Multiplication kernels

Talk by Maxim Kontsevich
Geometric Langlands seminar Feb 24, 2021
Notes by Pasha Etingof.

Maxim's joint work with A. Odesski (in preparation)
based on discussions with
V. Roubtsov, V. Golyshev, D. van Straten.

Let C be a cyclic group, $|C|=N$. Consider the space V of functions $C \to \mathbb{C}$.

On this space we have operators $(T^a f)(x) = f(x+a)$, $a \in C$.

These operators have eigenfunctions $\psi^\lambda(x) = e^{2\pi i \lambda(x)/N}$ such that $\lambda \psi^\lambda(0) = 1$ and ($\lambda \in C = \text{Hom}(C, \mathbb{Z}/N)$)
Let \(T_\alpha \psi = e^{2\pi i d \alpha} \psi \), (to avoid confusion we should not identify \(C \) with \(C^\chi \)).

We can form the addition kernel:

\[
K(x, y, z) = \frac{1}{N} \sum_{\lambda \in \mathbb{Z}/N\mathbb{Z}} \psi^\chi(x) \psi^\chi(y) \psi^\chi(z)
\]

= \(\delta(x + y + z) \),

symmetric in \(x, y, z \).

It is called this way because the function \(K(x, y, -z) \) is the delta function of the graph of addition, \(z = x + y \). We have

\[
\psi^\chi(x) \psi^\chi(y) = \frac{1}{N} \sum_{z} K(x, y, -z) \psi^\chi(z).
\]

This can be thought of as a commutative algebra structure defined by structure constants \(K(x, y, -z) \), and this algebra \(A \) acts on the space \(\mathcal{W} \) of functions \(\psi : C^\chi \to C \).
by \((\psi(x) \ast f)(n) = \psi(x) \ast f(x)\), so that
\[
\psi(x) \ast \psi(y) = \frac{1}{N} \sum_{n} K(x,y,-n) \psi(n).
\]
Moreover, we have the trace
\[
\text{Tr} : A \rightarrow C \text{ (the trace in the representation } W \text{ divided by } N)
\]
\[
\text{Tr} (\psi(x)) = \sum \psi(x) = \delta_{x,0}, \text{ and}
\]
\[
\text{Tr} (\psi(x) \ast \psi(y)) = \delta_{x,y}, \quad \text{Tr} (\psi(x) \ast \psi(y) \ast \psi(z)) = K(x,y,z).
\]
Thus \(A\) is a Frobenius algebra. We can also form \(m\)-point functions
\[
K_{m}(x, \ldots, x) = \text{Tr} (\psi(x_{1}) \cdots \psi(x_{m})).
\]
We have a natural isomorphism
\[
\gamma : A \rightarrow A, \quad f \mapsto \sum f(x) \psi(x),
\]
the module \(W\) has cyclic vector \(1\in W\), so that the map \(\alpha \mapsto \alpha \cdot 1\) gives an isomorphism \(A \cong W\). The composite
\[
V \rightarrow A \rightarrow W \text{ is the Fourier transform.}
\]
This story extends straightforwardly to the infinite setting when the group C is replaced with the circle $S^1 = \mathbb{R}/2\pi\mathbb{Z}$. In this case, $V = L^2(S^1)$, $T_a = \exp(i\alpha L)$ where

$$L = -i \frac{d}{dx}, \quad C^V = \mathbb{Z}, \quad \text{eigenfunctions}$$

$$\psi(x) = e^{2\pi i \lambda x}, \quad L \psi = \lambda \psi,$$

$W = \ell_2(\mathbb{Z})$,

$$\psi(x) \psi(y) = \frac{1}{2\pi} \int K(x, y, z) \psi(z) dz$$

where $K(x, y, z) = \delta(x+y+z)$, so except for analytic details the story is the same. It also extends to the case
$C = \mathbb{R}$, $C^\vee = \mathbb{R}$. In fact we can take for C any locally compact abelian group, and this is just the story of Pontryagin duality.

Of course this example is pretty trivial, but there are more interesting ones where addition is "non-deterministic", so the kernel $K(x,y,z)$ actually has full support. One of the simplest examples is the one of Gegenbauer formula.
Namely, consider the operator
\[L = -\frac{d^2}{dx^2} - \frac{1}{x} \frac{d}{dx}. \]
The solution of the equation
\[L \psi = \lambda^2 \psi \]
such that \(\psi(0) = 1 \)
has the form
\[\psi_\lambda(x) = J_0(\lambda x), \]
where
\[J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2} \right)^{2m} = \frac{1}{2\pi i} \oint e^{u(x-1/u)} du. \]

\[\text{Sonine- } \text{The Gegenbauez formula} \]

\[\int_0^\infty J_0(\lambda x) J_0(\lambda y) J_0(\lambda z) \lambda d\lambda = K(x, y, z) \]

where \(x, y, z \geq 0 \)
\[K(x,y,z) = \frac{1}{2\pi \Delta(x,y,z)} \]

where

\[\Delta(x,y,z) = \sqrt{(x+y+z)(x+y-z)(x+z-y)(y+z-x)} \]

is the area of a triangle with sides \(x,y,z\).

