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Introduction

This Chapter is meant to introduce the basic objects of study in derived algebraic geometry
that will be used in the subsequent chapters.

0.1. Why prestacks? The most general (and, perhaps, also the most important) type of
algebro-geometric object that we will introduce is the notion of prestack.

0.1.1. Arguably, there is an all-pervasive problem with how one introduces classical algebraic
geometry. Even nowadays, any introductory book on algebraic geometry defines schemes as
locally ringed spaces. The problem with this is that a locally ringed space is a lot of structure,
so the definition is quite heavy.

However, one does not have to go this way if one adopts Grothendieck’s language of points.
Namely, whatever the category of schemes is, it embeds fully faithfully into the category of
functors

(Schaff)op → Set,

where Schaff is the category of affine schemes, i.e., (Schaff)op is the category of commutative
rings.

Now, it is not difficult to characterize which functors (Schaff)op → Set correspond to schemes:
essentially the functor needs to have a Zariski atlas, a notion that has an intrinsic meaning.

0.1.2. This is exactly the point of view that we will adopt in this Chapter and throughout the
book, with the difference that instead of classical (=usual=ordinary) affine schemes we consider
derived affine schemes, where, by definition, the category of the latter is the one opposite to
the category of connective commutative DG algebras (henceforth, when we write Schaff we will

mean the derived version, and denote the category of classical affine schemes by clSchaff).

And instead of functors with values in the category Set of sets we consider the category of
functors

(0.1) (Schaff)op → Spc,

where Spc is the category of spaces (a.k.a. ∞-groupoids).

We denote the category of functors (0.1) by PreStk and call its objects prestacks. I.e., a
prestack is something that has a Grothendieck functor of points attached to it, with no further
conditions or pieces of structure.

Thus, a prestack is the most general kind of space that one can have in algebraic geometry.

All other kinds of algebro-geometric objects that we will encounter will be prestacks, that
have some particular properties (as opposed to extra pieces of structure). This includes schemes
(considered in Sect. 3), Artin stacks (considered in Sect. 4), ind-schemes and inf-schemes (con-
sidered in [Chapter III.2]), formal moduli problems (considered in [Chapter IV.1]), etc.

0.1.3. However, the utility of the notion of prestack goes beyond being a general concept that
contains the other known types of algebro-geometric objects as particular cases.

Namely, there are some algebro-geometric constructions that can be carried out in this
generality, and it turns out to be convenient to do so.

The central among these is the assignment to a prestack Y of the category QCoh(Y) of
quasi-coherent sheaves on Y, considered in the next Chapter, [Chapter I.3]. In fact, there is a
canonically defined functor

QCoh∗PreStk : (PreStk)op → DGCatcont, Y 7→ QCoh(Y).
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The definition of QCoh∗PreStk is actually automatic: it is the right Kan extension of the
functor

QCoh∗Schaff : (Schaff)op → 1 -Cat

that attaches to
Spec(A) = S ∈ Schaff

the DG category
QCoh(S) := A-mod

and to a map f : S′ → S the pullback functor f∗ : QCoh(S)→ Coh(S′).

In other words,

(0.2) QCoh(Y) = lim
(S

y→Y)∈((Schaff )/Y)op
QCoh(S).

So an object F ∈ QCoh(Y) is a assignment

(S
y→ Y) FS,y ∈ QCoh(S),

(S′
f→ S) FS′,y◦f ' f∗(FS,y),

satisfying a homotopy compatible system of compatibilities for compositions of morphisms be-
tween affine schemes.

Note that the expression in (0.2) involves taking a limit in the ∞-category 1 -Cat. Thus,
in order to assign a meaning to it (equivalently, the meaning to the expression ‘homotopy
compatible system of compatibilities’) we need to input the entire machinery of ∞-categories,
developed in [Lu1]. Thus, it is fair to say that Lurie gave us the freedom to consider quasi-
coherent sheaves on prestacks.

Note that before the advent of the language of ∞-categories, the definition of the (derived)
category of quasi-coherent sheaves on even such benign objects as algebraic stacks was quite
awkward (see [LM]). Essentially, in the past, each time one needed to construct a triangulated
category, one had to start from an abelian category, take its derived category, and then perform
some manipulations on it in order to obtained the desired one.

As an application of the assignment

Y QCoh(Y)

we obtain an automatic construction of the category of D-modules/crystals (see [Chapter III.4]).
Namely,

D-mod(Y) := QCoh(YdR),

where YdR is the de Rham prestack of Y.

0.1.4. Another example of a theory that is convenient to develop in the generality of prestacks
is deformation theory, considered in [Chapter III.1]. Here, too, it is crucial that we work in the
context of derived (as opposed to classical) algberaic geometry.

0.1.5. As yet another application of the general notion of prestack is the construction of the
Ran space of a given scheme, along with its category of quasi-coherent sheaves or D-modules.
We will not discuss it explicitly in this book, and refer the reader to, e.g., [Ga2].

0.2. What do we say about prestacks? The notion of prestack is so general that it is, of
course, impossible to prove anything non-trivial about arbitrary prestacks.

What we do in Sect. 1 is study some very formal properties of prestacks, which will serve us
in the later chapters of this book.
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0.2.1. The notion of n-coconnectivity. As was said before, the category PreStk is that of functors
(Schaff)op → Spc, where

(Schaff)op := ComAlg(Vect≤0).

Now, arguably, the category ComAlg(Vect≤0) is complicated, and it is natural to try to
approach it via its successive approximations, namely, the categories

ComAlg(Vect≥−n,≤0)

of connective commutative DG algebras that live in cohomological degrees ≥ −n.

We denote the corresponding full subcategory in Schaff by ≤nSchaff ; we call its objects n-
coconnective affine schemes. We can consider the corresponding category of functors

(≤nSchaff)op → Spc

and denote it by ≤nPreStk.

The ∞-categories ≤nPreStk and ≤nStk are related by a pair of mutually adjoint functors

(0.3) ≤nPreStk� PreStk,

given by restriction and left Kan extension along the inclusion ≤nSchaff ↪→ Schaff , respectively,
with the left adjoint in (0.3) being fully faithful.

Thus, we can think of each ≤nPreStk as a full subcategory in PreStk; we referred to its
objects as n-coconnective prestacks. Informally, a functor in (0.1) is n-coconnective if it is
completely determined by its values on n-coconnective affine schemes.

The subcategories ≤nPreStk form a sequence of approximations to PreStk.

0.2.2. Convergence. A technically convenient condition that one can impose on a prestack is
that of convergence. By definition, a functor Y in (0.1) is convergent if for any S ∈ Schaff the
map

Y(S)→ lim
n

Y(≤nS),

is an isomorphism, where ≤nS denotes the n-coconnective truncation of S.

Convergence is a necessary condition for a prestack to satisfy in order to admit deformation
theory, see [Chapter III.1, Sect. 7.1].

0.2.3. Finite typeness. Consider the categories ≤nSchaff and ≤nPreStk. We shall say that an
object S ∈ ≤nSchaff (resp., Y ∈ ≤nPreStk) is of finite type (resp., locally of finite type) if the
corresponding functor (0.1) takes filtered limits of affine schemes to colimits in Spc.

It follows tautologically that an object Y ∈ ≤nPreStk is locally of finite type if and only if the
corresponding functor (0.1) is completely determined by its values on affine schemes of finite
type.

Now, the point is that, as in the case of classical algebraic geometry, the condition on an
object Spec(A) = S ∈ ≤nSchaff to be of finite type is very explicit: it is equivalent to H0(A)
being finitely generated over our ground field, and each H−i(A) (where i runs from 1 to n)
being finitely generated as a module over H0(A).

Thus, objects of ≤nPreStk that are locally of finite type are precisely those that can be
expressed via affine schemes that are ‘finite dimensional’.
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0.2.4. Inserting the word ‘almost’. Consider now the category PreStk.

We shall say that a prestack is locally almost of finite type if it is convergent, and for any n,
the functor ← in (0.3) produces from it an object locally of finite type.

The class of prestacks locally almost of finite type will play a central role in this book.
Namely, it is for this class of prestacks that we will develop the theory of ind-coherent sheaves
and crystals.

0.3. What else is done in this Chapter?

0.3.1. In Sect. 2 we introduce a hierarchy of Grothendieck topologies on Schaff : flat, ppf, étale,
Zariski. Each of the above choices gives rise to a full subcategory

Stk ⊂ PreStk

consisting of objects that satisfy the corresponding descent condition. We refer to the objects
of Stk as stacks.

The primary interest in Sect. 2 is how the descent condition interacts with the conditions of
n-coconnectivity, convergence and local (almost) finite typeness.

0.3.2. In the rest of this Chapter we discuss two specific classes of stacks: schemes and Artin
stacks (the former being a particular case of the latter).

The corresponding sections are essentially a paraphrase of some parts of [TV1, TV2] in the
language of ∞-categories.

0.3.3. In Sect. 3 we introduce the full subactegory Sch ⊂ PreStk of (derived) schemes1.

Essentially, a prestack Z is a scheme if it is a stack and admits a Zariski atlas (i.e., a collection
of affine schemes Si equipped with open embeddings Si → Y).

We will not go deep into the study of derived schemes, but content ourselves with establishing
the properties related to n-coconnectivity and finite typeness. These can be summarized by
saying that a scheme is n-coconnective (resp., of finite type) if and only if some (equivalently,
any) Zariski atlas consists of affine schemes that are n-coconnective (resp., of finite type).

0.3.4. In Sect. 4 we introduce the hierarchy of k-Artin stacks, k = 0, 1, 2.... Our definition is
a variation of the notion of a k-geometric stack defined by Simpson in [Sim] and developed in
the derived context in [TV2].

For an individual k, what we call a k-Artin stack may be different from what is accepted
elsewhere in the literature (e.g., in our definition, only schemes that are disjoint unions of affines
are 0-Artin stacks; all other schemes are 1-Artin stacks). However, the union over all k produces
the same class of objects as in other definitions, called Artin stacks.

The definition of k-Artin stacks proceeds by induction on k. By definition, a k-Artin stack
is an étale prestack that admits a smooth (k − 1)-representable atlas by affine schemes.

As in the case of schemes, we will only discuss the properties of Artin stacks related to
n-coconnectivity and finite typeness, with results parallel to those mentioned above: an Artin
stack is n-coconnective (resp., of finite type) if and only if some (equivalently, any) smooth
atlas consists of affine schemes that are n-coconnective (resp., of finite type).

1Henceforth we will drop the adjective ‘derived’.
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1. Prestacks

In this section we introduce the principal actors in derived algebraic geometry: prestacks.

We will focus on the very formal aspects of the theory, such as what it means for a prestack
to be n-coconnective (for some integer n) or to be locally (almost) of finite type.

1.1. The notion of prestack. Derived algebraic geometry is ‘born’ from connective commu-
tative DG algebras, in the same way as classical algebraic geometry (over a given ground field k)
is born from commutative algebras. Following Grothendieck, we will think of algebro-geometric
objects as prestacks, i.e., arbitrary functors from the ∞-category of connective commutative
DG algebras to that of spaces.

1.1.1. Consider the stable symmetric monoidal Vect, and its full monoidal subcategory Vect≤0.
By a connective commutative DG algebra over k we shall mean a commutative algebra object
in Vect≤0. The totality of such algebras forms an (∞, 1)-category, ComAlg(Vect≤0).

Remark 1.1.2. Note that what we call a ‘connective commutative DG algebra over k’ is really
an abstract notion: we are appealing to the general notion of commutative algebra in symmetric
monoidal category from [Chapter I.1, Sect. 3.3].

However, one can show (see [Lu2, Proposition 7.1.4.11]) that the homotopy category of the

∞-category ComAlg(Vect≤0) is a familiar object: it is obtained from the category of what one
classically calls ‘commutative differential graded algebras over k concentrated in degrees ≤ 0’
by inverting quasi-isomorphisms.

1.1.3. We define the category of (derived) affine schemes over k to be

Schaff := (ComAlg(Vect≤0))op.

1.1.4. By a (derived) prestack we shall mean a functor (Schaff)op → Spc. We let PreStk denote
the (∞, 1)-category of prestacks, i.e.,

PreStk := Funct((Schaff)op,Spc).

1.1.5. Yoneda defines a fully faithful embedding

Schaff ↪→ PreStk .

For S ∈ Schaff and Y ∈ PreStk we have, tautologically,

MapsPreStk(S,Y) ' Y(S).

1.1.6. Let f : Y1 → Y2 be a map of prestacks. We shall say that f is affine schematic if for
every S ∈ (Schaff)/Y2

, the fiber product S ×
Y2

Y1 ∈ PreStk is representable by an affine scheme.

1.2. Coconnectivity conditions: affine schemes. Much of the analysis in derived algebraic
geometry proceeds by induction on how many negative cohomological degrees we allow our DG
algebras to live in. We initiate this discussion in the present subsection.
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1.2.1. For n ≥ 0, consider the full subcategory

Vect≥−n,≤0 ⊂ Vect≤0 .

