Gauss–Bonnet Theorem

Def: A **geodesic triangle** is a closed, continuous, piecewise regular curve \(\alpha : [a, b] \to S \) such that there exist exactly 2 times \(t_1, t_2 \in [a, b] \) where \(\alpha \) is not regular & \(\alpha_1 = \alpha \mid_{[t_1, t_2]} \) & \(\alpha_2 = \alpha_3 \) are geodesics. More generally, a **geodesic polygon** or **n-gon** is the same definition with \(t_1, ..., t_n \in (a, b) \) times where \(\alpha \) is not regular.

Equivalently, it is a collection of \(n \) geodesics \(\alpha_1, ..., \alpha_n \) such that:

\[
\alpha_i : [t_{i-1}, t_i], \quad \alpha_i(t_i) = \alpha_{i+1}(t_{i+1}) \quad \alpha_i(t_0) = \alpha_n(t_n)
\]

Def: The **interior angle** \(\psi_i \) & **exterior angle** \(\theta_i \) are as in the picture:

\(\theta_i \in (-\pi, \pi) \) \(\psi_i \in (0, 2\pi) \)

\(\psi_i = \pi - \theta_i \)
Thm (Gauss–Bonnet I)

Let $T \subseteq S$ be the interior of a geodesic triangle with interior angles ψ_1, ψ_2, ψ_3.

Then $\psi_1 + \psi_2 + \psi_3 - \pi = \iint_T K \, dA$

$k = \text{Gauss curvature}$

Remark: To make this precise, we need to assume T is contained in the image of a chart $\nu: U \to S$.

Example: don't consider curves like this.

Thm (Gauss–Bonnet II)

Let $\mathcal{P} \subseteq S$ be the interior of a geodesic n-gon with exterior angles $\Theta_1, \ldots, \Theta_n$. Then

$$\iint_{\mathcal{P}} K \, dA = 2\pi - \sum_{i=1}^{n} \Theta_i$$

Cor: 1) if $K > 0$, $\Rightarrow \sum \psi_i > \pi$

2) if $K = 0$, $\Rightarrow \sum \psi_i = 0$

3) if $K < 0$, $\Rightarrow \sum \psi_i < 0$

Example: no bigons if $K < 0$
More generally, we can consider piecewise regular simple closed curves \(\alpha \colon [a,b] \to S \) which are not regular at corners \(t_i \in [a,b] \), so some picture as before except the arcs \(\alpha_i \) don't have to be geodesics.

We have interior and exterior angles \(\psi_i, \theta_i \) as before.

(Gauss-Bonnet III, local GB)

Thm: Let \(\alpha \) be a piecewise regular closed simple curve with exterior angles \(\theta_i \) and interior angles \(\psi_i \) contained in a chart of \(S \). Then

\[
\int K dA + \int_{\alpha} K_g ds + \sum \theta_i = 2\pi
\]

\(K_g = \) geodesic curvature

Note GB III \(\Rightarrow \) GB II \(\Rightarrow \) GB I

Indeed, \(\alpha \) is a geodesic quadrilateral for all \(t \neq t_0, \ldots, t_n \).

Cor. For a simple closed plane curve \(\alpha \colon I \to \mathbb{R}^2 \), we have

\[
\int K dA + \sum \theta_i = 2\pi
\]
Cor 2] If \(\alpha \) is a regular simple closed curve with no corners, then \(\iint k \, dA + \int k_g \, ds = 2\pi \)

Cor 3] For a smooth regular simple closed planar curve, then \(\int k_g \, ds = 2\pi \)

Global version: What if we integrate \(K \) on all of \(S \)?

To make sense of this, we need \(S \) to be compact, so the integral converges.

Compact closed & bounded

For simplicity, we also want to avoid \(S \) having a boundary: \(S \) is no boundary good.

So we assume \(S \) does not have a boundary.

"\(S \) closes in on itself" or "\(S \) is closed"

This closed is a different meaning than above.
Theorem (Gauss-Bonnet IV, global version)

Let $S \subseteq \mathbb{R}^3$ be a compact oriented regular surface without boundary. Then

$$\int_S K \, dA = 2\pi \chi(M)$$

Where $\chi(M) \in \mathbb{Z}$ is the topological Euler characteristic.