Here if there is no such triangle, the expression under the square root is \(< 0 \), and we should put

\[K(x,y,z) = 0. \]

The role of Fourier transform here is played by the Fourier-Bessel
transform.

In fact, this story can be deformed: we can consider the operator

$$L_\alpha = \left(\frac{d^2}{dx^2} + \frac{1}{x} \frac{d}{dx} - \frac{\alpha^2}{x^2} \right)$$

Then the solution of $L_\alpha \psi = \lambda \psi$ with $\psi(0) = 1$ is

$$\psi_\lambda(x) = J_\lambda(\lambda x).$$

Note that

$$J_{\lambda/2}(x) = \sqrt{\frac{2}{\pi x}} \sin(x),$$

so for $\lambda = \frac{1}{2}$ this specializes to the previous Fourier story.
(restricted to even functions) \textit{Note:} the minus in front of z is in $K(x, y, -z)$ now work with even functions and modded out $z-1$ This could be further deformed as follows.
Consider the operator
\[L = \partial_1 x(x-1)(x-t) \partial + x, \]
and consider solutions $\psi_\lambda(x)$ of $L \psi = \lambda \psi$ with $\psi(0) = 1$ which solve a suitable Sturm–Liouville problem.

There is a discrete spectrum, and
we have
\[
\sum_{x} \psi_{x} (x) \psi_{y} (y) \psi_{z} (z) = K(x, y, z)
\]
where

\[
K(x, y, z) = \frac{1}{\sqrt{\int_{t} (x, y, z)}^{2}}
\]

\[
\int_{t} (x, y, z) = (xy + xz + yz - t)^{2}
\]

\[+ 4xyz \left(1 + t - x - y - z \right). \]

As before, if this is negative, we are supposed to put
\[K(x, y, z) = 0. \]

Thus we have commuting integral operators \(H_x \) given by:

\[(H_x f)(y) = \int K(x, y, z) f(z) \, dz,\]

and \(H_x \psi_x = \psi_x(x) \psi_x \),

and \([H_x, H_y] = 0, H_x H_y = SK(x, y, z) H_z \, dz.\)

The important thing is that since the kernel \(K(x, y, z) \) is given by an algebraic formula, the operators \(H_x \) can be defined over
any local field \(\mathbb{F} \) as well as functions \(f_x \) (although the differential operator \(L \) will not be defined when the field is non-archimedean). One can also do this over a finite field.

The subtlety in the finite field case is that we cannot restrict ourselves to the "set of full measure, ignoring singularities," at which we'll have correction terms.
one expects that the story over \mathbb{F}_p should be "level 1" of the story over \mathbb{Q}_p. One may also be able to define a geometric version of $K(x,y,z)$ in terms of ℓ-adic sheaves which will take care of this problem. In any case, the "level 1" idea works for the above example of H_x. Note: the example of H_x corresponds to Langlands for $G = \text{PGL}_2$, $X = \mathbb{P}^1 \setminus \{0,1,\infty\}$.

This can in fact be discussed in the general
setting of symmetric monoidal categories. For motivation, consider a finite dimensional vector space V. Suppose we have a commutative family of linear operators on V parametrized by a space Σ. Thus we have a linear map $\phi : U \otimes V \to V$ such that the map

$$\phi(1 \otimes \phi) : U \otimes U \otimes V \to V$$

is Σ_2-invariant, i.e. gives rise to a map
\[\text{Sym} U \otimes V \rightarrow V. \]

Assume in addition that these operators act on \(V \) with simple spectrum. So \(V = \bigoplus \mathbb{C} \lambda \), \(\dim \lambda = 1 \).

Pick a vector \(\psi_\lambda \neq 0 \) in \(\mathcal{L}_\lambda \). This gives rise to a linear map

\[
R : V \otimes V \rightarrow V \otimes V
\]

\[
\psi_\lambda \otimes \psi_\mu \rightarrow \sum_{\lambda + \mu} \psi_\lambda \otimes \psi_\mu, \quad \lambda = \mu
\]

which is \(\Sigma_2 \times \Sigma_2 \) invariant.

Moreover, the map defined by the picture
is $\Sigma_3 \times \Sigma_3$--invariant.

