. As we can also
look at the strong ring generated by simplicial complexes, there is an
other possibility: extend the strong ring of simplicial complexes to a
strong ring of differential complexes [13]. Now it appears that not only
the category of differential complexes over simplicial complexes but also
the sub-category of elliptic differential complexes is a cartesian closed
category.
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