This fully faithful embedding admits a left adjoint, given by the truncation functor τ≥−n.
It is clear that if V ′1 → V ′1 is a morphism in Vect≤0 such that τ≥−n(V ′1) → τ≥−n(V ′1) is an
isomorphism, then

τ≥−n(V ′1 ⊗ V2)→ τ≥−n(V ′1 ⊗ V2)

is an isomorphism for any V2 ∈ Vect≤0.

This implies that the (∞, 1)-category Vect≥−n,≤0 acquires a uniquely defined symmetric
monoidal structure for which the functor τ≥−n is symmetric monoidal. It follows from the
symmetric monoidal version of [Chapter I.1, Lemma 3.2.4] that the embedding

(1.1) Vect≥−n,≤0 ↪→ Vect≤0

has a natural right-lax symmetric monoidal structure.

1.2.2. In particular, the functor (1.1) induces a fully faithful functor

(1.2) ComAlg(Vect≥−n,≤0)→ ComAlg(Vect≤0),

whose essential image consists of those objects of ComAlg(Vect≤0) that belong to Vect≥−n,≤0

when regarded as plain objects of Vect≤0.

The functor (1.2) admits a left adjoint

(1.3) τ≥−n : ComAlg(Vect≤0)→ ComAlg(Vect≥−n,≤0)

that makes the diagram

ComAlg(Vect≤0)
τ≥−n

−−−−→ ComAlg(Vect≥−n,≤0)

oblvComAlg

y yoblvComAlg

Vect≤0 τ≥−n

−−−−→ Vect≥−n,≤0

commute.

1.2.3. We shall say that S ∈ Schaff is n-coconnective if S = Spec(A) with A lying in the essential
image of (1.2). In other words, if H−i(A) = 0 for i > n.

We shall denote the full subcategory of Schaff spanned by n-coconnective objects by ≤nSchaff .

1.2.4. For n = 0 we recover
clSchaff := ≤0Schaff ,

the category of classical affine schemes.

1.2.5. The embedding ≤nSchaff ↪→ Schaff admits a right adjoint, denoted

S 7→ ≤nS,

and given at the level of commutative DG algebras by the functor (1.3).

Thus, ≤nSchaff is a colocalization of Schaff . We denote the corresponding colocalization
functor

Schaff → ≤nSchaff ↪→ Schaff

by S 7→ τ≤n(S).

Remark 1.2.6. We choose to notationally distinguish objects of ≤nSchaff and their images in
Schaff . Doing otherwise would cause notational clashes when talking about descent conditions.
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1.2.7. We will say that S ∈ Schaff is eventually coconnective if it belongs to ≤nSchaff for some
n.

We denote the full subcategory of Schaff spanned by eventually coconnective objects by
<∞Schaff .

1.3. Coconnectivity conditions: prestacks.

1.3.1. Consider the (∞, 1)-category

≤nPreStk := Funct((≤nSchaff)op,Spc).

Restriction defines a functor

(1.4) PreStk→ ≤nPreStk,

that we will denote by Y 7→ ≤nY.

1.3.2. The functor (1.4) admits a fully faithful left adjoint, given by the left Kan extension

LKE≤nSchaff ↪→Schaff : ≤nPreStk→ PreStk .

Thus, ≤nPreStk is a colocalization of PreStk. We denote the resulting colocalization functor

PreStk→ ≤nPreStk→ PreStk

by Y 7→ τ≤n(Y).

Remark 1.3.3. The usage of the symbol τ≤n may diverge from other sources’ conventions: the
latter use τ≤n to denote the corresponding truncation of the Postnikov tower, whereas we
denote the latter by the symbol P≤n, see Sect. 1.8.5 below.

Tautologically, if Y is representable by an affine scheme S = Spec(A), then the above two
meanings of τ≤n coincide: the prestack τ≤n(Y) is representable by the affine scheme τ≤n(S).

1.3.4. We shall say that Y ∈ PreStk is n-coconnective if it belongs to the essential image of the
functor LKE≤nSchaff ↪→Schaff .

For example, an affine scheme is n-coconnective in the sense of Sect. 1.2.3 if and only if its
image under the Yoneda functor is n-coconnective as a prestack.

We will often identify ≤nPreStk with its essential image under the above functor, and thus
think of ≤nPreStk as a full subcategory of PreStk.

1.3.5. We will say that Y ∈ PreStk is eventually coconnective if it is n-coconnective for some n.
We shall denote the full subcategory of eventually coconnective objects of PreStk by <∞PreStk.

1.3.6. Classical prestacks. Let n = 0. We shall call objects of ≤0PreStk ‘classical’ prestacks,
and use for it also the alternative notation clPreStk.

We will also denote the corresponding restriction functor Y 7→ clY, and the corresponding
colocalization functor

PreStk→ clPreStk→ PreStk

by Y 7→ τ cl(Y).
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1.3.7. The right Kan extension. The restriction functor

Y 7→ ≤nY : PreStk→ ≤nPreStk

admits also a right adjoint, given by right Kan extension.

This functor lacks a clear geometric meaning. However, it can be explicitly described: by
adjunction we have

(RKE≤nSchaff ↪→Schaff (Y)) (S) ' Y(τ≤n(S)).

1.4. Convergence. The idea of the notion of convergence is that if we perceive a connective
commutative DG algebra as built iteratively by adding lower and lower cohomologies, we can
ask whether the value of a given prestack on such an algebra to be determined by its values on
the above sequence of truncations.

Convergence is a necessary condition if we want to approach our prestack via deformation
theory (see [Chapter III.1, Sect. 7.1]).

1.4.1. Le S be an object of Schaff . Note that the assignment

n 7→ τ≤n(S)

is naturally a functor

Z≥0 → (Schaff)/S .

1.4.2. Let Y be a prestack. We say that Y is convergent if for S ∈ Schaff , the map

Y(S)→ lim
n

Y(τ≤n(S))

is an isomorphism.

1.4.3. Since for every connective commutative DG algebra A, the map

A→ lim
n
τ≥−n(A)

is an isomorphism, we have:

Lemma 1.4.4. Any prestack representable by a (derived) affine scheme is convergent.

Remark 1.4.5. As we shall see in the sequel, all prestacks ‘of geometric nature’, such as (derived)
schemes and Artin stacks (and also ind-schemes), are convergent.

Here is, however, an example of a non-convergent prestack: consider the prestack that asso-
ciates to an affine scheme S = Spec(A) the category (A-mod)Spc, i.e., this is the prestack

(Schaff)op
QCoh∗

Schaff−→ 1 -Cat
C7→CSpc

−→ Spc,

where QCoh∗Schaff is as in [Chapter I.3, Sect. 1.1.2].
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1.4.6. We have:

Proposition 1.4.7. A prestack Y is convergent if and only if, when as a functor

(Schaff)op → Spc,

it is the right Kan extension from the subcategory <∞Schaff ⊂ Schaff .

Proof. We claim that the functor of right Kan extension along <∞Schaff ⊂ Schaff is given by
sending

Z′ ∈ Funct((<∞Schaff)op,Spc) 7→ Z ∈ Funct((Schaff)op,Spc),

with

Z(S) = lim
n

Z′(τ≤n(S)).

Indeed, a priori, the value of Z on S is given by

lim
S′→S

Z′(S′),

where the limit is taken over the category opposite to (<∞ Schaff)/S . Now, the assertion follows
from the fact that the functor

Z≥0 → (<∞ Schaff)/S , n 7→ τ≤n(S)

is cofinal.
�

1.4.8. Let convPreStk ⊂ PreStk denote the full subcategory of convergent prestacks. This
embedding admits a left adjoint, which we call the convergent completion and denote by

Y 7→ convY.

According to Proposition 1.4.7, we have:

convY ' RKE<∞Schaff ↪→Schaff (Y|<∞Schaff ).

Explicitly,
convY(S) = lim

n
Y(τ≤n(S)).

1.4.9. Consider the canonical map

colim
n

τ≤n(Y)→ Y.

Tautologically, Y1 ∈ PreStk is convergent if and only if for every Y, the map

Maps(Y,Y1)→ Maps(colim
n

τ≤n(Y),Y1) = lim
n

Maps(τ≤n(Y),Y1)

is an isomorphism.

Remark 1.4.10. Note that the left Kan extension functor

LKE≤nSchaff ↪→Schaff : ≤nPreStk→ PreStk

does not map into convPreStk.

1.5. Affine schemes of finite type (the eventually coconnective case). We will now
introduce the notion of what it means for a (derived) affine scheme to be of finite type. This
generalizes the usual notion of being of finite type over a field. As in classical algebraic geometry,
finite typeness puts us in the context of finite-dimensional geometry.



BASICS OF DAG 11

1.5.1. We say that an object S = Spec(A) ∈ <∞Schaff is of finite type if H0(A) is of finite type
over k, and each H−i(A) is finitely generated as a module over H0(A).

Let <∞Schaff
ft denote the full subcategory of <∞Schaff consisting of affine schemes of finite

type.

1.5.2. Denote by ≤nSchaff
ft the intersection <∞Schaff

ft ∩≤nSchaff .

The following theorem is proved by induction on n using deformation theory (but we will
not do it here, but see [Lu2, Proposition 7.2.5.31]):

Theorem 1.5.3.

(a) The objects of (≤nSchaff
ft )op are compact in (≤nSchaff)op.

(b) For every object S ∈ ≤nSchaff , the category opposite to (≤nSchaff
ft )S/ is filtered, and the map

S 7→ lim
S0∈(≤nSchaff

ft )S/

S0

is an isomorphism.

Remark 1.5.4. We note that the filteredness assertion in Theorem 1.5.3(b) is easy: it follows

from the fact that the category (≤nSchaff
ft )S/ has fiber products.

1.5.5. By [Lu1, Proposition 5.3.5.11], the assertion of Theorem 1.5.3 is equivalent to the fol-
lowing:

Corollary 1.5.6. We have a canonical equivalence:
≤nSchaff ' Pro(≤nSchaff

ft ).

1.5.7. Since ≤nSchaff
ft is closed under retracts, using [Lu1, Lemma 5.4.2.4], from Corollary 1.5.6

we obtain:

Corollary 1.5.8. The inclusion (≤nSchaff
ft )op ⊂ ((≤nSchaff)op)c of Theorem 1.5.6(a) is an

equality.

1.6. Prestacks locally of finite type (the eventually coconnective case). In this sub-
section we will make precise the following idea: a prestack is locally of finite type if and only if
it is completely determined by its values on affine schemes of finite type.

1.6.1. Let Y be an object of ≤nPreStk for some n. We say that it is locally of finite type if it is
the left Kan extension (of its own restriction) along the embedding

(≤nSchaff
ft )op ↪→ (≤nSchaff)op.

We denote the resulting full subcategory of ≤nPreStk by ≤nPreStklft.

1.6.2. In other words, we can identify ≤nPreStklft with the category of functors

(≤nSchaff
ft )op → Spc,

and we have a pair of mutually adjoint functors
≤nPreStklft �

≤nPreStk,

given by restriction and left Kan extension along ≤nSchaff
ft ↪→ ≤nSchaff , respectively, where the

left Kan extension functor is fully faithful.

1.6.3. Now, using [Lu1, Proposition 5.3.5.10], from Corollary 1.5.6, we obtain:

Corollary 1.6.4. An object Y ∈ ≤nPreStk belongs to ≤nPreStklft if and only if it takes filtered
limits in ≤nSchaff to colimits in Spc.
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1.6.5. Combining Corollaries 1.6.4 and 1.5.8, we obtain:

Lemma 1.6.6. Let S be an object of ≤nSchaff . It belongs to ≤nSchaff
ft if and only if the prestack

that it represents belongs to ≤nPreStklft.

1.6.7. Evidently, the restriction functor ≤nPreStklft ← ≤nPreStk commutes with limits and
colimits. The functor

LKE≤nSchaff
ft ↪→≤nSchaff : ≤nPreStklft → ≤nPreStk,

being a left adjoint commutes with colimits.

In addition, we have the following:

Lemma 1.6.8. The functor LKE≤nSchaff
ft ↪→≤nSchaff commutes with finite limits.

Proof. This follows from Corollary 1.6.4: indeed, the condition of taking filtered limits in
≤nSchaff to colimits in Spc is preserved by the operation of taking finite limits of prestacks.

�

1.7. The ‘locally almost of finite type’ condition. In Sect. 1.6 we introduced the ‘locally
of finite type’ condition for n-coconnective prestacks. In this subsection we will give a definition
crucial for the rest of the book: what it means for an object of PreStk to be locally almost of
finite type (=laft). This will be the class of prestacks for which we will develop the theory of
ind-coherent sheaves.

