
Math 55a: Honors Advanced Calculus and Linear Algebra

Metric topology III: Introduction to functions and continuity

NB we diverge here from the order of presentation in Rudin, where continuity is post-
poned until Chapter 4.

Continuity of functions between metric spaces. In a typical mathematical the-
ory one is concerned not only with the objects and their properties, but also (and
perhaps even more importantly) with the relationships among them, and with how
they connect with already familiar mathematical objects — a mathematical theory
concerned only with objects and properties, not their relationships, would likely be as
sterile as a language with nouns and adjectives but no verbs. Typically the “verbs” are
functions (a.k.a. maps) between the theory’s objects. In the theory of metric spaces, we
have already encountered two classes of functions: distance functions, and isometries
between metric spaces. For most uses we need a much richer class of functions, the
continuous functions.

Let X,Y be metric spaces, E a subset of X, and f some function from E to Y . For
any p ∈ E, we shall say that f is continuous at p if, for a variable point q ∈ E, we
can guarantee that f(q) is as close as desired to f(p) by making q close enough to p;
formally, if1

for each real number ε > 0 there exists δ > 0 such that dY (f(p), f(q)) < ε
for all q ∈ E such that dX(p, q) < δ.

The function f is said to be continuous if it is continuous at p for all p ∈ E.

Some basic examples follow. A constant function is continuous, since δ may be chosen
arbitrarily. Any isometry is continuous; for any metric space X and any fixed p0 ∈ X,
the function X → R, p 7→ d(p, p0) is continuous. In both these examples one may take
δ = ε. Likewise, the distance function d : X × X → R is continuous, this time with
δ = ε/2 (why?). In each of these cases, δ depends on ε but not on the choice of p; when
this happens, the function is said to be uniformly continuous — we shall say much
more about uniform continuity in the coming lectures. An example of a function that
is continuous but not uniformly continuous is the map x 7→ 1/x from (0, 1) to R (see
below). If X has the discrete metric then any f is continuous (why?).

A topological reformulation of continuity. Continuity can be profitably stated in
terms of neighborhoods and open sets. This takes several steps to accomplish, which
we do next.

To begin with, we immediately translate the definition into the following equivalent
form:

1Because of the traditional choice of variables ε, δ in this fundamental definition, rigorous deriva-
tions of facts about continuous functions are often called “epsilon-delta proofs”.
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f : E → Y is continuous at p if and only if for each neighborhood Nε(f(p))
of f(p) there exists a neighborhood Nδ(p)∩E of p such that q ∈ Nδ(p)∩E ⇒
f(q) ∈ Nε(f(p)).

Note that of necessity we use the “relative neighborhood” Nδ(p) ∩ E of p, i.e. the
δ-neighborhood of p considered as an element of the metric space E, not X. A “rela-
tively open” subset of E is defined similarly; see appendix below.

We next rephrase this new definition in terms of “inverse images”. For any function
f : X → Y and any subset S ⊆ Y we define the inverse image f−1(S) as the set of all
points of X whose image under f is contained in S:

f−1(S) := {x ∈ X : f(X) ∈ S}.

Notice that f need not be a bijection: inverse images are defined for any function.
Thus our definition of continuity becomes

f : E → Y is continuous at p if and only if for each neighborhood Nε(f(p))
of f(p) the preimage f−1(Nε(f(p))) contains a relative neighborhood of p.

We deduce the following characterization of continuity. For simplicity we first obtain
it when E = X:

Theorem. [Rudin, 4.8, p.86–87] A function f : X → Y between metric spaces is
continuous if and only if f−1(V ) is open in X for every open V ⊆ Y .

