Connected spaces

Def: A topological space is connected if it cannot be written \(X = U \cup V\) where \(U\) and \(V\) are disjoint nonempty open sets (called a separation of \(X\)).

Ex: \([0,1]\) is connected (w/ standard topology).

Suppose \([0,1] = U \cup V\). WLOG \(0 \in U\).

Let \(a = \sup \{x \in [0,1] \mid (0, x) \subseteq U\}\).

\(U\) is open, so \(a > 0\). If \(a = 1\), we're done.

Otherwise, \(a \in U\). But then a neighborhood of \(a\) is in \(V\) so we can't have \([0, a) \subseteq U\).

Ex: \([0,1] \cup (1,2]\) is not connected, since both \([0,1]\) and \((1,2]\) are open (in the subspace topology).

Ex: Consider \(\mathbb{R}_e\). \(\mathbb{R}_e = (-\infty, 0) \cup [0, \infty)\), both open, so \(\mathbb{R}_e\) is not connected.

In fact, every subspace of \(\mathbb{R}_e\) is disconnected other than single points, i.e., \(\mathbb{R}_e\) is totally disconnected.
Note that connectedness is not preserved in subspaces:

\[X = \{ y = x^2 \} \quad \text{is connected in } \mathbb{R}^2 \]

but \(X \cup Y \) is not connected in \(Y \).

However, it’s preserved by continuous functions:

Thm: If \(f : X \to Y \) is continuous and \(X \) connected, then \(f(X) \) is connected.

Pf: Since the map \(X \to f(X) \) is continuous as well, we can assume \(X \) is surjective.

Suppose \(Y = U \cup V \) is a separation of \(Y \). Then \(f^{-1}(U) \) and \(f^{-1}(V) \) are open, nonempty, disjoint, and their union is \(X \). \(\square \)

Certain unions of connected spaces are also connected:

Thm: If \(A_i \subseteq X \) are connected subspaces that all have a point in common, then \(Y = \bigcup A_i \) is connected.

Pf: Suppose \(Y = U \cup V, U \) and \(V \) both open.

Suppose the common point \(p \) is in \(U \).

\(U \cap A_i \) and \(V \cap A_i \) are disjoint open sets in \(A_i \).

Since \(A_i \) is connected and \(p \in A_i \), \(A_i \subseteq U \forall i \)

\[\Rightarrow \quad Y = \bigcup A_i \subseteq U \Rightarrow \quad Y \text{ is connected}. \] \(\square \)
Cor: \(\mathbb{R} \) is connected, as are all open, half open, and closed intervals in \(\mathbb{R} \).

Pf: \([0, 1]\) is connected and homeomorphic to all \([a, b]\).
\[\bigcup_{n \in \mathbb{N}} [-n, n] = \mathbb{R} \text{ is connected, since } [-n, n] \text{ all contain 0}. \]

Recall the intermediate value Thm from calculus:
If \(f: [a, b] \rightarrow \mathbb{R} \) is continuous, then \(\forall y \) between
\(f(a) \) and \(f(b) \), \(\exists c \in [a, b] \) s.t. \(f(c) = y \).

Key point: Connectedness of \([a, b]\) requires the image to be connected.

More generally...

Thm: (Intermediate value theorem) Let \(X \) be a connected topological space, and \(f: X \rightarrow \mathbb{R} \) continuous.
If \(a, b \in X \) and \(r \) lies between \(f(a) \) and \(f(b) \) in \(\mathbb{R} \),
Then \(\exists c \in X \text{ s.t. } f(c) = r. \)

\[X \quad \text{\textbullet} \quad c \quad \text{\textbullet} \quad b \quad \text{\downarrow} \quad f \quad \text{\textbullet} \quad f(a) \quad \text{\textbullet} \quad f(c) \quad \text{\textbullet} \quad f(b) \quad \text{\IR} \]

Pf: Since \(X \) is connected, so is \(f(X) \).

Consider \(U = (-\infty, r) \cap f(X) \) and \(V = (r, \infty) \cap f(X) \).

Both are open in \(f(X) \) and nonempty, since \(f(a) \) is in one, \(f(b) \) in the other.

If \(r \notin f(X) \), then \(f(X) = U \cup V \), a contradiction. Thus, \(r \in f(X) \).

So \(\exists c \in X \text{ s.t. } f(c) = r. \quad \Box \)

Products of connected spaces

Thm: \(X, Y \) connected \(\Rightarrow X \times Y \) connected.

Pf: Suppose \(X \times Y = U \cup V \), \(F(x) (a, b) \in U. \)

Let \((a', b') \in X \times Y. \)

Then \(X \times \{b'\} \text{ is } \IR \).
connected, so $(a', b) \in U$.