1.7.1. We say that an affine (derived) scheme S is almost of finite type if ≤nS is of finite type
for every n.

I.e., S = Spec(A) is almost of finite type if H0(A) is of finite type over k, and each H−i(A)
is finitely generated as a module over H0(A).

Let Schaff
aft denote the full subcategory of Schaff consisting of affine schemes almost of finite

type.

1.7.2. We say that Y ∈ PreStk is locally almost of finite type if the following conditions hold:

(1) Y is convergent.
(2) For every n, we have ≤nY ∈ ≤nPreStklft

We denote the corresponding full subcategory by

PreStklaft ⊂ PreStk .

By Lemma 1.6.6, we have

Schaff
aft = Schaff ∩PreStklaft .

1.7.3. In particular, if Y ∈ PreStklaft, then clY is an object of clPreStk locally of finite type, i.e.,
it is a classical prestack locally of finite type.

Remark 1.7.4. Note that by Remark 1.4.10, the left Kan extension functor does not send
≤nPreStklft to PreStklaft: the resulting prestack will satisfy the second condition, but in general,
not the first one.

However, if Y ∈ PreStk is obtained as a left Kan extension functor of an object of ≤nPreStk
that belongs to ≤nPreStklft, then its convergent completion convY will belong to PreStklaft, see
Corollary 1.7.8 below.
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1.7.5. We claim:

Proposition 1.7.6. Restriction along <∞Schaff
ft ↪→ Schaff defines an equivalence

PreStklaft → Funct((<∞Schaff
ft )op,Spc).

The inverse functor is given by first applying the left Kan extension along

<∞Schaff
ft ↪→ <∞Schaff ,

followed by the right Kan extension along

<∞Schaff ↪→ Schaff .

Proof. By Proposition 1.4.7, it suffices to show that the following conditions on a functor

<∞Schaff → Spc

are equivalent:

(i) It is a left Kan extension along <∞Schaff
ft → <∞Schaff ;

(ii) Its restriction to any ≤nSchaff is a left Kan extension along ≤nSchaff
ft → ≤nSchaff .

First, it is clear that (i) implies (ii): indeed, the diagram

Funct(<∞Schaff
ft ,Spc)

LKE−−−−→ Funct(<∞Schaff ,Spc)y y
Funct(≤nSchaff

ft ,Spc)
LKE−−−−→ Funct(≤nSchaff ,Spc)

is commutative.

Vice versa, let Y satisfy (ii). We need to show that for any S ∈ ≤nSchaff , the map

(1.5) colim
S→S′

Y(S′)→ Y(S)

is an isomorphism, where the colimit is taken over the index category(
(<∞Schaff

ft )S/

)op

.

However, cofinal in the above index category is the full subcategory consisting of those
S → S′, for which S′ ∈ ≤nSchaff

ft ; indeed the embedding of this full subcategory admits a left
adjoint, given by S′ 7→ τ≤n(S′).

Hence, the colimit in (1.5) can be replaced by

colim
S→S′

Y(S′)

taken over
(

(≤nSchaff
ft )S/

)op

. However, the latter colimit computes

LKE≤nSchaff
ft ↪→≤nSchaff (≤nY).

�
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1.7.7. We note:

Corollary 1.7.8. The composite functor

≤nPreStklft ↪→ ≤nPreStk
LKE≤nSchaff ↪→Schaff−→ PreStk

Y 7→convY−→ convPreStk

takes values in PreStklaft.

Proof. By Proposition 1.7.6, it suffices to show that the composition of the functor in the
corollary with the identification

convPreStk ' Funct(<∞Schaff ,Spc)

lands in the full subcategory spanned by functors obtained as a left Kan extension from

<∞Schaff
ft ↪→ <∞Schaff .

However, the above composition is given by left Kan extension along

≤nSchaff
ft ↪→ <∞Schaff .

�

1.7.9. By combining Lemma 1.6.8 and Proposition 1.7.6, we obtain:

Corollary 1.7.10. The subcategory PreStklaft ⊂ PreStk is closed under finite limits.

1.8. Truncatedness.

1.8.1. For k = 0, 1, ..., let Spc≤k ⊂ Spc denote the full subcategory of k-truncated spaces. I.e.,
it is spanned by those objects S ∈ Spc such that each connected component S′ of S satisfies

πl(S
′) = 0 for l > k.

For example, for k = 0, we have Spc≤0 = Set.

1.8.2. The embedding

Spc≤k ↪→ Spc

admits a left adjoint.

The corresponding localization functor

Spc→ Spc≤k → Spc

will be denoted P≤k.

Remark 1.8.3. The (∞, 1)-category Spc≤k is actually a (k + 1, 1)-category. I.e., the mapping
spaces between objects are k-truncated.

1.8.4. For S ∈ Spc, the assignment k 7→ P≤k(S) is a functor

(Z≥0)op → Spc,

called the Postnikov tower of S.

It is a basic fact that the natural map

S→ lim
k

P≤k(S)

is an isomorphism.
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1.8.5. For a fixed n, and an integer k = 0, 1, ... we will say that Y ∈ ≤nPreStk is k-truncated if,
as a functor

(≤nSchaff)op → Spc,

it takes values in the full subcategory of Spc≤k ⊂ Spc of k-truncated spaces.

1.8.6. For example, if Y ∈ ≤nPreStk is representable, i.e., is the Yoneda image of S ∈ ≤nSchaff ,
then Y is n-truncated.

This reflects the fact that ComAlg(Vect≥−n,≤0) is an (n + 1, 1)-category, which, in turn,

formally follows from the fact that Vect≥−n,≤0 is an (n+ 1, 1)-category.

Remark 1.8.7. In the sequel, we will see that for any (derived) scheme, its restriction to ≤nSchaff

is n-truncated as an object of ≤nPreStk.

Similarly, for a k-Artin stack, its restriction to ≤nSchaff is (n+ k)-truncated as an object of
≤nPreStk.

1.8.8. Another example. To any object K ∈ Spc we can attach the corresponding constant
prestack K:

K(S) := K, S ∈ Schaff .

If K is k-truncated, then K is k-truncated.

1.8.9. Let ≤nPreStk≤k ⊂ ≤nPreStk denote the full subcategory of k-truncated prestacks. This
embedding admits a left adjoint. The corresponding localization functor

≤nPreStk→ ≤nPreStk≤k → ≤nPreStk

will be denoted P≤k. Explicitly,

(P≤k(Y))(S) = P≤k(Y(S)), S ∈ ≤nSchaff .

The full subcategory ≤nPreStk≤k ⊂ ≤nPreStk is actually a (k + 1, 1)-category.

1.8.10. When n = 0 and k = 0, the (ordinary) category clPreStk≤0 is that of presheaves of sets

on clSchaff .

When n = 0 and k = 1, we shall call objects of clPreStk≤1 ‘ordinary classical prestacks’.
I.e., clPreStk≤1 is the (2, 1)-category of functors from the category of classical affine schemes
to that of ordinary groupoids.

2. Descent and stacks

The object of study in this section is the notion of stack–the result of the interaction of the
general notion of prestack with a given Grothendieck topology (flat, ppf, étale or Zariski) on
the category of affine schemes; see [TV2, Sect. 2.2.2].

Specifically, we will be interested in how the stack condition interacts with n-coconnectivity
and the finite typeness.

2.1. Flat morphisms. In this subsection we will introduce the crucial notion of flatness for
a morphism between (derived) affine schemes. Knowing what it means to be flat, we will give
the definition of what it means to be an open embedding, étale, smooth, ppf, etc.
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2.1.1. Let us recall, following [TV2], the notion of flatness for a morphism between (derived)
affine schemes:

A map Spec(B) → Spec(A) between affine schemes is said to be flat if H0(B) is flat as a
module over H0(A), plus the following equivalent conditions hold:

• The natural map

H0(B) ⊗
H0(A)

Hi(A)→ Hi(B)

is an isomorphism for every i.

• For any A-module M , the natural map

H0(B) ⊗
H0(A)

Hi(M)→ Hi(B ⊗
A
M)

is an isomorphism for every i.

• If an A-module N is concentrated in degree 0 then so is B ⊗
A
N .

2.1.2. Note in particular that if S′ → S is flat, then

S ∈ ≤nSchaff ⇒ S′ ∈ ≤nSchaff .

The following assertion is easily established by induction:

Lemma 2.1.3. For a map S′ → S between affine schemes, S′ is flat over S if and only if each
≤nS′ is flat over ≤nS.

2.1.4. Let f : S′ → S be a morphism of affine schemes. We shall say that it is ppf2 (resp.,
smooth, étale, open embedding, Zariski) if the following conditions hold:

(1) The morphism f is flat (in particular, the base-changed (derived!) affine scheme

τ cl(S)×
S
S′

is classical and thus identifies with τ cl(S′));

(2) The map of classical affine schemes clS′ → clS is of finite presentation (resp., smooth,
étale, open embedding, disjoint union of open embeddings).

For future reference, we quote the following basic fact that can be proved using deformation
theory (see [TV2, Corollaries 2.2.2.9 and 2.2.2.10]):

Lemma 2.1.5. For a given S ∈ Schaff , the operation of passage to the underlying classical

subscheme defines an equivalence between the full subcategory (Schaff)/S spanned by S′
f→ S with

f étale and the full subcategory of (clSchaff)/clS spanned by S̃′
f̃−→ clS with f̃ étale. Furthermore,

f is an open embedding (resp., Zariski) if and only if f̃ is.

2.1.6. We say that a morphism is f : S′ → S is a covering with respect to the flat (resp., ppf,
smooth, étale, Zariski) topology, if it is flat (resp., ppf, smooth, étale, Zariski), and the induced
map of classical affine schemes clS′ → clS is surjective.

Thus, the category Schaff acquires a hierarchy of Grothendieck topologies: flat, ppf, smooth,
étale and Zariski.

2ppf=plat de présentation finie= flat of finite presentation
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2.1.7. The property of a morphism to be flat (resp., ppf, smooth, étale, open embedding,
Zariski) is obviously stable under base change.

Moreover, the property of a morphism f : S′ → S to be flat (resp., ppf, smooth, étale, open
embedding) it itself local with respect to any of the above topologies on S.

In addition, the property of a morphism f : S′ → S to be flat (resp., ppf, smooth, étale,
Zariski) is local with respect to the flat (resp., ppf, smooth, étale, Zariski) topology on S′.

Remark 2.1.8. For obvious reasons, the property of a morphism to be an open embedding is
not Zariski-local on the source. And the property of a morphism to be Zariski is not étale-local
on the target.

2.1.9. Let f : Y1 → Y2 be an affine schematic morphism in PreStk (see Sect. 1.1.6 for what this
means).

We shall say that it is flat (resp., ppf, smooth, étale, open embedding, Zariski) if for every

S ∈ (Schaff)/Y2
, the corresponding map

S ×
Y2

Y1 → S

(of affine schemes(!)) is flat (resp., ppf, smooth, étale, open embedding, Zariski).

2.2. Digression: the Čech nerve.

2.2.1. Let Fin denote the category of finite sets.

Let C be an arbitrary ∞-category with Cartesian products. Then to an object c ∈ C we
can attach a functor

Finop → C, I 7→ cI .

In terms of the Yoneda embedding, this functor is uniquely characterized by

MapsC(c′, cI) = MapsSpc(I,MapsC(c′, c)), c′ ∈ C′.

Composing with the functor ∆→ Fin, we obtain a functor

∆op → C.

2.2.2. Let now D be an ∞-category with fiber products, and d ∈ D an object. Set

C := D/d,

so that Cartesian products in C are the fiber products in D over d.

Given an object c ∈ D/d we thus obtain a functor

∆op → D/d → D.

It is called the Čech nerve of the morphism c→ d, and denoted c•/d.

2.2.3. Thus, we have c0/d = c,

c1/d = c×
d

c.

In general, the object c•/d ∈ Funct(∆op,D) is an example of a groupoid object of D; see
[Lu1, Sect. 6.1.2] for what this means.
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2.3. The descent condition. In this subsection we will impose the descent condition that
singles out the class of stacks among all prestacks.

This discussion here is not specific to the category Schaff . It is applicable to any∞-category
(with fiber products) equipped with a Grothendieck topology. So, we can view this subsection
is a summary of some results from [Lu1, Sect. 6] and [TV1].

2.3.1. Let Y be a prestack. We say that it satisfies flat (resp., ppf, smooth, étale, Zarski) descent
if:

• Y(∅) = {∗};
• Y sends disjoint unions of affine schemes to products, i.e., the map

Y(S1 t S2)→ Y(S1)× Y(S2)

is an isomorphism;
• Whenever

f : S′ → S ∈ Schaff

is a flat covering, the map

Y(S)→ Tot(Y(S′•/S))

is an isomorphism, where S′•/S is the Čech nerve of the map f .

