Problem 1. Consider the ellipse parametrized by \(c(t) = (a \cos t, b \sin t) \) with \(a \neq b \). Find the vertices of the ellipse, i.e. the local extrema of the function \(\kappa(t) \).

Problem 2. The cycloid is the curve traced out by a fixed point on a circle as the circle rolls along a straight line (figure above).

1. Find a parametrization of the cycloid.
2. Compute the curvature of the cycloid.

Problem 3. Let \(\gamma : I \to \mathbb{R}^3 \) be a regular curve parametrized by arc length. Show that for any point \(s_0 \in s \), the curvature of \(\gamma \) at \(s_0 \) is equal to the curvature of the projection of \(\pi \circ \gamma : I \to \mathbb{R}^2 \) at \(s_0 \) where \(\pi \) is the projection onto the osculating plane.

Problem 4. Consider a plane curve given in polar coordinates \((r, \theta)\) by the equation \(r = r(\theta) \) and denote by \(r' = \frac{dr}{d\theta} \).

1. Show that the arc length from \(\theta_1 \) to \(\theta_2 \) can be calculated as \(\int_{\theta_1}^{\theta_2} \sqrt{r'^2 + r^2} d\theta \).
2. Show that the curvature is given by \(\kappa(\theta) = \frac{2r^2 - rr'' + r^2}{(r'^2 + r^2)^{3/2}} \).
3. Calculate the curvature for the Archimedean spiral given by \(r(\theta) = a\theta \).

Problem 5. Let \(c : I \to \mathbb{R}^3 \) be a Frenet curve with nonzero torsion \(\tau \) and consider the unit normal vector \(e_2(s) \), called the principal normal vector. We say that \(c \) is a Bertrand curve if there exists a scalar function \(r \) such that the curve \(\bar{c}(s) := c(s) + r(s)e_2(s) \) has the same principal normal vector as \(c(s) \), namely \(e_2(s) \). In this case, we say \(c \) and \(\bar{c} \) are a Bertrand pair. Suppose \(c \) and \(\bar{c} \) are a Bertrand pair.

1. Show that \(r(s) \) is constant. Conclude that the distance between \(c \) and \(\bar{c} \) is also constant.
2. Show that the angle between the tangent vectors of \(c \) and \(\bar{c} \) is constant.
3. Show that there exist constants \(a \) and \(b \) such that \(ak + b\tau \equiv 1 \) where \(\kappa \) and \(\tau \) are the curvature and torsion of \(c \).
4. Give an example of a Bertrand pair.