Rough plan:
Talk about various ways how one can attach some (usually Poisson) varieties to reductive groups + some data using the affine Grassmannian & to relate this to some varieties that were discussed in the talks of Etingof, Kontsevich & Gaiotto (Poisson snarks).
In particular, I will talk about certain varieties which "provide" a quasi-classical version of Langlands lifting (also constructed by V. Lafforgue).

Digression on Coulomb branches of 3d N=4 gauge theories (BFN)
Setup Fix G - connected reductive /C
V - a representation of G
("secretly" everything should depend only on $V \otimes V^* = T^* V$)

Physicists say that to this data one can attach certain 3d N=4 gauge theory (quiver)
can attach certain 3d $\mathcal{N}=4$ gauge theory (quantum) with \mathcal{M}_4, \mathcal{M}_c
Higgs and Coulomb branches of the moduli space of vacua. Poisson, generically symplectic affine varieties

$$\mathcal{M}_4 = T^* V \sslash G \quad \text{(potentially alg)}$$

$\mathcal{M}_c \rightarrow \quad \text{dim } \mathcal{M}_c = 2 \text{rank } (G)$

biholomorphically isomorphic to $(T^* T^V)/W$

$T^V \subset G^v$ maximal torus W-Weyl group

Properties: $\mathcal{M}_{c,G,v} = \text{Spec } (A_{c,v})$

1. $A_{c,v}$ is f. generated, integral & integrally closed

2. $\mathcal{M}_{c,G,v}$ is birationally isom to $(T^* T^V)/W$

3. $A_{c,v}$ is equipped with canonical non-commutative deformation, which in particular defines a Poisson alg. structure. \mathcal{M}_c is gen. symplectic

A notion (due to Beauville) of a singular symplectic variety. Conj. \mathcal{M}_c is always singular symp.
\[\text{Summary. Conj. } \mathcal{M}_C \text{ is always singular symp.} \]
\[\text{A. Weekees proved it in certain generality.} \]

4) \(\exists \mathfrak{g}_G \)-action on \(\mathcal{M}_C \) (\(\mathfrak{g}_G \)-grading on \(A_G, V \)) non-comm. deformation is graded over \(\mathbb{C}[[\hbar]] \)
\[\text{deg } \hbar = 2 \]
If \(V \) is "sufficiently large" then \(\mathcal{M}_C \) is conical.

5) Let \(G_F \) ("flavour symmetry") be another reductive group \(G_F \to \text{Aut}_G(\mathfrak{g}) \)
Then \(\mathcal{M}_C \) will acquire a canonical symplectic deformation over \(\mathfrak{g}_F / \text{Ad } G_F = \mathfrak{t}_F / W_F \)

\[\text{Construction:} \]
\[A_{G', \nu} = H^*(\omega_{S_{G', \nu}}) \]

\[\text{Ex. } V = 0 \quad A_{G, \nu} = H^*(\omega_{G^0 \mathcal{C}_G}) = H^*(\omega_{G^0 \mathcal{C}_G}) \]
\[K = (\mathbb{C}[t]) \supset \mathcal{O} = (\mathbb{C}[t]) \]
\[\text{Spec } A_{G, 0} = \text{"regular centralizer" in } \mathfrak{g}_V \quad e_{g, \nu} \]
\[e_{g, \nu} = \{ (x, g) \mid x \in \mathfrak{g}_V \text{ in the Kostant section, } \}
\[\parallel \quad g \in Z_{G^0}(x) \]
\[g \in Z_{G^\nu}(x) \]

\[\text{Whit} \setminus \mathbb{T}^* G^\nu / \text{Whit} \]

\text{Whit} = \text{Hamiltonian reduction w.r.t.} \ (U^\nu, \chi)

\chi - \text{generic character} \quad U^\nu \subset G^\nu \text{ max. unipotent}

\[S_{G^\nu} = \prod (\mathfrak{g}_{1, 2} \mathfrak{g}_{1, 2}, k_1 s) / \mathfrak{g}_c - G \text{-bundle on } \]

\[D = \text{Spec } \mathcal{O} \]

\(\kappa \)-isom. between \(\mathfrak{g}_{1, 2} / \mathfrak{g}^* \) and \(\mathfrak{g}_{2} / \mathfrak{g}^* \)

\(\mathfrak{g}^* = \text{Spec } \mathcal{O} \]

\(s \) - "common \(\nu \)-valued section of \(\mathfrak{g}_{1, 2} \) and \(\mathfrak{g}_{2} \) on \(D \).

\[s_c \in \Gamma (\mathfrak{g}_{1, 2} \mathfrak{g}_{1, 2}, \mathcal{O}_D) \quad \kappa (\pi_1 / \mathfrak{g}^*) = \pi_2 / \mathfrak{g}^* \]

\[S_{G^\nu} = \mathcal{R}_{G^\nu} / G(\mathcal{O}) \]