2.3.2. In what follows we will assume that our topology is chosen to be étale. However, the
entire discussion equally applies to the other cases, i.e. flat, ppf, smooth or Zariski.

We shall call prestacks that satisfy the above descent condition stacks, and denote the cor-
responding full subcategory of PreStk by Stk.

As in the case of classical algebraic geometry, one shows that if an object of PreStk satisfies
étale descent, then it satisfies smooth descent.

2.3.3. We say that a map Y1 → Y2 in PreStk is an étale equivalence if it induces an isomorphism

Maps(Y2,Y)→ Maps(Y1,Y)

whenever Y ∈ Stk.

2.3.4. The inclusion
Stk ↪→ PreStk

admits a left adjoint making Stk a localization of PreStk.

Concretely, the functor PreStk→ Stk is universal among functors that turn étale equivalences
into isomorphisms, see [Lu1, Sect. 6.2.1].

We will denote by L the corresponding localization (=sheafification) functor, i.e., the com-
position

PreStk→ Stk→ PreStk .

Tautologically, a map Y1 → Y2 is an étale equivalence if and only if L(Y1) → L(Y2) is an
isomorphism.

2.3.5. We have the following assertion (see [Lu1, Corollary 6.2.1.6 and Proposition 6.2.2.7]3):

Lemma 2.3.6. The functor L is left exact, i.e., commutes with finite limits.

3For this proposition the reader should use the version of [Lu1] available on Lurie’s website rather than the
printed version.
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2.3.7. Let f : Y1 → Y2 be a morphism in PreStk.

We say that f is an étale surjection if for every S ∈ Schaff and an object y2 ∈ Y2(S) there
exists an étale cover φ : S′ → S, such that φ∗(y2) ∈ Y2(S′) belongs to the essential image of
f(S′) : Y1(S′)→ Y2(S′).

The following is [Lu1, Corollary 6.2.3.5]:

Lemma 2.3.8. Let Y1 → Y2 be an étale surjection. Then the induced map

|Y•1/Y2|PreStk → Y2

is an étale equivalence, where Y•1/Y2 is the Čech nerve of f , and | − |PreStk denotes geometric
realization taken in the category PreStk.

Note that the assertion of Lemma 2.3.8 can be reformulated as the statement that if Y1 → Y2

is an étale surjection, then the map

|L(Y•1/Y2)|Stk ' |L(Y1)•/L(Y2)|Stk ' L(|Y•1/Y2|PreStk)→ L(Y2)

is an isomorphism.

2.3.9. Finally, we have:

Lemma 2.3.10. For Y ∈ PreStk, the unit of the adjunction

Y→ L(Y)

is an étale surjection.

2.4. Descent for affine schemes. In this subsection we state (without proof) the standard,
but crucial, fact that affine schemes are in fact stacks, and discuss some of its corollaries.

As in the previous subsection, the results stated in this subsection here hold also for the flat,
ppf and Zariski topologies.

2.4.1. We have the following basic fact (see [TV2, Lemma 2.2.2.13]):

Proposition 2.4.2.

(a) The image of the Yoneda embedding Schaff ↪→ PreStk belongs to Stk.

(b) Let
Y ←−−−− Y′y y
S

f←−−−− S′

be a pullback diagram in Stk with S, S′ ∈ Schaff . Assume that Y′ also belongs to Schaff ⊂ PreStk
and the morphism f is an étale covering. Then Y ∈ Schaff .

2.4.3. As a corollary, we obtain:

Corollary 2.4.4. Let f : Y1 → Y2 be an affine schematic morphism in PreStk. Then the
morphism L(Y1)→ L(Y2) is also affine schematic.

Proof. We need to show that for S ∈ Schaff and a map S → L(Y2), the fiber product S ×
L(Y2)

L(Y1)

belongs to Schaff . By Proposition 2.4.2(b), it suffices to show that that the fiber product

S′ ×
L(Y2)

L(Y1) belongs to Schaff for some étale covering map S′ → S with S′ ∈ Schaff .
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However, by Lemma 2.3.10, we can choose S′ → S so that the composition S′ → S →
L(Y2) factors as S′ → Y2 → L(Y2). Since the functor L commutes with fiber products (by
Lemma 2.3.6), we have

S′ ×
L(Y2)

L(Y1) ' L(S′ ×
Y2

Y1).

Now, by assumption, S′ ×
Y2

Y1 ∈ Schaff , and

S′ ×
Y2

Y1 → L(S′ ×
Y2

Y1)

is an isomorphism by Proposition 2.4.2(a)
�

2.4.5. The same proof also gives:

Corollary 2.4.6. Let f : Y1 → Y2 be affine flat (resp., ppf, smooth, étale, open embedding).
Then so is L(Y1)→ L(Y2).

2.5. Descent and n-coconnectivity. In this subsection we will study how the étale descent
condition interacts with the operation of restriction and left Kan extension to the (full) sub-

category ≤nSchaff ⊂ Schaff .

Again, the entire discussion is applicable when we replace the word ‘étale’ by ‘flat’, ‘ppf’ or
‘Zariski’.

2.5.1. Let us denote by ≤nStk the full subcategory of ≤nPreStk consisting of objects that satisfy
descent for étale covers S1 → S2 ∈ ≤nSchaff .

We obtain that ≤nStk is a localization of ≤nPreStk. Let ≤nL denote the corresponding
localization functor

≤nPreStk→ ≤nStk→ ≤nPreStk .

The analog of Lemma 2.3.6 equally applies in the present context.

2.5.2. The sheafification functor ≤nL on truncated objects can be described explicitly as follows
(see [Lu1, Sect. 6.5.3]):

We have the following endo-functor, denoted

(2.1) Y 7→ Y+

of ≤nPreStk.

Namely, for Y ∈ ≤nPreStk, the value of Y+ on S ∈ ≤nSchaff is the colimit over all étale covers
S′ → S of Tot(Y(S′•/S)).

Now, if Y is (k − 2)-truncated for k = 2, 3, ..., then the value of L(Y) on S ∈ ≤nSchaff is

Y+k

(S),

where Y+k

denotes the k-th iteration of the functor (2.1).

In particular, since the colimit involved in its description is filtered, we obtain:

Lemma 2.5.3. The functor ≤nL : ≤nPreStk → ≤nPreStk sends k-truncated objects to k-
truncated ones.
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2.5.4. The following results from the definitions:

Lemma 2.5.5.

(a) The restriction functor PreStk→ ≤nPreStk sends Stk to ≤nStk.

(b) The functor

LKE≤nSchaff ↪→Schaff : ≤nPreStk→ PreStk

sends étale equivalences to étale equivalences.

2.5.6. Note now that the right Kan extension functor along ≤nSchaff ↪→ Schaff :

RKE≤nSchaff ↪→Schaff : ≤nPreStk→ PreStk

tautologically sends ≤nStk to Stk. This implies that the restriction functor Y 7→ ≤nY sends
étale equivalences to étale equivalences.

Thus, from Lemma 2.5.5 we obtain:

Corollary 2.5.7. For Y ∈ PreStk we have:

≤nL(≤nY) ' ≤n(L(Y)).

2.5.8. Right Kan extensions from <∞Schaff . Let Y′ be a functor

(<∞Schaff)op → Spc,

which we can think of as a compatible family of objects Y′n ∈ ≤nPreStk. Let

Y := RKE<∞Schaff ↪→Schaff (Y′) ∈ PreStk .

Lemma 2.5.9. Assume that for all n, Y′n ∈ ≤nStk. Then Y belongs to Stk.

Proof. Follows from the description of the functor RKE<∞Schaff ↪→Schaff given in the proof of
Proposition 1.4.7.

�

From here we obtain:

Corollary 2.5.10. Suppose that Y ∈ PreStk belongs to Stk. Then so does convY.

2.6. The notion of n-coconnective stack.

2.6.1. Note that the functor

LKE≤nSchaff ↪→Schaff : ≤nPreStk→ PreStk

does not send ≤nStk to Stk. Instead, the left adjoint to the restriction functor ≤nStk← Stk is
given by the composition

≤nStk ↪→ ≤nPreStk
LKE−→ PreStk

L−→ Stk;

we denote this composite functor by LLKE≤nSchaff ↪→Schaff .

2.6.2. The above left adjoint is easily seen to be fully faithful. Hence, we can identify ≤nStk
with a full subcategory of Stk. We shall denote by Lτ≤n : Stk→ Stk the resulting colocalization
functor

Y 7→ LLKE≤nSchaff ↪→Schaff (≤nY).

By definition, Lτ≤n ' L ◦ τ≤n.
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2.6.3. We shall call objects of Stk that belong to the essential image of LLKE≤nSchaff ↪→Schaff

n-coconnective stacks. I.e., Y ∈ Stk is n-coconnective as a stack if and only if the adjunction
map

Lτ≤n(Y)→ Y

is an isomorphism.

I.e., the functor LLKE≤nSchaff ↪→Schaff identifies the category ≤nStk with the full subcategory
of PreStk spanned by n-coconnective stacks.

We shall refer to objects of ≤0Stk =: clStk as ‘classical stacks’, and also denote Lτ≤0 =: Lτ cl.

Remark 2.6.4. We emphasize again that, as subcategories PreStk, it is not true that ≤nStk
is contained in ≤nPreStk. That is to say, that a n-coconnective stack is not necessarily n-
coconnective as a prestack.

Note, however, that we do have an inclusion

Stk∩≤nPreStk ⊂ ≤nStk

as subcategories of PreStk.

2.6.5. We shall say that a stack is eventually coconnective if it is n-coconnective for some n.

2.7. Descent and the ‘locally of finite type’ condition. In this subsection we will study
how the descent condition interacts with the condition of being of finite type.

The entire discussion is applicable if we replace the étale topology by the ppf, or Zariski one.

However, the flat topology (without the finite type condition) would not do: we need finite
typeness for the validity of Lemma 2.8.2.

2.7.1. Let n be a fixed integer. We can consider the étale topology on the category ≤nSchaff
ft .

Thus, we obtain a localization of ≤nPreStklft that we denote ≤nNearStklft.

We shall denote by ≤nLft the corresponding localization functor

≤nPreStklft → ≤nNearStklft → ≤nPreStklft .

As in Lemma 2.5.3, we have:

Lemma 2.7.2. The functor ≤nLft : ≤nPreStklft → ≤nPreStklft sends k-truncated objects to
k-truncated ones.

2.7.3. Consider the restriction functor for ≤nSchaff
ft ↪→ ≤nSchaff , i.e.,

≤nPreStklft ← ≤nPreStk .

It is clear that it sends ≤nStk to ≤nNearStklft. By adjunction, the functor of left Kan extension

LKE≤nSchaff
ft ↪→≤nSchaff : ≤nPreStklft → ≤nPreStk

sends étale equivalences to étale equivalences.

Moreover, we claim:

Lemma 2.7.4. The functor of right Kan extension

RKE≤nSchaff
ft ↪→≤nSchaff : ≤nPreStklft → ≤nPreStk

sends ≤nNearStklft to ≤nStk.
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Proof. For Y ∈ ≤nPreStklft the value of RKE≤nSchaff
ft ↪→≤nSchaff (Y) on S ∈ ≤nSchaff is given as

lim
S0→S

Y(S0),

where the limit is taken over the category opposite to (≤nSchaff
ft )/S .

Let S′ → S be an étale cover. We need to show that the map from lim
S0→S

Y(S0) to the

totalization of the cosimplicial space whose m-simplices are given by

lim
Sm
0 →(S′m/S)

Y(Sm0 ),

is an isomorphism.

However, this follows from the fact that the functor

(≤nSchaff
ft )/S → (≤nSchaff

ft )/(S′m/S), S0 7→ Sm0 := S0 ×
S

(S′m/S),

is cofinal.
�

From Lemma 2.7.4 we obtain:

Corollary 2.7.5.

(a) The restriction functor ≤nPreStklft ← ≤nPreStk sends étale equivalences to étale equiva-
lences.

(b) For Y ∈ ≤nPreStk we have:

≤nL(Y)|≤nSchaff
ft
' ≤nLft(Y|≤nSchaff

ft
).

2.7.6. Let us return to the functor

LKE≤nSchaff
ft ↪→≤nSchaff : ≤nPreStklft → ≤nPreStk .

It is not clear, and probably not true, that this functor sends ≤nNearStklft to ≤nStk. However,
as we have learned from J. Lurie, there is the following partial result, proved below:

Proposition 2.7.7. Suppose that an object Y ∈ ≤nPreStklft is k-truncated for some k (see
Sect. 1.8.5), and that Y ∈ ≤nNearStklft. Then the object

LKE≤nSchaff
ft ↪→≤nSchaff (Y)

of ≤nPreStk belongs to ≤nStk.

2.7.8. In what follows we shall use the notation

≤nStklft := ≤nStk∩≤nPreStklft .

We shall refer to objects of the subcategory ≤nStklft of ≤nStk as ‘n-coconnective stacks locally
of finite type’.

