The Quotient Topology

We can get lots of interesting examples of topological spaces by "gluing" together simple spaces we already know.

Ex:

[Diagrams of simple spaces being glued together]

We need to formalize this construction.

Def: Let X be a topological space and A a set.

Let $f: X \to A$ be a surjective function. The quotient topology on A is defined by $U \subseteq A$ is open $\iff f^{-1}(U)$ is open. (Exer: check this is a topology)

A map $f: X \to Y$ between topological spaces is a quotient map if f is surjective and $f^{-1}(U)$ is open $\iff U \subseteq Y$ is open.

Note that with the quotient topology on A, $f: X \to A$ is a quotient map. A is called a quotient space of X.

We can also construct A from X by introducing an equivalence relation \sim on X and setting $A = X/\sim$. Then $f: X \to A$ sends x to the equivalence class containing x.
Ex: We can think of S^1 as $[0,1]$ with 0 glued to 1. i.e. the equivalence relation is just $0 \sim 1$, and the quotient map is $f(x) = (\cos 2\pi x, \sin 2\pi x)$.

Note that the map $g: [0,1) \to S^1$ defined as the restriction of f to $[0,1)$ is also surjective, but is not a quotient map:

Let $U = \{(x,y) \mid y > 0\} \cup \{(0,0)\} \subseteq S^1$.

Then U is not open, but $g^{-1}(U) = [0, \frac{1}{2}) \subseteq [0,1)$ is open! (whereas $f^{-1}(U) = [0, \frac{1}{2}) \cup \{1\}$ is not).

Ex: Let $(X_1, x_1), \ldots, (X_n, x_n)$ be pointed topological spaces w/ X_i homeomorphic to S^1.

Then we get a quotient space A of $\sqcup X_i$ by the equivalence relation $x_i \sim x_j \forall i, j$. This is called the wedge of the circles X_1, \ldots, X_n.

A nice property of quotient maps is that if $h: X \to Y$ is a map that "respects the quotient structure" $X \to A$, we can uniquely define a map $A \to Y$. More precisely...
Thm: let $p : X \to Y$ be a quotient map. let $f : X \to \mathbb{Z}$ be a continuous map to a topological space \mathbb{Z} such that f is constant on each set $p^{-1}(\{y\})$ for y in \mathbb{Z}. (i.e. if $p(x) = p(x')$, then $f(x) = f(x')$). Then there is a continuous map $g : Y \to \mathbb{Z}$ s.t. $g \circ p = f$. i.e.

\[
\begin{array}{c}
Y \\
\downarrow g \\
\mathbb{Z}
\end{array}
\xrightarrow{\text{commutes}}
\begin{array}{c}
X \\
\downarrow p \\
Y
\end{array}
\]

Pf: For each $y \in Y$, $f(p^{-1}(\{y\}))$ is a one-point set. Define $g(y)$ to be this point. Then if $x \in X$, $g(p(x)) = f(x)$ by construction. Thus, $g \circ p = f$.

For continuity, let $U \in \mathbb{Z}$ be an open set. We want to show $g^{-1}(U)$ is open. $g^{-1}(U) \subseteq Y$ is open \iff $p^{-1}(g^{-1}(U)) \subseteq X$ is open. But $p^{-1}(g^{-1}(U)) = (g \circ p)^{-1}(U) = f^{-1}(U)$, which is open since f is continuous. Thus $g^{-1}(U) \subseteq Y$ is open.

Note: If $f : X \to Y$ is surjective, continuous and open, then f is a quotient map. Similarly, if f is closed, then if $f^{-1}(U)$ is open, $X \setminus f^{-1}(U) = f^{-1}(Y \setminus U)$ is closed, so $Y \setminus U$ is closed $\Rightarrow U$ is open.

Thus f is also a quotient map in this case.

Example: let $X = \mathbb{R}^n \setminus \{0\}$. We can put an equivalence relation on X as follows: $x \sim y \iff x = ay$ i.e. $x \sim y$ if and only if x and y lie on the same line through the origin.
You can check that this is an equivalence relation, and thus we get a corresponding quotient map
\[p: X \to X/\sim. \]

This is one way to construct projective \((n-1)\)-space, defined
\[\mathbb{RP}^{n-1} := X/\sim, \]
and the quotient topology.

If \(Z \) is another topological space, then the continuous maps
\[f: X \to Z \]
that give an induced map \(\mathbb{RP}^{n-1} \to Z \)
have the property that \(f(\alpha x) = f(x) \) \(\forall \alpha \in \mathbb{R}\setminus\{0\}, x \in X. \)

On the HW, we'll see that \(\mathbb{RP}^1 \) is homeomorphic to \(S^1 \).
But we'll later see that \(\mathbb{RP}^n \) is not homeomorphic to \(S^n \) for \(n > 1 \).

Example: Quotients of the unit square \(X = [0,1]^2 \)

\[
\begin{align*}
A &= \{0,3\} \times [0,1] \\
A' &= \{1,3\} \times [0,1] \\
B &= \{0,1\} \times \{0,3\} \\
B' &= \{0,1\} \times \{1,3\}
\end{align*}
\]

1) If we glue \(A \) to \(A' \) via the equivalence relation \((0,b) \sim (1,b)\),
we get a cylinder. A typical neighborhood of a point on the gluing line corresponds to two half moons along \(A \) and \(A' \) in \(X \).
2.) If we glue A to A' via $(0,t) \sim (1,1-t)$, we get a **Möbius band**.

3.) As we've seen, gluing A to A' and B to B' via $(0,t) \sim (1,t)$ and $(s,0) \sim (s,1)$ gives us the torus.

4.) Gluing via $(0,t) \sim (1,t)$ and $(s,0) \sim (1-s,1)$ gives us the Klein Bottle, which cannot be embedded in \mathbb{R}^3! We draw a picture where it overlaps itself, whereas an actual Klein bottle does not.

5.) Gluing $(0,t) \sim (1,1-t)$ and $(s,0) \sim (1-s,1)$ is a lot trickier to visualize! It turns out this space is homeomorphic to \mathbb{RP}^2!!

Exercise: Consider the quotient spaces $[0,1] \times [0,1]/\sim$ with the following equivalence relations.

a.) $(0,t) \sim (t,0)$

b.) $(0,t) \sim (t,0)$ and $(1,s) \sim (s,1)$

c.) (HARD) $(t,0) \sim (0,1-t)$
Can you visualize these spaces?