\(\mathcal{R}_{G^\nu} \) - same data but \(\mathfrak{g}_2 \) is trivialized on \(D \).

\[\mathcal{R}_{G^\nu} \rightarrow \text{Gr}_6 \]

ind-scheme

\[\mathcal{R}_{G^\nu} \subset \text{Gr}_6 \times V(\mathcal{O}) \]
$A_{G_1V} = H^* \left(\mathcal{O}(0), R_{G_1V} \right) \right.$

Algebra structure is convolution

\mathbb{G}_m-action = homological grading

Quantization = make everything equivariant with respect to loop rotation

Let $\pi : R_{G_1V} \to \text{GR}_C$

$A_{G_1V} = \pi_\ast \mathcal{O} \in \mathcal{D} \left(\text{GR}_C \right)$

Ring object

$A_{G_1V} = H^* \left(\mathcal{O}(0), A_{G_1V} \right)$

Apply the derived Satake functor to A_{G_1V}

$\mathcal{D}_{\mathcal{O}(0)} \left(\text{GR}_C \right) \xrightarrow{\Phi} \mathcal{G}^\mathcal{U}$ - equivariant dg-module over $\text{Sym} \cdot \mathcal{O}^\mathcal{U}[-2]$

$\Phi(A_{G_1V})$ - an algebra over $\text{Sym} \cdot \mathcal{O}^\mathcal{U}[-2]$ with a compatible $\mathcal{G}^\mathcal{U}$-action

$A_{G_1V} = \text{Restriction of } \Phi(A_{G_1V})$ to Kostant section
A_G,V = Restriction of \(\Phi(A_G,V) \) to Kostant section

Poisson, generically symp.

Remark How to prove that \(A_G,V \) is \(f \)-generated integral, integrally closed etc.

Define a filtration on \(A_G,V \) by dominant coweights of \(G \)

\[\pi : R_{G,V} \rightarrow \mathcal{O}_G \]
\[A_G,V = H_{x, BM}^{G(\partial)} (R_{G,V}) \]
\[H_{x, BM}^{G(\partial)} (\pi^{-1} (G^{\lambda})) = A_G^A \leftarrow A_G \rightarrow A_G,V \]

This is a filtration \(A_G^A \cdot A_G^M \cdot A_G^M \rightarrow A_G,V \)

\[\text{gr } A_G,V \text{ is something very explicit} \]

(can be described explicitly by generators and relations)

Remark You can ask if the same works for \(\Phi(A_G,V) \) - algebra over \(\text{Sym}_G \) with \(G \)-action

Probably the same argument will prove finite generatedness of \(\Phi(A_G,V) \).

Plan Fix two groups \(L, M \) with a homomorphism
Plan Fix two groups \(L, M \) with a homomorphism \(L^\nu \to M^\nu \).

Want To define an affine Poisson variety
\[X_{L, M} = \text{Spec} \, A_{L, M} \] which is "quasi-classical version" of local Langlands lifting.

Poisson action of \(L \times M \)
\[\text{Whit}_M (X_{L, M}) = \text{Whit}_L (T^* L) \, \, (\star) \]

Example \(M = L^n = L \times \ldots \times L \)
\[L^\nu \to M^\nu \] is the diagonal embedding

\(X_{L, M} \) - variety with action of \(L^{n+1} \)

Poisson

\(X_{L, n} \) - variety with action of \(L^n \)

\[\text{Whit}_L (X_{L, n}) = X_{L, n-1} \]

\[\xrightarrow{\phi} \]

\[L^\nu \to M^\nu \]

\[A_{L, M} \]

\[\text{Whit}_L (\otimes_{L, M}) \]

\[B_{L, M} \in D_p (\mathcal{O}_{L^\nu}) \]

endowed with \(M \)-action
endowed with M-action

$i : \text{Gr}_{L^u} \to \text{Gr}_{M^u}$

$M \in \text{Reg}_{M^u} \in \mathcal{D}_{M^u(\mathfrak{o})} (\text{Gr}_{M^u})$ - perverse sheaf which corresponds to $\mathbb{C}[M]$ under geometric Satake

$\mathcal{O}_{L^u(\mathfrak{o})} (\text{Gr}_{L^u})$

$\mathcal{O}_{L^u}(\mathcal{O}_{L^u,M})$ - algebra over $\text{Sym } L$ with an action of $L \times M$

(it also has a natural action of $\text{Sym } M$)

Conjecture $\Phi_{L^u}(\mathcal{O}_{L^u,M})$ is finitely generated integral, integrally closed etc...

Theorem True when L, M are of type A

(in this case this turns out to be a special case of the Coulomb branch construction)