We have the inclusion
≤nStklft ⊂ ≤nNearStklft .

Thus, Proposition 2.7.7 says that the essential image of this inclusion contains all truncated
objects.
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2.7.9. As a corollary of Proposition 2.7.7 and Lemma 2.7.2, we obtain:

Corollary 2.7.10. For Y ∈ ≤nPreStklft, which is truncated, the natural map

LKE≤nSchaff
ft ↪→≤nSchaff

(≤nLft(Y)
)
→ ≤nL

(
LKE≤nSchaff

ft ↪→≤nSchaff (Y)
)

is an isomorphism.

2.8. Proof of Proposition 2.7.7.

2.8.1. The proof will use the following assertion:

Let f : S1 → S2 be an étale morphism in ≤nSchaff . Consider the category of Cartesian diagrams

S1 −−−−→ S′1

f

y yf ′
S2 −−−−→ S′2

with S′2, S
′
1 ∈ ≤nSchaff

ft , and f ′ is étale. Denote this category by fft. We have the natural
forgetful functors

(2.2) {S2 → S′2, S
′
2 ∈ ≤nSchaff

ft } ← fft → {S1 → S′1, S
′
1 ∈ ≤nSchaff

ft }.

Lemma 2.8.2. Both functors opposite to those in (2.2) are cofinal.

Proof. We first show that the functor opposite to

fft → {S1 → S′1, S
′
1 ∈ ≤nSchaff

ft }

is cofinal.

Both categories in question are filtered: the above categories (before passing to the opposite)

admit fiber products. Hence, it is enough to show that for any S1 → S′′1 with S′′1 ∈ ≤nSchaff
ft ,

there exists an object of fft such that the map S1 → S′′1 factors as S1 → S′1 → S′′1 . For n = 0
this a standard fact in classical algebraic geometry, and for general n, it follows by induction
using deformation theory (specifically, [Chapter III.1, Proposition 5.4.2(b)]).

To prove the assertion concerning

fft → {S2 → S′2, S
′
2 ∈ ≤nSchaff

ft },

we note that the corresponding fact holds for n = 0, i.e., in classical algebraic geometry.

Consider the following diagram

fft −−−−→ clffty y
{S2 → S′2, S

′
2 ∈ ≤nSchaff

ft } −−−−→ {clS2 → S′2,0, S
′
2,0 ∈ clSchaff

ft }.

By Lemma 2.1.5, this is a pullback diagram. In addition, the bottom horizontal arrow is a
Cartesian fibration. Hence, the cofinality of the functor opposite to the right vertical arrow
implies the corresponding fact for the left vertical arrow.

�

Remark 2.8.3. An assertion parallel to Lemma 2.8.2 remains valid if we replace the word ‘étale’
by ‘ppf’, but the proof is more involved.
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2.8.4. Let Y′ be an object of ≤nNearStklft, and let Y be its left Kan extension to an object of
≤nPreStk. Let f : S1 → S2 be an étale cover. To prove Proposition 2.7.7, we need to check
that the map

(2.3) Y(S2)→ Tot(Y(S•1/S2))

is an isomorphism.

For S ∈ ≤nSchaff , the value of Y on S is calculated as

colim
S→S′

Y′(S′),

where the colimit is taken over the category opposite to (≤nSchaff
ft )S/. Recall that according to

Theorem 1.5.3(b), the above category is filtered. This implies that if Y′ is k-truncated, then so
is Y.

Hence, we can replace Tot in (2.3), which is a limit in Spc over the index category ∆, by

the corresponding limit, denoted Tot≤k, in the category Spc≤k, over the index category ∆≤k

of finite ordered sets of cardinality ≤ k + 1.

2.8.5. We rewrite the left-hand side in (2.3) as

colim
S2→S′2,S′2∈≤nSchaff

ft

Y′(S′2).

Applying Lemma 2.8.2 for the → functor, we rewrite the right-hand side in (2.3) as

Tot≤k
(

colim
(fft)op

Y(S′1
•/S′2)

)
.

The category (fft)
op is filtered, as it contains push-outs. Since Tot≤k is a finite limit, we can

commute the limit and the colimit in the above expression, and therefore rewrite it as

colim
(fft)op

(
Tot≤k(Y(S′1

•/S′2))
)
.

By the descent condition for Y′, the latter expression is isomorphic to colim
(fft)op

Y(S′2). Applying

Lemma 2.8.2 for the ← functor, we obtain that

colim
(fft)op

Y(S′2) ' colim
S2→S′2,S′2∈≤nSchaff

ft

Y′(S′2),

as required.
�

2.9. Stacks locally almost of finite type.

2.9.1. Recall the full subcategory PreStklaft ⊂ PreStk. In this subsection we will perceive it as
the category

Funct
(

(<∞Schaff
ft )op,Spc

)
,

see Proposition 1.7.6.

2.9.2. Consider the étale topology on the category <∞Schaff
ft . Thus, we obtain a localization of

PreStklaft that we denote NearStklaft.

Let us denote by Llaft the corresponding localization functor

PreStklaft → NearStklaft → PreStklaft .
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2.9.3. Consider the functor

PreStk→ PreStklaft

given by restriction along
<∞Schaff

ft ↪→ <∞Schaff ↪→ Schaff .

It is clear that this functor sends Stk to NearStklaft. Moreover, as in Corollary 2.7.5 and
Corollary 2.5.7, we obtain:

Lemma 2.9.4. For Y ∈ PreStk we have:

L(Y)|<∞Schaff
ft
' Llaft(Y|<∞Schaff

ft
).

From Proposition 2.7.7 and Lemma 2.5.9 we obtain:

Corollary 2.9.5. Let Y be an object of NearStklaft, thought of as an object of PreStk via

NearStklaft ⊂ PreStklaft ⊂ PreStk

(see Proposition 1.7.6). Suppose that for each n, the restriction ≤nY of Y to ≤nSchaff
ft is kn-

truncated for some kn ∈ N. Then Y ∈ Stk.

2.9.6. In what follows, we will denote the intersection

Stk∩PreStklaft

by Stklaft. We shall refer to objects of the subcategory Stklaft ⊂ Stk as ‘stacks locally almost
of finite type’.

We have an evident inclusion

Stklaft ⊂ NearStklaft .

Corollary 2.9.5 says that the essential image of Stklaft in NearStklaft contains all objects Y,
such that for every n, the restriction ≤nY of Y to ≤nSchaff

ft is truncated.

3. (Derived) schemes

In this section we introduce the basic object of study in derived algebraic geometry–the
notion of (derived) scheme4.

We investigate some basic properties of schemes: what it means to be n-coconnective and
locally (almost) of finite type.

3.1. The definition of (derived) schemes. Our approach to the definition of (derived)
schemes (or more general algebro-geometric objects) is that they are prestacks that have some
specific properties. I.e., we never need to introduce additional pieces of structure.

In the case of (derived) schemes, the relevant properties are descent and the existence of a
Zariski atlas.

4In the main body of the text we drop the adjective ‘derived’: everything is derived unless specified otherwise.
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3.1.1. Recall the notion of an affine open embedding, see Sect. 2.1.9.

Following [TV2, Sect. 2.2], we say that an object Z ∈ PreStk is a scheme if:

(1) Z satisfies étale descent;

(2) The diagonal map Z → Z × Z is affine schematic, and for every T ∈ (Schaff)/Z×Z , the

induced map of classical schemes cl(T ×
Z×Z

Z)→ clT is a closed embedding;

(3) There exists a collection of affine schemes Si and maps fi : Si → Z (called a Zariski
atlas), such that:

• Each fi (which is affine schematic by the previous point) is an open embedding;

• For every T ∈ (Schaff)/Z , the images of the maps cl(T ×
Z
Si)→ clT cover clT .

We shall denote the full subcategory of Stk spanned by schemes by Sch.

Remark 3.1.2. One can show that the étale descent condition can be replaced by a weaker one:
namely, it is sufficient to require that Z satisfy Zariski descent. In addition, it is not difficult
to see that schemes as defined above actually satisfy flat descent.

Remark 3.1.3. Our definition gives what is usually called a separated scheme. The non-
separated case will be covered under the rubric of Artin stacks, discussed in the next section.

3.1.4. We shall say that a scheme Z is quasi-compact if the classical scheme clZ is. Equivalently,
this means that Z admits a Zariski cover by a finite collection of affine schemes.

3.1.5. It follows from the definition that if (Si
fi→ Z) is a Zariski atlas, then the map

t
i
Si → Z

is an étale (and, in fact, Zariski) surjection.

Hence, from Lemma 2.3.8, we obtain:

Lemma 3.1.6. Let Z be a scheme. For a given Zariski atlas t
i
Si → Z, we have Z '

L(|(t
i
Si)
•/Z|PreStk).

3.1.7. The following results from Lemma 2.1.5:

Corollary 3.1.8.

(a) Given a Zariski morphism of affine schemes S′ → S, for T → S, the datum of its lift to a
map T → S′ is equivalent to the datum of a lift of clT → clS to a map clT → clS′.

(b) Let Z ′ → Z be an affine Zariski map, where Z ′, Z ∈ Sch. Then for T → Z with T ∈ Schaff ,
the datum of a lift of f to a map f ′ : T → Z ′ is equivalent to the datum of a lift of clf : clT → clZ
to a map clf ′ : clT → clZ ′.

Remark 3.1.9. Both points in Corollary 3.1.8 remain valid if we replace the word ‘Zariski’ by
‘étale’.

3.2. Construction of schemes. In this subsection we will prove an assertion that provides a
converse to Lemma 3.1.6.
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3.2.1. First, we claim:

Proposition 3.2.2. Let Z be an object of Stk, equipped with a collection of affine open embed-
dings Si → Z, where Si ∈ Schaff . Suppose that clZ is a classical scheme5 and t

i

clSi → clZ is its

Zariski atlas. Then:

(a) Z is a scheme;

(b) The maps t
i∈I

Si → Z form a Zariski atlas of Z.

Proof. We only have to show that the diagonal map Z → Z × Z is affine schematic. This
is equivalent to showing that for any T,U ∈ (Schaff)/Z , the fiber product T ×

Z
U is an affine

scheme.

Consider the fiber products Si ×
Z
T . By assumption, these are affine schemes, and the map

t
i
Si ×

Z
T → T

is a Zariski covering. Therefore, by Proposition 2.4.2(b), it suffices to show that the fiber
products

Si ×
Z
T ×
Z
U

are affine schemes. However,

Si ×
Z
T ×
Z
U ' (Si ×

Z
T ) ×

Si

(Si ×
Z
U).

�

3.2.3. Let S• be a groupoid-object of PreStk (see [Lu1, Sect. 6.1.2] for what this means).

Denote
Z := L(|S•|).

We claim:

Proposition 3.2.4. Assume that S0 and S1 are of the form

S0 = t
i∈I

S0
i and S1 = t

j∈J
S1
j ,

where S0
i and S1

i are affine schemes, and the maps S1 ⇒ S0 are comprised of open embeddings
S1
i → S0

j . Assume, moreover, that clZ is a classical scheme and that t
i

clS0
i → clZ is its Zariski

atlas. Then:

(a) Z is a scheme;

(b) The maps t
i∈I

S0
i → Z form a Zariski atlas of Z.

Proof. By Proposition 3.2.2, it is enough to show that each of the maps S0
i → Z is an affine

open embedding. By Corollary 2.4.4, it suffices to show that the each of the maps

S0
i → |S•|

is an affine open embedding.

Fix a map T → |S•|. By definition, such a map factors as T → S0 → |S•|. Hence, we have

T ×
|S•|

S0
i ' T ×

S0
S0 ×
|S•|

S0
i .

5Following our conventions, when talking about classical schemes, we impose the hypothesis that they be
separated.
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Thus, it suffices to show that each of the maps S0 ×
|S•|

S0
i → S0 is an affine open embedding.

We have
S0 ×
|S•|

S0
i ' (S0 ×

|S•|
S0) ×

S0
S0
i .

Now,
S0 ×
|S•|

S0 ' S1,

and the assertion follows from the assumption on the map S1 → S0.
�

3.2.5. Combining Proposition 3.2.4 with Lemma 2.1.5, we obtain:

Corollary 3.2.6. Let Z be a scheme. Then the operation of passage to the underlying classical

subscheme defines an equivalence between the full subcategory Sch/Z spanned by Z ′
f→ Z with f

affine Zariski and the full subcategory of clSch/clZ spanned by Z̃ ′
f̃−→ clZ with f̃ affine Zariski.

Furthermore, f is an open embedding if and only if f̃ is.

Further, combining with Proposition 2.4.2(b), we obtain:

Corollary 3.2.7. In the circumstances of Corollary 3.2.6, the scheme Z ′ is affine if and only
if the classical scheme clZ ′ is affine.

