GLC with restricted variation:

Conjecture: \(X = \text{curve}/k, \ G = \text{reductive}/E \)

\[
\text{Sh}_W(\text{Bun}_G) \simeq \text{IndCoh}_{\text{Nilp}}(\text{LocSys}^\text{vs}(G)).
\]

One of 3 contexts:

Spaces/\(k \), sheaves/\(E \):

1) \(l \)-adic: \(E = \overline{Q}_l, \ l \neq \text{char} \ k \)
2) de Rham: \(E = k, \ \text{char} \ k = 0 \)
3) Betti: \(k = \mathbb{C} \)
Automorphic Sheaves (Bun_G):

Ind-completed derived category of sheaves on $\text{Bun}_G - / s.\text{supp} \subset \text{Nilp}$

Automatically holonomic

Galois

Ind$\text{Coh}_{\text{nilp}}(\text{LocSys}_G)$

Qcoh renormalized.

Loc Sys_G = moduli stack of local systems with restricted variation.

Kittens

Lagrangian Nilp

Stiiggs bundle?

$\mathcal{J} \times \text{Bun}_G$ s-equivalence classes G
Suppose $F \in \text{Shv}(\text{Bun}_G)$. For any $\nu \in \text{Rep}(G)$, we have $\mathcal{H}_\nu(F) \in \text{Shv}(\text{Bun}_G \times X)$.

Example: $F = \text{Hecke} \text{- eigensheaf}$ for eigenvalue $\varepsilon \in \text{LocSys}_G$.

$\mathcal{H}_\nu(F) = F \boxtimes V_\varepsilon$.

By Satake, "universal" Hecke functor.
Theorem (Nadler-Yun):

If $F \in \text{Shv}(\text{Bun}_G)$, then

$$
\forall V : \text{Sing Supp}(\mathcal{H}_V(F)) \cap \text{Nil}_p \times \{0\} \subset T^* X.
$$

(i.e., $\mathcal{H}_V(F)$ is "lisse" along X)

Remark: It is in fact true that $\mathcal{H}_V(F) \in \text{Shv}_{\text{Nil}_p}(\text{Bun}_G) \otimes \text{Qlisse}(X)$

\[F \quad \text{Bun}_G \]

\[\mathcal{H}_V(F), \text{Bun}_G \times X \]

\[\text{Nil}_p \times \{0\} \subset T^* X \]

"completed" l-systems on X.
Theorem (converse claim)

Suppose \(F \in \text{Shv} (\text{Bun}_G) \) satisfies \(\forall V \in \text{Rep}(G) \)

\(\text{Sing Supp} \mathcal{H}_V (F) \subset T^* \text{Bun}_G \times \mathbb{P}^3 \) \quad \text{(Hecke-lisse)}

Then \(F \in \text{Shv}_{\text{Nilp}} (\text{Bun}_G) \).

Corollary All Hecke eigen-sheaves are in \(\text{Shv}_{\text{Nilp}} (\text{Bun}_G) \).
Proof of Thm: manipulations with Sing Supp \overline{S} $\overline{t}$$\overline{p}$$\overline{s}$ $\overline{u}$$\overline{n}$$\overline{g}$- $\overline{H}$$\overline{i}$$\overline{g}$$\overline{s}$ bundles.

Technical issue: need estimates on $\text{Sing Supp} \overline{H}^\cdot \overline{V}(F)$ (in terms of $\text{Sing Supp}(F)$) from below (while Nadler-Yun direction needs estimates from above).

Q.E.D.
Side remark

The "usual" Geometric Langlands conjecture (de Rham)

\[\text{D-mod} (\mathcal{Bun}_G) \rightarrow \text{IndCoh}_\text{alg} (\text{locSys}_C) \]

must respect Hecke action (better: put together as action of \(\mathcal{O}_{\text{coh}}(\text{locSys}_C) \))

So (not surprisingly), "usual" conjecture \(\Rightarrow \) restricted conjecture

\(\text{de Rham} \) essentially equivalent.
2. **Spectral decomposition**: "Hecke-lisse things live over \(\text{LocSys} \)"

- **Reminder**: \(C = \text{category} \)
- **Bethi**: Action of \(\text{Rep}(G) \)
- **de Rham**: on \(C \) by Hecke functors

 (compatible with fusion)

- **Rem**: Pack this action as

 \(V_n \): act by Hecke functors at \(n \) points

 + compatibility with restriction to diagonals.

 \[\mathbb{C}^n \to \mathbb{C}^n \]
Spectral decomposition. Theorem:

Let C be a category together with a restricted action of $\text{Rep}(G)$.

1.Nice enough

2. $\forall I, J \in \mathcal{X}$, given $\text{Rep}(G)^{\text{op}} \otimes C \to C \otimes \text{Qlisse}(X)$ is compatible with \otimes.

3. Compatible with $I \otimes J$.

C-valued L-systems on X.

I.e., monoidal functor $\text{Rep}(G)^{\text{op}} \otimes \text{End}(C) \otimes \text{Qlisse}(X)$.

(lisse action?)
Then C acquires an $\mathcal{O}_{\text{loesys}}(\text{locSys}_G) 	o C$ (encodes all Hecke functors via tautological bundles: $\text{Rep}(G) \to \mathcal{O}_{\text{loesys}}(\text{locSys}_G(x)) \otimes \mathcal{Q}_{\text{lisser}}(x) \otimes$).