Proof : (⇒) We must show that each p ∈ f−1(V ) is an interior point of f−1(V ). Since V
is open and f(p) ∈ V , there exists ε > 0 such that Nε(f(p)) ⊆ V . Since f is continuous
at p, the preimage f−1(Nε(f(p))) of this neighborhood contains a neighborhood of p.
This neighborhood is thus contained in f−1(V ), and we are done.
(⇐) We show that f is continuous at each p ∈ X. For any ε > 0, the ε-neighborhood
Nr(f(p)) is open in Y ; thus by hypothesis, its preimage is open in X. This preimage
contains p, and thus contains some neighborhood of p. 2

In the general case we obtain:

Let X,Y be metric spaces and E ⊂ X. A function f : E → Y is continuous if and
only if f−1(V ) is relatively open in E for every open V ⊆ Y .

Proof : Consider E as a metric space in its own right, and apply the previous theo-
rem. 2

Applications of the topological formulation of continuity. There are several
advantages to this formulation of continuity. One is that it expresses continuity as a
topological notion, i.e. in terms of open sets without mentioning the distance function.
Thus it gives a natural extension of the notion of continuity to the category of topo-
logical spaces. A more immediate advantage is that several results now become almost
obvious, notably the following:
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Theorem. [Rudin, 4.7, p.86] Let f : X → Y , g : Y → Z be maps between metric
spaces, and h = (g ◦ f) : X → Z the composite map. Then if f and g are continuous,
so is h.

Proof : For any open subset V ⊆ Z, the preimage g−1(Z) is open in Y because g
is continuous; thus so is its preimage f−1(g−1(Z)) in X. But f−1(g−1(Z)) = (g ◦
f)−1(Z) = h−1(Z). Thus h is continuous. 2

[We have used here the following convenient fact about inverse images: if f : X → Y
and g : Y → Z then for any S ⊆ Z we have (g ◦ f)−1(S) = f−1(g−1(S)). A further
useful fact of this nature is that the inverse image of an arbitrary union or inter-
section is the union or intersection, respectively, of the inverse images; symbolically,
f−1(∪αSα) = ∪αf−1(Sα) and f−1(∩αSα) = ∩αf−1(Sα). You should verify all these
claims. Curiously inverse images behave more nicely than (direct) images, defined sim-
ilarly by f(S) := {f(x) ∈ X : x ∈ S}. Which of the above properties of inverse images
fails for direct images, and why?]

We can now use the fact that the composition of continuous functions is continuous as
a powerfool tool for generating new continuous functions from previously known ones.
For instance, consider

Theorem. [Rudin, 4.9, p.87] Let f, g : X → C be continuous functions on a metric
space X. Then f + g, f − g, fg are continuous. If g(x) 6= 0 for all x ∈ X then the
function f/g is continuous.

[f + g is the function taking any x ∈ X to f(x) + g(x); likewise f − g, fg, f/g.]

This would follow from the following facts: i) If X,Y, Z are metric spaces and f : X →
Y , g : X → Z are continuous functions, then the map (f, g) : X → Y × Z defined by
(f, g)(p) = (f(p), g(p)) is continuous.
ii) The functions from C2 to C taking (z1, z2) to z1 + z2, z1 − z2, z1z2 are continuous.
The function from C×C∗ to C taking (z1, z2) to z1/z2 is continuous.

[In (i), we put the sup metric on Y ×Z. In (ii), C∗ is C−{0}, which inherits its metric
structure from C.]

Supposing we can both prove the general fact (i) and show that the specific functions
in (ii) are continuous. Then the Theorem is an easy consequence. For instance we
obtain fg by composing the function (f, g) : X → C2 with the function from C2 to C
taking (z1, z2) to z1z2.

Now (i) is straightforward. Given p, ε we use the continuity of f, g to find positive δf , δg
such that d(p, q) < δf ⇒ d(f(p), f(q)) < ε, d(p, q) < δg ⇒ d(g(p), g(q)) < ε, and let
δ = min(δf , δg). Conversely, one readily shows (do it!) that if (f, g) is continuous then
each of f, g is. More generally, a function f from X to a Cartesian product Y1×· · ·×Yn
is just an ordered n-tuple (f1, . . . , fn) with each fi : X → Yi; if X,Yi are metric spaces
then f is continuous if and only if each fi is.
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As to (ii), we must first specify the metric on C, and we choose d(p, q) := |p − q|.
Recall that the absolute value |z| of a complex number z = x + iy is by definition√
x2 + y2 = (zz̄)1/2, z̄ being the complex conjugate x − iy of z. We must verify that