And finally:

Corollary 3.2.8. A scheme Z is affine if and only if the classical scheme clZ is affine.

3.3. Schemes and n-coconnectivity. In this subsection we study the question of how the
notion of scheme interacts with the notion of n-coconnective stack.

3.3.1. Replacing the category PreStk by ≤nPreStk in the definition of the notion of scheme we
obtain a category that we denote by ≤nSch.

For n = 0 we recover the category of classical (separated) schemes.

3.3.2. We claim:

Proposition 3.3.3. Any object of ≤nSch is n-truncated as an object of ≤nPreStk.

Proof. Let Z be an object of ≤nSch and let us be given a map f0 : clT → Z, where T ∈ ≤nSchaff .
We will show that the space of maps T → Z that restrict to f0 is n-truncated.

Fix a Zariski atlas t
i
Si → Z. Consider the induced Zariski cover clT ×

Z
Si of clT . Since clT

is quasi-compact, we can replace the initial index set by its finite subset, denoted I, so that

t
i∈I

clT ×
Z
Si → clT

is still a cover.

By Lemma 2.1.5, there exists a canonically defined Zariski cover t
i∈I

Ti = T ′ → T such that

t
i∈I

clT ×
Z
Si = clT ′.

Now, the datum of a map f : T → Z that restricts to f0 is equivalent to the datum of a
point of

Tot(Maps(T ′•/T, Z) ×
Maps(clT ′•/clT,Z)

{f0}|clT ′•/clT ).
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We now claim that the above cosimplicial space is n-truncated simplex-wise.

Indeed, by Corollary 3.1.8(b), for every m ≥ 0, the corresponding space of m-simplices is the
product over the set of (m+ 1)-tuples (i0, ..., im) of elements of I of

Maps(Ti0 ×
T
...×

T
Tim , Si0) ×

Maps(clTi0 ×
clT

... ×
clT

clTim ,Si0 )
{f0}|clTi0

×
clT

... ×
clT

clTim
.

Now, the assertion follows from the fact that mapping spaces in ≤nSchaff are n-truncated,
by Sect. 1.8.6.

�

3.3.4. It is easy to see that the restriction functor for ≤nSchaff ↪→ Schaff sends Sch to ≤nSch
(replace the original Zariski cover Si by ≤nSi).

We claim:

Proposition 3.3.5.

(a) The functor
LLKE≤nSchaff ↪→ Schaff : ≤nStk ↪→ Stk

sends ≤nSch to Sch.

(b) If Z is an object of ≤nSch with a Zariski atlas t
i
Si → Z, then

t
i
Si → LLKE≤nSchaff ↪→ Schaff (Z)

is a Zariski atlas.

Proof. Follows from Proposition 3.2.4.
�

3.3.6. We shall call a scheme ‘n-coconnective’ if it is n-coconnective as an object of Stk.

We obtain that the functor LLKE≤nSchaff ↪→ Schaff identifies the category ≤nSch with that of
n-coconnective schemes.

We emphasize that an n-coconnective scheme is not necessarily n-coconnective as a prestack,
but it is n-coconnective as a stack.

3.3.7. We have the following characterization of n-coconnective schemes:

Proposition 3.3.8. For Z ∈ Sch the following conditions are equivalent:

(i) Z is n-coconnective.

(ii) For every Z ′ ∈ Sch equipped with an affine open embedding Z ′ → Z, we have Z ∈ ≤nSch.

(iii) Z admits a Zariski atlas by affine schemes belonging to ≤nSchaff .

Proof. The implication (i) ⇒ (iii) is Proposition 3.3.5(b). The implication (ii) ⇒ (iii) is tauto-
logical. We will now show that (iii) implies both (i) and (ii).

Assume first that Z admits a Zariski atlas consisting of affine schemes in ≤nSchaff . Then we
can write Z as

(3.1) L(colim
a∈A

Sa),

for some diagram of objects Sa ∈ ≤nSchaff , see Lemma 3.1.6. Concretely, the colimit in question
is the geometric realization of the Čech nerve of the given atlas.

In particular, colim
a∈A

Sa ∈ ≤nPreStk. And hence, Z ∈ ≤nStk.
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For any affine open embedding Z ′ → Z, the pullback of this atlas gives a Zariski atlas for Z ′

with a similar property. This implies that in this case Z ′ also belongs to ≤nSch.
�

3.4. Schemes and convergence.

3.4.1. We claim:

Proposition 3.4.2. A scheme, regarded as an object of PreStk, is convergent.

Proof. Let Z be a scheme and let us be given a map f0 : clT → Z, where T ∈ Schaff . We
will show that the datum of a lift of f0 to a map f : T → Z is equivalent to the datum of a
compatible family of lifts fn : ≤nT → Z.

Let t
i
Si → Z and t

i∈I
Ti = T ′ → T be as in the proof of Proposition 3.3.3.

As in loc.cit., the datum of a map f : T → Z that restricts to f0 is equivalent to the datum
of a point of

Tot(Maps(T ′•/T, Z) ×
Maps(clT ′•/clT,Z)

{f0}|clT ′•/clT ).

The datum of a compatible family of maps fn is equivalent to the datum of a point of

Tot

(
lim
n

Maps(≤nT ′•/≤nT,Z) ×
Maps(clT ′•/clT,Z)

{f0}|clT ′•/clT
)
.

Now, we claim that the restriction map

(3.2) Maps(T ′•/T, Z) ×
Maps(clT ′•/clT,Z)

{f0}|clT ′•/clT →

→ lim
n

Maps(≤nT ′•/≤nT,Z) ×
Maps(clT ′•/clT,Z)

{f0}|clT ′•/clT

is an isomorphism simplex-wise.

Indeed, by Corollary 3.1.8(b), for every m ≥ 0, the spaces of m-simplices in the two sides in
(3.2) are products over the set of (m+ 1)-tuples (i0, ..., im) of elements of I of

Maps(Ti0 ×
T
...×

T
Tim , Si0) ×

Maps(clTi0 ×
clT

... ×
clT

clTim ,Si0 )
{f0}|clTi0 ×

clT

... ×
clT

clTim

and

lim
n

Maps(≤nTi0 ×
≤nT

... ×
≤nT

≤nTim , Si0) ×
Maps(clTi0

×
clT

... ×
clT

clTim ,Si0
)
{f0}|clTi0 ×

clT

... ×
clT

clTim
,

respectively.

Now, the required isomorphism follows from the fact that each

Maps(Ti0 ×
T
...×

T
Tim , Si0)→ lim

n
Maps(≤nTi0 ×

≤nT
... ×
≤nT

≤nTim , Si0)

is an isomorphism (the convergence of Si0 as a prestack).
�
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3.4.3. We have the following partial converse to Proposition 3.4.2:

Proposition 3.4.4. Let Z be an object of convPreStk, such that for every n, the corresponding
object ≤nZ ∈ ≤nPreStk belongs to ≤nSch. Then Z ∈ Sch.

Proof. Let t
i
S̃i → clZ be a Zariski atlas of clZ. By Corollary 3.1.8(b), for every i we have a

compatible family of open embeddings

Si,n → ≤nZ.

Set
Si = colim

n
Si,n,

where the colimit is taken in Schaff . By construction, we have Si,n = ≤nSi, and the convergence
property of Z implies that we have a well-defined map Si → Z.

We claim now that Z is a scheme with t
i
Si → Z providing a Zariski atlas. Indeed, this

follows from Proposition 3.2.2.
�

3.5. Schemes locally (almost) of finite type.

3.5.1. We shall denote by ≤nSchlft and Schlaft the full subcategories of Stk, given by

Sch∩≤nStklft and Sch∩ Stklaft,

respectively.

We will denote by
≤nSchft ⊂ ≤nSchlft and Schaft ⊂ Schlaft

the full subcategories corresponding to quasi-compact schemes.

3.5.2. We have:

Proposition 3.5.3. For Z ∈ ≤nSch (resp., Z ∈ Sch) the following conditions are equivalent:

(i) Z ∈ ≤nSchlft (resp., Z ∈ Schlaft);

(ii) For an affine open embedding Z ′ → Z with Z ′ ∈ ≤nSch (resp., Z ′ ∈ Sch), we have Z ′ ∈
≤nSchlft (resp., Z ′ ∈ Schlaft);

(iii) Z admits a Zariski atlas consisting of affine schemes from ≤nSchaff
ft (resp., Schaff

aft).

Proof. Since schemes are convergent (see Proposition 3.4.2), it suffices to treat the case of
Z ∈ ≤nSch.

Assume first that Z admits a Zariski atlas consisting of affine schemes from ≤nSchaff
ft . Write

Z ' ≤nL(colim
a∈A

Sa),

where Sa ∈ ≤nSchaff
ft .

Using Corollary 2.7.10, we obtain that Z lies in the image of the functor LKE≤nSchaff
ft ↪→≤nSchaff ,

i.e., it belongs to ≤nStklft.

Assume now that Z belongs to ≤nStklft. We will show that if we have an affine open
embedding Z ′ → Z, then Z ′ ∈ ≤nStklft.

Let T be an object of ≤nSchaff . We need to show that the map

(3.3) colim
a

Z ′(Ta)→ Z ′(T )
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is an isomorphism, where a runs over the (filtered) category (≤nSchaff
ft )T/.

The map Z ′(S)→ Z(S) is a monomorphism for any S ∈ ≤nSchaff . Hence, since

colim
a

Z(Ta)→ Z(T )

is an isomorphism, we obtain that (3.3) is a monomorphism, by filteredness.

Hence, it remains to show that any map T → Z ′ can be factored as

T → Ta → Z ′,

where Ta ∈ ≤nSchaff
ft .

Consider the composite morphism

T → Z ′ → Z,

and let T → Tb → Z be its factorization with Tb ∈ ≤nSchaff
ft , which exists because Z is locally

of finite type.

Now set Ta := Tb ×
Z
Z ′.

�

3.6. Properties of morphisms.

3.6.1. Let f : Y1 → Y2 be a morphism in PreStk. We say that f is schematic if for any S ∈ Schaff

and S → Y2, the Cartesian product

S ×
Y2

Y1

is representable by an object of Sch.

The class of schematic maps is tautologically stable under base change. In addition, we claim
that the composition of schematic maps is schematic. This is equivalent to the next assertion:

Proposition 3.6.2. Let Z be a scheme and let Z ′ → Z be a schematic map. Then Z ′ is also
a scheme.

Proof. It is clear that Z ′ satisfies étale descent.

Let t
i
Si → Z be a Zariski atlas of Z. By assumption, each Si ×

Z
Z ′ is a scheme. Let

t
j∈Ji

Tj → Si ×
Z
Z ′

be its Zariski atlas. We claim that

t
i

( t
j∈Ji

Tj)→ t
i
Si ×

Z
Z ′ → Z ′

provides a Zariski atlas for Z ′.

Indeed, this is true at the classical level. Hence, by Proposition 3.2.2, it suffices to show that
each of the maps

Tj → Si ×
Z
Z ′ → Z ′

is an affine open embedding. However, this is evident, since Tj → Si×
Z
Z ′ is such by construction,

and Si ×
Z
Z ′ → Z ′ is such being a base change of an open embedding.

�
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3.6.3. The next assertion follows from Proposition 3.4.4:

Lemma 3.6.4. Let f : Y1 → Y2 be a map in convPreStk. To test the property of f of being
schematic (resp., schematic flat/ppf/smooth/étale) it is enough to do so on affine schemes S

belonging to <∞Schaff . If, moreover, Y1,Y2 ∈ PreStklaft, then it is enough to take S ∈ <∞Schaff
ft .

3.6.5. Since the properties of a morphism in Schaff of being flat/ppf/smooth/étale/Zariski are
local in the Zariski topology of the source, they transfer to the corresponding notions for
morphisms in Sch:

A morphism Z ′ → Z between schemes is flat/ppf/smooth/étale/Zariski if and only if for
some (equivalently, any) Zariski atlas t

i
S′i → Z ′, each of the composite maps S′i → Z (which is

now a schematic affine map of prestacks) has the corresponding property.

Thus, by base change, we obtain the notion of a schematic flat/ppf/smooth/étale/Zariski
morphism in PreStk.

3.6.6. The following is obtained by reduction to the affine case:

Lemma 3.6.7. Let Z ′
f→ Z ′

g→ Z ′′ be morphisms between schemes. Assume that f is surjective6

and flat (resp., ppf, smooth, étale, Zariski). If g ◦ f is flat (resp., ppf, smooth, étale, Zariski),
then so is g.

4. (Derived) Artin stacks

In this section we introduce the notion of k-Artin stack, k = 0, 1, .... As in the case of schemes,
k-Artin stacks are prestacks with some particular properties (but no additional structure).

Our definition is a variation of the definition of k-geometric stacks ot geometric k-stacks in
[TV2]. Although for an individual k, our definition will be different from both these notions
from [TV2], the union over all k produces the same class of objects for all three classes of
objects.