And $\{a' \times Y \}$ is connected, so $(a', b') \in U$.

Since (a', b') was arbitrarily chosen, $X \times Y \in U \Rightarrow X \times Y$ is connected.

Cor: Finite products of connected spaces are connected.

Pf.

$X_1 \times X_2 \times \ldots \times X_n = (X_1 \times X_2 \times \ldots \times X_{n-1}) \times X_n$. □

What about infinite products?

Claim: If $\{X_i\}_{i \in I}$ is a collection of connected spaces, then $\prod_{i \in I} X_i$ is connected given the product topology.

(Exercise)

This is not true in the box topology...

Ex. Consider $X = \mathbb{R}^\omega$ given box topology.

Let U be the set of bounded sequences, i.e. (a_1, a_2, \ldots) s.t. $\exists N$ s.t. $|a_i| \leq N \ \forall \ i$.
V the set of unbounded sequences.

Clearly $UUV = X$.

Why is U open?

Let $\hat{a} = (a_1, a_2, \ldots) \in X$. Consider

$Y = (a_1 - 1, a_1 + 1) \times (a_2 - 1, a_2 + 2) \times \ldots$

Y is open, and if $\hat{a} \in U$, $Y \subseteq U$. If $\hat{a} \in V$, $Y \subseteq V$.

Thus, U and V are both open, so the box topology is not connected.

Path connected spaces

Def. If X is a topological space and $x, y \in X$, a path from x to y is a continuous map $f: [a, b] \to X$ s.t. $f(a) = x$ and $f(b) = y$.

X is path connected if every pair of points in X can be joined by a path.

Note: The relation $x \sim y \iff x$ and y can be connected by
a path is an equivalence relation:
1.) $x \sim x$ by the constant path $f(t) = x$
2.) $x \sim y \iff y \sim x$ since we can run the path backward
3.) $x \sim y$, $y \sim z \Rightarrow x \sim z$ by running one path and then the next.

The equivalence classes are called path components. We'll use these a lot when we get to algebraic topology.

Ex:

![Diagram]

- path connected
- not path connected

How is path connectedness related to connectedness?

Thm: If X is path connected it's connected.

Pf: Suppose $X = U \cup V$, $x \in U$. Pick a path $f : [a, b] \to X$ connecting x to some other point y. Then $f([a, b])$ is connected, so $f([a, b]) \subseteq U$. Thus $y \in U \cap y \in X$. \square

The converse does not hold in general!!

Ex: Let $S \subseteq \mathbb{R}^2$ be defined:

$$S = \left\{ (x, y) \mid y = \sin(\pi x) \right\} \cup (0, 0)$$
This is called the topologist's sine curve.

A is connected, as it's the image of a connected space. Any point \((0,0)\) is a limit point of \(A\), since \(A\) is connected.

There is some \(N\) s.t. \(\sin\left(\frac{1}{N}\right) = 0\) and \(N < \varepsilon\).

Since \(A\) is connected, and \((0,0)\) is a limit point of \(A\), \(S\) is connected. Otherwise, if \(S = U \cup V\), \(A \subseteq U\), and if \((0,0) \in V\) then \(V \cap A \neq \emptyset\). Thus, \(S = U\) and \(S\) is connected.

However, \(S\) is not path connected! Consider \(x = (0,0)\), \(y \in A\). There is no path connecting \(x\) to \(y\). (Exer)

Idea: Find \(x_1, x_2, \ldots \in [a, b]\) s.t.

\[
x_1, x_2, \ldots \to a, \quad \text{but} \quad f(x_1) = f(x_2) = \ldots = 1 \to 1 \neq 0.
\]
For "well-behaved" spaces, connectedness is the same as path connectedness. e.g. manifolds.

Thm: If \(U \subseteq \mathbb{R}^n \) is open, then \(U \) is connected \(\iff \) path connected.

Pf: We already know "\(\subseteq \)."

"\(\Rightarrow \)" : Suppose \(U \) is connected, \(x \in U \).

Let \(V \subseteq U \) be the set of points that can be reached from \(x \) by a polygonal path (i.e. a union of line segments).

\(V \) is open since for \(z \in V \), any point in a ball \(B_e(z) \subseteq U \) can be reached by a straight line from \(z \).

Claim: \(V \) is also closed in \(U \). If \(y \in \overline{V} \), then there is a ball \(y \in B \subseteq U \), s.t. \(B \cap V \neq \emptyset \). so there is a \(p \in B \cap V \) that can be reached by \(y \) and by \(x \). \(\Rightarrow y \in V \Rightarrow V \) is closed and open \(\Rightarrow V = U. \) \(\square \)