this d(·, ·) is actually a metric; see [Rudin, 1.33, p.14–15], or the Appendix below. This
immediately yields the continuity of z1± z2. As for z1z2, let z′1 = z1 + δ1, z′2 = z2 + δ2.
Then

|z′1z′2 − z1z2| = |z1δ2 + δ1z2 + δ1δ2| ≤ |z1||δ2|+ |δ1||z2|+ |δ1||δ2|.

Fix ε > 0. We shall show that, for sufficiently small δ > 0, each of the three terms
|z1||δ2|, |δ1||z2|, |δ1||δ2| is < ε/3 provided |δ1| < δ and |δ2| < δ. Indeed, it is enough
that δ be the smallest of ε/3|z1|, ε/3|z2|, (ε/3)1/2. (If z1 or z2 is zero, the corresponding
bound may be ignored, because then z1δ2 or δ1z2 respectively does not contribute to
z′1z
′
2 − z1z2.) This shows that the function (z1, z2) 7→ z1z2 is continuous.

This leaves only z1/z2. To show that this last function is continuous we need only
prove the continuity of the function from C∗ to C taking z to 1/z (why?). Suppose
ε > 0 and z 6= 0 are given. Let z′ = z + δ1 as before. Then∣∣∣∣ 1

z′
− 1
z

∣∣∣∣ =
∣∣∣∣− δ1
zz′

∣∣∣∣ =
|δ1|
|z||z′|

.

Let δ be the smaller of |z|/2 and (|z|2/2)ε. Then if |δ1| < δ then |z′| > |z|/2 (triangle
inequality), so

|δ1|
|z||z′|

<
δ

1
2 |z|2

< ε,

and we are done!

4



Appendix: relatively open sets; the metric on C. Having encountered relatively
open subsets, we shall find the following characterization useful:

Theorem. [Rudin, 2.30, p.36] Let X be a metric space, and E ⊆ Y ⊆ X. Then E is
open relative to Y if and only if E = Y ∩G for some open subset G of X.

Proof : (⇒) For each p ∈ E there exists rp > 0 such that E contains the rp-
neighborhood Vp of p. Let G = ∪pVp. Then E = Y ∩ G (why?), and G is open
because it is a union of open sets. [NB It can be useful to know that an arbitrary
union of open sets is open!]
(⇐) Since G is open in X and contains E, each p ∈ E has a neighborhood Vp contained
in G. Thus the relative neighborhood Vp ∩ Y is contained in G ∩ Y = E. We have
shown that every p ∈ E has a relative neighborhood contained in E, so E is open as
claimed. 2

Here is the proof that d(p, q) = |p − q| is a metric on C. First, from |z| = (zz̄)1/2 we
deduce that |z| ≥ 0, and |z| = 0 ⇐⇒ z = 0. Thus d(p, q) ≥ 0 with equality if and only
if p = q. As with the standard metric on R, symmetry follows from |z| = |−z|, and the
triangle inequality from |w + z| ≤ |w|+ |z|. This last is nontrivial, but can be proved
as follows. First note that for any z = x+ iy we have |z| = |z̄| and |z|2 = x2 + y2 ≥ x2,
so |z| > |x|. Next, for any w, z ∈ C we have

|wz| = (wz · wz)1/2 = (ww̄ zz̄)1/2 = (ww̄)1/2(zz̄)1/2 = |w||z|.

Finally, we calculate

|w + z|2 = (w + z)(w̄ + z̄) = ww̄ + wz̄ + zw̄ + zz̄

= |w|2 + |z|2 + (wz̄ + wz)
= |w|2 + |z|2 + 2 Re(wz̄)
≤ |w|2 + |z|2 + 2|wz̄|
= |w|2 + 2|w||z|+ |z|2 = (|w|+ |z|)2

so |w + z| ≤ |w|+ |z| as claimed.
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