We also note that from the point of view of (our version of) the hierarchy of k-Artin stacks,
schemes (which are, beyond doubt, a natural object of study) are a red herring: the category
of schemes properly contains the category of 0-Artin stacks and is properly contained in the
category of 1-Artin stacks. As a related phenomenon, we completely bypass the other important
notion: that of algebraic space.

As in the previous sections, we will only be interested in only the most formal aspects of the
theory: the notions of n-coconnectivity, finite typeness and convergence.

4.1. Setting up Artin stacks. For k ≥ 0, we will define a full subcategory of Stk spanned by
objects that we refer to as k-Artin stacks.

In setting up Artin stacks the choice of étale topology is no longer arbitrary. It is made in
order to make our system of definitions as simple as possible; see, however, Remark 4.1.4 below.

4.1.1. We start with k = 0. We shall say that an object Y ∈ Stk is a 0-Artin stack if it is of the
form L(t

i
Si), where Si ∈ Schaff . In particular,

Stk0 -Artn ⊂ Sch .

6Surjective=surjective at the level of underlying classical schemes.
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4.1.2. To define the notion of k-Artin stack for k ≥ 1 we proceed inductively.

Along with this notion, we will define what it means for a morphism in PreStk to be k-
representable, and for a k-representable morphism what it means to be flat (resp., ppf, smooth,
étale, surjective). These notions have an obvious meaning in the case of k = 0.

We will inductively assume the following properties:

• Any (k − 1)-Artin stack is a k-Artin stack;
• Any morphism that is (k − 1)-representable, is k-representable;
• A (k − 1)-representable morphism is flat (resp., ppf, smooth, étale, surjective) if and

only if it is such when viewed as a k-representable morphism;
• The class of k-representable (resp., k-representable + flat/ppf/smooth/étale/surjective)

morphisms is stable under compositions and base change.

It will follow inductively from the construction that the class of k-Artin stacks is closed under
fiber products.

4.1.3. Suppose the above notions have been defined for k′ < k.

We say that Y ∈ Stk is a k-Artin stack if the following conditions hold:

(1) The diagonal map Y→ Y× Y is (k − 1)-representable.

(2) There exists Z ∈ Stk(k−1) -Artn and a map f : Z → Y (which is a (k − 1)-representable
by the previous point), which is smooth and surjective.

We shall call the pair f : Z→ Y a (smooth) atlas for Y. Note that we can always choose an

atlas with Z ∈ Stk0 -Artn.

Remark 4.1.4. Here we quote two fundamental results of Toën ([To, Theorem 2.1]). One says
that Artin stacks as defined above actually satisfy ppf descent. Another says that if we require
ppf descent, but instead of requiring a smooth atlas, we only require a ppf atlas, we still arrive
at the same class of objects.

4.1.5. We will say that Y ∈ Stk is an Artin stack if it is a k-Artin stack for some k.

We let Stkk -Artn (resp., StkArtn) denote the full subcategory of Stk spanned by k-Artin (resp.,
Artin) stacks.

Note that in our definition, schemes are 1-Artin stacks:

Sch ⊂ Stk1 -Artn .

4.1.6. We say that a morphism f : Y1 → Y2 in PreStk is k-representable if for every S → Y2

with S ∈ Schaff the fiber product S ×
Y2

Y1 is a k-Artin stack in the above sense.

4.1.7. Let Y be a k-Artin stack mapping to an affine scheme S. We shall say that this map
is flat (resp., ppf, smooth, étale, surjective) if for some atlas Z → Y, the composite map of
Z→ S (which is (k − 1)-representable) is flat (resp., ppf, smooth, étale, surjective). Note that
Lemma 3.6.7 implies by induction that if this condition holds for one atlas, then it holds for
any other atlas.

4.1.8. We shall say that a k-representable morphism f : Y1 → Y2 is flat (resp., ppf, smooth,

étale, surjective) if for every S → Y2 with S ∈ Schaff , the map

S ×
Y2

Y1 → S

is flat (resp., ppf, smooth, étale, surjective).
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4.1.9. Quasi-compactness and quasi-separatedness. Let Y be a k-Artin stack. We say that Y is
quasi-compact if there exists a smooth atlas f : S → Y with S ∈ Schaff .

For a k-representable morphism Y1 → Y2 in PreStk, we say that it is quasi-compact, if its
base change by an affine scheme yields a quasi-compact k-Artin stack.

For 0 ≤ k′ ≤ k, we define the notion of k′-quasi-separatedness of a k-Artin stack or a
k-representable morphism inductively on k′.

We say that a k-Artin stack Y is 0-quasi-separated if the diagonal map Y→ Y× Y is quasi-
compact, as a (k−1)-representable map. We say that a k-representable map is 0-quasi-separated
if its base change by an affine scheme yields a 0-quasi-separated k-Artin stack.

For k′ > 0, we say that a k-Artin stack Y is k′-quasi-separated if the diagonal map Y→ Y×Y

is (k′− 1)-quasi-separated, as a (k− 1)-representable map. We shall say that a k-representable
map is k′-quasi-separated if its base change by an affine scheme yields a k′-quasi-separated
k-Artin stack.

We shall say that a k-Artin stack is quasi-separated if it is k′-quasi-separated for all k′,
0 ≤ k′ ≤ k. We shall say that a k-representable map is quasi-separated if its base change by an
affine scheme yields a quasi-separated k-Artin stack.

4.2. Verification of the induction hypothesis.

4.2.1. Tautologically, the class of representable maps is stable under base change. Moreover,
diagram chase shows:

Lemma 4.2.2.

(a) Let a morphism f : Y1 → Y2 in PreStk be k-representable. Then the diagonal morphism
Y1 → Y1 ×

Y2

Y1 is (k − 1)-representable.

(b) Any map between k-Artin stacks is k-representable.

4.2.3. We claim that the class of k-representable maps is stable under compositions. This is
equivalent to the following assertion:

Proposition 4.2.4. Let f : Y′ → Y be a k-representable map in PreStk where Y is a k-Artin
stack. Then so is Y′.

Proof. Consider the diagonal Y′ → Y′ × Y′, and factor it as

Y′ → Y′ ×
Y
Y′ → Y′ × Y′.

Since f is k-representable we obtain that

Y′ → Y′ ×
Y
Y′

is (k − 1)-representable (by Lemma 4.2.2(a)). Now, Y′ ×
Y
Y′ → Y′ × Y′ is (k − 1)-representable,

being a base change of Y→ Y× Y.

We now need to construct a smooth atlas for Y′. Let Z → Y be a smooth atlas for Y

with Z ∈ Stk0 -Artn. By assumption, each Z ×
Y
Y′ is a k-Artin stack. Choose a smooth atlas

Z′ → Z×
Y
Y′. We claim that the composite map

Z′ → Z×
Y
Y′ → Y′
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provides a smooth atlas for Y′. Indeed, this map is smooth and surjective, being the composition
of Z′ → Z (which is smooth and surjective by assumption) and Z ×

Y
Y′ → Y′ (which is smooth

and surjective, being a base change of Z→ Y).
�

4.2.5. We claim that that the composition of representable flat/ppf/smooth/étale/surjective
maps is itself a flat/ppf/smooth/étale/surjective map. This is equivalent to the following:

Proposition 4.2.6. Let Y′ → Y be a k-representable flat (resp., ppf. smooth, étale, surjective)
map, where Y is a k-Artin stack, equipped with a flat (resp., ppf, smooth, étale, surjective) map

to S ∈ Schaff . Then the composite map Y′ → S is flat (resp., ppf. smooth, étale, surjective).

Proof. The required property tautologically holds for the atlas constructed in the proof of
Proposition 4.2.4.

�

4.3. Descent properties.

4.3.1. The following results from the definitions:

Lemma 4.3.2.

(a) If f : Z→ Y is an atlas of a k-Artin stack, then it is an étale surjection.

(b) If Y1 → Y2 is a k-representable morphism, which is étale and surjective, then it is an étale
surjection.

Corollary 4.3.3. Let Y be a k-Artin stack and let f : Z → Y be a smooth atlas. Then the
natural map

L(|Z•/Y|PreStk) ' |Z•/Y|Stk → Y

is an isomorphism, where the subscript Stk (resp., PreStk) indicates that the geometric realiza-
tion is taken in Stk (resp., PreStk).

Corollary 4.3.4. Let Y be a k-Artin stack. Then for any n, the restriction ≤nY ∈ ≤n PreStk
is (n+ k)-truncated.

Proof. We prove the assertion by induction. The assertion for k = 0 is a particular case of
Proposition 3.3.3. Assume now that the assertion is valid for k′ < k.

Note that the geometric realization of a m-truncated groupoid object in Spc is (m + 1)-
truncated. Combining this with Lemma 2.5.3, we obtain that it suffices to show that the
simplicial prestack Z•/Y has the property that for every n its restriction ≤n(Z•/Y) is (n+k−1)-
truncated.

However, each simplex of ≤n(Z•/Y) belongs to Stk(k−1) -Artn, and the assertion follows from
the induction hypothesis.

�

4.3.5. We will now prove an (amplified) converse to Corollary 4.3.3. Let Y• be a groupoid-object
of Stk (see [Lu1, Sect. 6.1.2] for what this means).

Set

Y := |Y•|Stk ' L(|Y•|PreStk)

be its geometric realization. We have

(4.1) Y1 ' Y0 ×
Y
Y0
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(indeed, this tautologically holds before sheafification, and then use the fact that the functor L
preserves fiber products).

We claim:

Proposition 4.3.6.

(a) Assume that in the above situation Y1 and Y0 are k-Artin stacks, the maps Y1 ⇒ Y0 are
smooth and the map Y1 → Y0 × Y0 is (k − 1)-representable. Then Y is a k-Artin stack.

(b) Let
Y ←−−−− Y′y y
S

f←−−−− S′

be a Cartesian square in Stk with S, S′ ∈ Schaff and the morphism f being smooth and surjective.
Then if Y′ is a k-Artin stack, the so is Y.

(c) Suppose that a morphism f : Y1 → Y2 in PreStk is k-representable (resp., k-representable
and flat/ppf/smooth/étale/surjective). Then so is the morphism L(f) : L(Y1)→ L(Y2).

Remark 4.3.7. By Remark 4.1.4, statement (b) of the above lemma can be strengthened: one
can relax the condition that the morphism f be ppf instead of smooth. I.e., Artin stacks satisfy
ppf descent, and not just smooth descent. Statement (a) can be strengthened accordingly, by
requiring that the maps Y1 ⇒ Y0 be ppf instead of smooth.

Remark 4.3.8. The above proposition allows to construct the familiar examples of algebraic
stacks. For example, if G is a smooth group-scheme acting on a scheme X, we consider Y1 :=
G×X as a groupoid acting on Z0 := X, and the resulting 1-Artin stack Y is what we usually
refer to as X/G.

Proof of Proposition 4.3.6. We prove all three assertions by induction on k. The base case is
k = 1, which we will establish together with the induction step. We note that statements
(b) and (c) make sense for k = 0, and hold due to Proposition 2.4.2(b) and Corollary 2.4.4,
respectively.

We begin by proving point (a).

Let us show that the diagonal morphism of Y is (k−1)-representable. By point (c) for k−1,
it suffices to show that the map

|Y•|PreStk → |Y•|PreStk × |Y•|PreStk

is (k − 1)-representable. Fix a map S → |Y•|PreStk × |Y•|PreStk with S ∈ Schaff . Such a map
factors through a map S → Y0 × Y0. Hence,

S ×
|Y•|PreStk×|Y•|PreStk

|Y•|PreStk ' S ×
Y0×Y0

(Y0 × Y0) ×
|Y•|PreStk×|Y•|PreStk

|Y•|PreStk '

' S ×
Y0×Y0

(Y0 ×
|Y•|PreStk

Y0) ' S ×
Y0×Y0

Y1.

A similar argument shows that the map Y0 → Y is smooth and surjective. Hence, if Z→ Y0

is a smooth atlas for Z0, then the composition Z→ Y0 → Y1 is a smooth atlas for Y.

Let us now prove point (b).

Let Y• be the Čech nerve of the map Y′ → Y. In particular Y0 = Y′ is a k-Artin stack.
The maps Y1 ⇒ Y0 are affine schematic and smooth, being base-changed from S′ → S. In



BASICS OF DAG 39

particular, Y1 is also a k-Artin stack. The map Y1 → Y0 × Y0 is (k− 1)-representable since the
diagonal morphism of Y′ is (k − 1)-representable.

Since Y′ → Y is an étale surjection, we have Y ' L(|Y•|PreStk), by Lemmas 4.3.2(b) and 2.3.8.
Applying point (a) we obtain that Y is a k-Artin stack, as desired.

Finally, let us prove point (c).

