Illustrating Infinity

Curtis T McMullen
Harvard University

Geometry

\[(X,\omega) + \gamma \rightarrow (\sum a_i \cdot A_i, \sum b_j \cdot B_j)\]

Toplogy

\[Q = \begin{pmatrix} 0 & m_A J' \\ m_B J' & 0 \end{pmatrix}\]

\[\left(\frac{h_A}{h_B}\right) = \rho \left(\frac{h_A}{h_B}\right)\]

Dimension = 1.34968... = \(\log_2(1 + 2^{\log_3 2})\)

Fig. 4-11. The Alexander horned sphere.
Dimension = 1.305688…

Markov partition
Noncompact arithmetic tetrahedron - SL_2(Z[ω])

lim -o 0.04 -d 50 -w -3 3 3 3 <eol | ps2pdf - > hex.pdf

`c 0 0 2
r 0 0 2
c 1 0 -0.5
r 1 0 -0.5
c -0.5 0.86602540378443864676 -0.86602540378443864676
r -0.5 0.86602540378443864676 -0.86602540378443864676

c -0.5 -0.86602540378443864676 -0.86602540378443864676
r -0.5 -0.86602540378443864676 -0.86602540378443864676

eol
do
open hex.pdf &
What can it do?
VIII. — Deuxième famille.

Supposons que n cercles C_1, C_2, ..., C_n soient situés de telle sorte : 1° qu'ils soient tous extérieurs les uns aux autres; 2° que le cercle C_1 touche extérieurement les cercles C_{n-1} et C_n; 3° que le cercle C_{n-1} touche extérieurement les cercles C_1 et C_n. Appelons A_i le point de contact des cercles C_{i-1} et C_i; et A_n le point de contact des cercles C_{n-1} et C_1. Le plan se trouve divisé en trois parties : 1° le polygone R_1 extérieur à chacun des cercles C et intérieur à la figure formée par l'ensemble de ces cercles; ce sera notre polygone génératrice; 2° le polygone R_n extérieur à la fois à tous ces cercles et à la figure formée par leur ensemble; 3° enfin l'intérieur des divers cercles C_i.

Si nous formons le polyédre génératrice P_n, ce polyédre présentera au face de la première sorte formées par les surfaces des sphères qui ont même centre et même rayon que les cercles C_i; deux faces de la deuxième sorte qui seront les polygones R_1 et R_n et n sommets isolés A_2, A_3, ..., A_{n+1}. Je supposerai que les faces C_i et C_{n+1} sont conjuguées et que le polyèdre admet $n + 1$ cycles.