Note that this data does not change under rescaling permutations and makes sense in any symmetric monoidal category.

Definition. A commutative pseudoalgebra (Pasha’s bad terminology) is an object V of a symmetric monoidal category C with \circ
\(\Sigma_2 \times \Sigma_2\)-invariant morphism
\(R : V \otimes V \rightarrow V \otimes V\) such that
the morphism
\(\text{R}\)

is \(\Sigma_3 \times \Sigma_3\) invariant.

Note that \(V\) has no
multiplication \(V \otimes V \rightarrow V\)
yet, so it is not an algebra.

However, in the vector
space example, suppose
we pick a cyclic
vector \(v = \Sigma v_i \in V\)
(it is equivalent to
choosing scaling for
each y_i). Then we get a map $\tilde{\gamma}: U \rightarrow V$

$\tilde{\gamma}(u) = u \cdot v$, and $\ker \tilde{\gamma} \subset U$ is an ideal.

so we get $V \cong U / \ker \tilde{\gamma}$

is a commutative associative algebra.

To endow a general commutative pseudoalgebra in a symmetric monoidal category with a structure of a commutative associative algebra, we need to give a trace.

$T: V \rightarrow I$.
Then we can define the product
\[\mu: V \otimes V \to V \]
\[\mu = (1 \otimes T) \circ R \]
so that \(\mu \circ (1 \otimes \mu): V \otimes^3 V \to V \)
is \(\Sigma_3 \)-invariant, i.e., commutative and associative. We also have the inner product
\[B: V \otimes V \to \mathbb{I} \]
where
\[B = T \circ \mu. \]

Let us say that \(T \)
is nondegenerate if the form \(B_T \) is nondegenerate.
i.e., V is rigid and β defines an isomorphism $V \cong V^*$.

In this case we can consider $\lambda := \beta^{-1} T^* : \mathbb{H} \to V^* \cong V$, which is a unit in V, and V becomes a commutative associative Frobenius algebra with a nondegenerate trace. So to make a commutative pseudoalgebra into a commutative associative Frobenius algebra with
a nondegenerate trace, we need to give a nondegenerate trace $T: V \to \mathbb{I}$, which in our linear algebra model is just giving a cyclic vector in V^*, which is equivalent to fixing the scaling of the eigenvectors.

We can also do the same in a different way. Suppose V is a commutative pseudoalgebra and $L: \mathbb{I} \to V$. We say
that \(\iota \) is nondegenerate if \(V \) is rigid and
\[
\xi = \mathbb{R}(\iota \otimes \iota) : \mathcal{I} \to V \otimes V
\]
defines an isomorphism \(V^* \cong V \). Then we can define the trace
\[
\mathcal{T} = \xi^{-1} \circ \iota^*: V \cong V^* \to \mathcal{I}
\]
which is a nondegenerate trace, and then \(\iota \) becomes the unit of the corresponding algebra.

Also in this situation we get the \(n \)-point functions
\[B_\mu : V \otimes^n \to \mathbb{I} \]
\[B_\mu = \Gamma \mu \circ (1 \otimes \mu) (1 \otimes^2 \mu) \cdots (1 \otimes^n \mu) \]
which are \(S_n \)-invariant.
So we get a 2-dim TQFT
with values in \(\mathbb{C} \).

Thus we should think of the notion of a commutative pseudo-algebra as a nondegenerate Frobenius algebra "without fixing the normalization of eigenvectors."

The story we are considering is this kind of story in the case when
V is ∞-dimensional (space of functions on some variety X), with basis $\psi_\lambda(x)$ (which could be discrete or continuous), e.g., Fourier $\psi_\lambda(x) = e^{i\lambda \cdot x}$, and we have a multiplication law

$$(f \ast g)(z) = \int K(x, y, z) f(x) g(y) \, dx \, dy.$$

We also have the dual law (coming from $V \cong V^*$)

$$f_\lambda^*(x) f_\gamma^*(y) = \int K(x, y, z) f_\lambda^*(z) \, dz,$$

where f_λ^* is the dual basis to f_λ, distributions such that
\[(f_\lambda^*, f_\mu) = \delta_{\lambda\mu}.
\]

All of this needs to be said with appropriate analytic details, but this is the general idea.

Problem. In the case of (geometric) Langlands describe

\[K(x, y, z) = \sum_n \psi_n(x) \psi_n(y) \psi_n(z).\]

(say for GL_n when the spectrum of Hecke operators is finite).

Note: We need to find a good normalization of eigenfunctions to have
a good answer.

Pasha's remark: In the case of 4 parabolic points, \(X = \mathbb{P}^1 \)
can use asymptotics at one of them to normalize \(Y_n \) (over a local field).