Let us be given a map S → L(Y2). We need to show that the fiber product S ×
L(Y2)

L(Y1) is

a k-Artin stack (resp., a k-Artin stack, whose map to S is flat/ppf/smooth/étale/surjective).

Since Y2 → L(Y2) is an étale surjection, we can find an étale covering S′ → S so that the
composition S′ → S → L(Y2) factors as S′ → Y2 → L(Y2). Consider the Cartesian square

S ×
L(Y2)

L(Y1) ←−−−− S′ ×
L(Y2)

L(Y1)y y
S ←−−−− S′.

By point (b), it suffices to show that S′ ×
L(Y2)

L(Y1) is a k-Artin stack (the properties of the

map S′ ×
L(Y2)

L(Y1)→ S′ imply the corresponding properties of the map S ×
L(Y2)

L(Y1)→ S by

Corollary 2.4.6.)

However, since the functor L commutes with fiber products, we have

S′ ×
L(Y2)

L(Y1) ' L(S′ ×
Y2

Y1),

where
L(S′ ×

Y2

Y1) ' S′ ×
Y2

Y1,

since S′ ×
Y2

Y1 is a k-Artin stack by assumption.

�

Corollary 4.3.9. Let Y be an object of Stk, and let f : Z → Y be a (k − 1)-representable,
smooth and surjective morphism, where Z is a k-Artin stack. Then Y is a k-Artin stack.

Proof. Apply Proposition 4.3.6(a) to the Čech nerve of the map Z→ Y.
�

4.4. Artin stacks and n-coconnectivity.

4.4.1. Replacing the category Sch by ≤nSch in the above discussion, we arrive to the definition
of the category ≤nStkk -Artn.

It is clear that the restriction functor under ≤nSch ↪→ Sch sends Stkk -Artn to ≤nStkk -Artn.

4.4.2. We claim:

Proposition 4.4.3.

(a) The functor
LLKE≤nSchaff ↪→ Schaff : ≤nStk ↪→ Stk

sends ≤nStkk -Artn to Stkk -Artn.

(b) If Z→ Y is a smooth atlas for an object Y ∈ ≤nStkk -Artn, then

LLKE≤nSchaff ↪→ Schaff (Z)→LLKE≤nSchaff ↪→ Schaff (Y)
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is a smooth atlas.

Proof. We will prove the proposition by induction on k, assuming its validity for k′ < k. We
note that the assertion for a given k′ implies the following:

(i) If Y1 → Y2 is a k′-representable (resp., k′-representable and flat/smooth) map in ≤nPreStk,
then the induced map in PreStk

LLKE≤nSchaff ↪→ Schaff (Y1)→ LLKE≤nSchaff ↪→ Schaff (Y2)

is also k′-representable (resp., k′-representable and flat/smooth).

(ii) If we have a Cartesian diagram in ≤nStkk
′ -Artn

(4.2)

Y′1 −−−−→ Y1y y
Y′2 −−−−→ Y2

with the vertical arrows flat, then the diagram

(4.3)

LLKE≤nSchaff ↪→ Schaff (Y′1) −−−−→ LLKE≤nSchaff ↪→ Schaff (Y1)y y
LLKE≤nSchaff ↪→ Schaff (Y′2) −−−−→ LLKE≤nSchaff ↪→ Schaff (Y2)

is Cartesian as well.

Let us now carry out the induction step.

Let Y be an object of ≤nStkk -Artn. By Corollary 4.3.3, for a given smooth atlas Z → Y, we
can write Y as |Z•|≤nStk, where Z• is the Čech nerve of Z→ Y, In particular, Z• is a groupoid

object in ≤nStk(k−1) -Artn.

By (ii) above, the simplicial object of Stk given by

LLKE≤nSchaff ↪→ Schaff (Z•)

is a groupoid object. Moreover, by (i) above, it satisfies the assumption of Proposition 4.3.6(a).
Hence,

Y′ := |LLKE≤nSchaff ↪→ Schaff (Z•)|
is an object of Stkk -Artn.

Furthermore, Y′ is n-coconnective as a stack, whose restriction to ≤nSch identifies with Y.
Therefore,

Y′ ' LLKE≤nSchaff ↪→ Schaff (Y).

�

4.4.4. We shall say that an object of Stkk -Artn is n-coconnective if it is n-coconnective as an
object of Stk. From Proposition 4.4.3, we obtain:

Corollary 4.4.5. The functor LLKE≤nSchaff ↪→ Schaff is an equivalence from ≤nStkk -Artn to the

full subcategory of Stkk -Artn, spanned by n-coconnective k-Artin stacks.

Warning: We emphasize again that being n-coconnective as a stack does not imply being
n-coconnective as a prestack.
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4.4.6. We will now characterize those k-Artin stacks that are n-coconnective:

Proposition 4.4.7. Let Y be a k-Artin stack. The following conditions are equivalent:

(i) Y is n-coconnective.

(ii) There exists an atlas f : Z → Y, where Z ∈ ≤nStk0 -Artn.

(iii) If Y′ → Y is a k-representable flat map, then Y′ is n-coconnective as a stack.

Proof. We argue inductively on k, assuming the validity for k′ < k.

The implication (i) ⇒ (ii) follows from Proposition 4.4.3(b).

Let us show that (ii) implies (i). By Corollary 4.3.3, it suffices to show that the Čech nerve of
the atlas Z → Y consists of (k− 1)-Artin stacks that are n-coconnective. However, this follows
from the implication (i) ⇒ (iii) for k − 1.

The implication (iii)⇒ (ii) is tautological: the assumption in (iii) implies that for any smooth
atlas Z → Y, the scheme Z is n-coconnective.

Finally, the implication (i),(ii) ⇒ (iii) follows by retracing the construction of the atlas in
the proof of Proposition 4.2.4.

�

4.4.8. Artin stacks and convergence. We will now prove:

Proposition 4.4.9.

(a) Any k-Artin stack, viewed as an object of PreStk, is convergent.

(b) Let Y ∈ conv PreStk be such that for any n, we have ≤nY ∈ ≤nStkk -Artn. Then Y is a k-Artin
stack.

Proof. We proceed by induction on k. For k = 0, point (a) follows from Proposition 3.4.2, and
point (b) follows by repeating the argument of Proposition 3.4.4.

We first prove point (a), assuming the validity of both (a) and (b) for k′ < k.

Let f : Z→ Y be a smooth atlas Y. By Corollary 4.3.3, we have:

Y ' |Z•/Y|Stk.

Consider the induced map convf : convZ→ convY. We claim that convf is (k−1)-representable,

smooth and surjective. Indeed, for S → convY with S ∈ Schaff , for every n, we have

≤n(S ×
convY

convZ) ' ≤nS ×
≤nY

≤nZ ∈ ≤nStk(k−1) -Artn .

Hence, S ×
convY

convZ is a (k − 1)-Artin stack by the induction hypothesis. Moreover, since each

≤nS ×
≤nY

≤nZ is smooth and surjective over ≤nS, by Lemma 2.1.3, we obtain that S ×
convY

convZ

is smooth and surjective over S.

In particular, by Lemma 4.3.2(b), we obtain that convZ → convY is an étale surjection, and
hence

convY ' |convZ•/convY|Stk.

However, we claim that the map of the cosimplicial objects

Z•/Y→ convZ•/convY

is an isomorphism. Indeed, for every m, we have
convZm/convY ' conv(Zm/Y),
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where Zm/Y is a (k− 1)-Artin stack, and hence Zm/Y→ conv(Zm/Y) is an isomorphism by the
induction hypothesis.

To prove point (b) we will need to appeal to deformation theory. Choose a smooth atlas

Z0 → clY with Z0 ∈ clStk0 -Artn. Then deformation theory (see [Chapter III.1, Sect. 7.4]) implies

that we can we can construct a compatible system of objects Zn ∈ ≤nStk0 -Artn equipped with
smooth maps Zn → ≤nY.

Set Z := colim
n

Zn, where the colimit is taken in convPreStk. By the case of k = 0, we

have Z ∈ Stk0 -Artn, and since Y is convergent we have a canonically defined map Z → Y. Set
Y• := Z•/Y. By Lemma 2.5.9, we have Y ∈ Stk. Hence, the map

|Y•|Stk → Y

is an isomorphism.

Thus, by Proposition 4.3.6(a), it suffices to show that the map

Y1 = Z ×
Y
Z → Z × Z

is (k − 1)-representable and its composition with either of the the projections Z × Z → Z is
smooth. By the induction hypothesis and Lemma 2.1.3, it suffices to show that the map

Zn ×
≤nY

Zn = ≤nZ ×
≤nY

≤nZ ' ≤n(Z ×
Y
Z)→ ≤n(Z × Z) ' ≤nZ × ≤nZ = Zn × Zn

has the corresponding properties. However, this follows from the fact that the map Zn → ≤nY

is (k − 1)-representable and smooth.
�

4.5. Artin stacks locally almost of finite type.

4.5.1. The goal of this subsection is to establish the following:

Proposition 4.5.2. Let Y be an object of Stkk -Artn (resp., ≤nStkk -Artn). The following con-
ditions are equivalent:

(i) Y ∈ Stklaft (resp., Y ∈ ≤nStklft);

(ii) Y admits an atlas f : Z → Y with Z ∈ Stk0 -Artn
laft (resp., Z ∈ ≤nStk0 -Artn

lft );

(iii) For a k-representable ppf morphism Z → Y with Z ∈ Stk0 -Artn (resp., Z ∈ ≤nStk0 -Artn),

we have Z ∈ Stk0 -Artn
laft (resp., Z ∈ ≤nStk0 -Artn

lft ).

(iv) For a k-representable ppf morphism Y′ → Y, we have Y′ ∈ Stklaft (resp., Y′ ∈ ≤nStklft)

We will call k-Artin stacks satisfying the equivalent conditions of the above proposition
‘k-Artin stacks locally almost of finite type’.

Since we know that k-Artin stacks are convergent, it is enough to treat the case of Y ∈
≤nStkk -Artn.

4.5.3. The proof of the proposition proceeds by induction, so we are assuming that all four
conditions are equivalent for k′ < k.

The implications (iii) ⇒ (ii) and (iv) ⇒ (iii) are tautological. The construction of the atlas
in Proposition 4.2.4 shows that (ii) and (iii) imply (iv).
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4.5.4. Implication (ii)⇒ (i). By Corollary 4.3.3, we have

Y ' ≤nL(|Z•/Y|≤nPreStk).

First, the implication (i) ⇒ (iv) for k − 1 implies that the terms of the Čech nerve of the
atlas Z → Y consist of objects of ≤nStklft. Hence, we can rewrite the expression for Y as

≤nL ◦ LKE≤nSchaff
ft ↪→≤nSchaff (Y|≤nSchaff

ft
).

However, by Corollary 4.3.4, the restriction Y|≤nSchaff
ft

is (n+ k)-truncated. Hence, applying

Proposition 2.7.7, we obtain that
≤nL ◦ LKE≤nSchaff

ft ↪→≤nSchaff (Y|≤nSchaff
ft

) ' LKE≤nSchaff
ft ↪→≤nSchaff (Y|≤nSchaff

ft
)

(i.e., no sheafification is necessary).

Thus, Y, viewed as an object of ≤nPreStk, lies in the essential image of LKE≤nSchaff
ft ↪→≤nSchaff ,

i.e., belongs to ≤nPreStklft.

4.5.5. Implication (i)⇒ (iii). (J.Lurie)

It is easy to see that we can assume that Z = S is an affine scheme. Let us be given a ppf
map f : S → Y. We wish to show that S ∈ ≤nSchaff

ft .

Since Y ∈ ≤nPreStklft, there exists T ∈ ≤nSchaff , such that f factors as

S
h−→ T

g−→ Y.

Consider the Cartesian square:

T ×
Y
S

g′−−−−→ S

f ′
y yf
T

g−−−−→ Y.
Since the map f is ppf, so is f ′. Let Z ′ → T ×

Y
S be an atlas with Z ′ ∈ ≤nStk0 -Artn. We

obtain that Z ′ is ppf over T . Since T is of finite type, we obtain that Z ′ ∈ ≤nStk0 -Artn
lft .

Since T ×
Y
S ∈ ≤nStk(k−1) -Artn, by the induction hypothesis, we obtain that

T ×
Y
S ∈ ≤nStk

(k−1) -Artn
lft ⊂ ≤nPreStklft .

Consider now the maps

S
diag−→ S ×

Y
S
h×id−→ T ×

Y
S → S,

where the last map if the projection on the second factor. The composition is the identity
map on S. Hence, S is a retract of T ×

Y
S as an object of ≤nPreStk. Since the subcategory

≤nPreStklft ⊂ ≤nPreStk is stable under retracts, we obtain that

S ∈ ≤nPreStklft ∩≤nSchaff .

Now, the assertion that S ∈ ≤nSchaff
ft follows from Lemma 1.6.6.