Proof Technical, but main idea is simple: (and familiar)

If locSys_G were affine, we would need to construct $K[\text{locSys}_G]$ from input date (restricted action).
Technicalities:

\[\operatorname{LocSys}_G \text{ is not affine.} \]

Instead, it is

\[\bigcup \text{ formal affine schemes} / G \]
Why "Spectral decomposition"?

Re: \(\text{locSys}_G^{\text{res}} = \bigcup \text{locSys}_G^{\text{res}} \)_semisimple

Hence: Any \(C \) decomposes

\[C = \bigoplus C^g \]

\(C^g \) lives over \(\text{locSys}_G^{\text{res}} \),

with restricted action of \(\text{Rep}(G) \).

E.g.: \(G \) is irreducible \(\rightarrow C^g \) is almost "eigenspace"
In particular, applying to

\[C = \text{Shr}_{\text{Nilp}}(Bun_G) \]

 Automorphic.

So \(\text{Shr}_{\text{Nilp}}(Bun_G) \)

\(\subset \) \((\text{Shr}_{\text{Nilp}}(Bun_G))^c \)

[Frankly: This is not immediate for technical reasons, but still true]
E.g., \mathfrak{a} is irreducible:

Galois side:

\[\text{LocSys}_{\mathfrak{a}, G} \] is formal:

\[(\text{LocSys}_{\mathfrak{a}, G})^{\text{red}} = pt/\text{Aut}. \]

\[\mathcal{Q} \text{Coh}(\text{LocSys}_{\mathfrak{a}, G}) \]

is generated by

\[\mathcal{Q} \text{Coh}(\text{LocSys}_{\mathfrak{a}, G}^{\text{red}}) \]

Automorphic side:

\[G \subset \text{Shv}_{\text{Nilp}}(\text{Bun}_{G}) \]

generated by G-eigen objects.
Construction of spectral projector (Beilinson).

Fix $F \in \text{LocSys}_G$.

Define

$$R_F : \text{Shv}(\text{Bun}_G) \to \text{Shv}(\text{Bun}_G)$$

s.t.

1) $R_F(-)$ is eigensheaf for F

2) R_F is universal:

(left adjoint to

$$\begin{array}{ccc}
\text{Shv}(\text{Bun}_G) & \to & \text{Shv}(\text{Bun}_G) \\
F \text{-eigen} & \to & \text{("inclusion" of eigenspace)} \\
\end{array}$$

not really.}
R_f defined explicitly via integrals of Hecke functors corresponding to regular rep. Since $R_f(-)$ has eigenproperty, $R_f(-) \in \text{Shv}_{\text{nilp}}(\text{Bun}_G)$.

Moreover: $R_f(-)$ for varying F almost generate $\text{Shv}_{\text{nilp}}(\text{Bun}_G)$.
Imagine there's no S-equivalence and no reducible local systems, too.

Galois side

\[\text{Loc Sys}_{\text{res}} = \coprod \text{Loc Sys}_{\text{res}}, \]

\[\Omega \text{Loc} \left(\text{Loc Sys}_{\text{res}} \right) = \bigoplus \Omega \text{Loc} \left(\text{Loc Sys}_{\text{res}}^{\text{red}} \right) \]

\[\bigoplus \Omega \text{Loc} \left(\text{Loc Sys}_{\text{res}}^{\text{red}} \right) \]

Automorphic side

\[\bigoplus \text{Shr}_{\text{Nilp}} \left(\text{Bun}_G \right) \]

(Spectral decomposition)

\[\bigoplus \text{Shr}_{\text{Nilp}} \left(\text{Bun}_G \right) \]

generated by Generalized eigenspaces

\[\bigoplus \text{Shr}_{\text{Nilp}} \left(\text{Bun}_G \right)_{\text{6-eig}} \]

Eigenspaces.
Because they are left-adjoint.

In fact, this works even with \(S \)-equivalence:
Correction: \((\text{LocSys}_{\text{res}}, \text{red}) \) is not discrete.

Replace \(F : \text{LocSys}_{\text{res}} \) with \(S \to \text{locSys}_{\text{res}} \) scheme.
Corollaries:

1. \(\text{Shv}_{\text{-nilp}}(\text{Bun}_G) \) is compactly generated by objects \(R(\delta_p), S - \text{locSys}_P, S \in \text{Bun}_G \)
In de Rham setting, $D_{\text{mod,}\text{nilp}}(\text{Bun}_G)$ has regular singularities (because generators do).

Remark: Restricted correspondence: (\mathcal{G})

\[\text{Betti} \]
\[\text{Shv}_{\text{Nilp}}(\text{Bun}_G) = \text{IndCoh}_{\text{Nilp}}(\text{locSys}^{\text{reg}}_{\text{Betti}}) \]

\[\text{de Rham} \]
\[D_{\text{mod,}\text{nilp}}(\text{Bun}_G) = \text{IndCoh}_{\text{nilp}}(\text{locSys}^{\text{reg}}_{\text{dR}}) \]
Rem (last time, Dennis):
In Betti contexts, it should be easier to show that $\text{Shr}(\text{Bun}_G)$ is a top. invariant of X.

Outline (conjectural):
Use $R_s(S)$ as generators in $\text{Shr}(\text{Bun}_G)$, Hom's between them are locally constant.

($\text{then for co-dim constructible objects as in Ben-Zvi-Nadler}$)

X varies

(Requires: using theory for variable X (and f-dims!))