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This is joint work with Yanki Lekili

The goal is to prove the equivalence of the wrapped Fukaya
category of n dimensional pairs-of-pants with the derived
category of coherent sheaves on x1x2 . . . xn+1 = 0.

Inspired by Auroux’s calculation of the partially wrapped Fukaya
category of the symmetric powers of punctured surfaces.

Main idea: introduce stops to simplify the endomorphism
algebra of the set of generators. Identify corresponding nc
resolution of x1x2 . . . xn+1 = 0 on the B-side.

There exist other approaches (Gammage-Nadler, Auroux).
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Pair-of-pants

Let Σ be the 3-punctured sphere with the set of two stops Λ.

The partially wrapped Fukaya categoryW(Σ,Λ) is generated
by the Lagrangians L0,L1,L2.

3



Endomorphism algebra

There exists a unique grading structure (given by the line field
on Σ) such that the endomorphism algebra is concentrated in
degree 0.
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Auslander order

On the B-side, we consider the algebra of the node

R = k[x1, x2]/(x1x2).

The Auslander order is given by

A = EndR(R/(x1)⊕ R/(x2)⊕ R).

It is easy to see that A is isomorphic to the algebra associated
with the above quiver with relations, so we get an equivalence

Perf(A) ' W(Σ,Λ).

In general, the Auslander order of a nodal curve C is
End(I ⊕ OC), where I is the ideal sheaf of the nodes. The
above equivalence generalizes to Auslander orders over nodal
chains and rings.
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Localization

On the A-side, removing the stops corresponds to taking the
quotient by the subcategory generated by the objects T1,T2
supported near the stops.

We can express them in terms of L0,L1,L2 as follows:

T1 ' {L0
u1−→ L1

u2−→ L2}

T2 ' {L2
v2−→ L1

v1−→ L0}

Can identify corresponding objects on the B-side: we get
simple modules at vertices L0 and L2 of the quiver. As a
corollary, get an equivalence

W(Σ) ' Db(R).
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Symmetric products

Consider Πn, the complement to n + 2 generic hyperplanes in
Pn, as an exact symplectic manifold. Since Pn = Symn(P1),
have an identification

Πn = Symn(P1 \ {p0,p1, . . . ,pn+1}).

More generally, we consider

Mn,k = Symn(Σk ), where Σk = P1 \ {p0,p1, . . . ,pk})
(for k ≥ n). Away from a small neighborhood of the diagonal,
the symplectic form can be arranged to be induced by one on
the surface.

We fix two points q1,q2 on one of the boundary components of
the punctured sphere, and consider the induced hypersurfaces
Λi = qi × Symn−1(Σk ). We will use either Λ1 or Λ = Λ1 ∪ Λ2 as
stops.
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Generating Lagrangians

We start with the same collection of Lagrangians on Σk as
before:

By Auroux’s theorem, the products LS := Li1 × . . .× Lin , for
S = {i1 < . . . < in} ⊂ [0, k ], generateW(Mn,k ,Λ).
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Computation on the A-side. I

We can compute (cohomology of) morphism spaces between
generating objects inW(Mn,k ,Λ).

For every proper subinterval [i , j] ⊂ [0, k ], set

A[i,j] =


k[xi , . . . , xj+1]/(xi . . . xj+1) if i > 0, j < k ,
k[x1, . . . , xj+1] if i = 0, j < k ,
k[xi , . . . , xk ] if i > 0, j = k ,

.

Proposition. For S = [i1, j1] t [i2, j2] t . . . t [ir , jr ] with
js + 1 < is+1, one has

End(LS) ' A(S,S) := A[i1,j1] ⊗A[i2,j2] ⊗ . . .⊗A[ir ,jr ],
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Computation on the A-side. II

The subsets S,S′ ⊂ [0, k ] are called close if there exists a
bijection g : S → S′ with g(i) ∈ {i − 1, i , i + 1}. In this case
there exists a decomposition

S = S0 t
⊔
a

Ia t
⊔
b

Jb,

where Ia and Jb are subintervals, such that

S′ = S0 t
⊔
a

(Ia + 1) t
⊔
b

(Jb − 1).

Proposition. One has

Hom(LS,LS′) '

{
0, S,S′ not close,
A(S0,S0)⊗

⊗
aA′Ia ⊗

⊗
bA′Jb

, S,S′ close,

where A′[i,j] = k[xi+1, . . . , xj ].
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Computation on the A-side. III

Can compute compositions as well.
Example: n = 2, k = 3 (Sym2 of 4-punctured sphere).
Get quiver with relations over R = k[x1, x2, x3]/(x1x2x3)

Relations:

uivi = xi = viui , u3u2 = v2v3 = u2u1 = v1v2 = 0

u3u1 = u1u3, v3v1 = v1v3,u3v1 = v1u3,u1v3 = v3u1
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Connection with Ozsváth-Szabó bordered algebras

Our algebra A of endomorphisms turns out to be the same as
the algebra B(k ,n) defined combinatorially in

[Ozsváth,Szabó], Kauffman states, bordered algebras and a
bigraded knot invariant

They use bimodules over such algebras to define a
categorification of the Alexander polynomial of a knot.

Auroux proved a similar connection with (different) bordered
algebras involving symmetric powers of surfaces with one
puncture.
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Z-gradings

Since c1(Mn,k ) = 0, the symplectic manifold Mn,k can be
equipped with a Z-grading structure. The grading structures
naturally form a torsor over H1(Mn,k ,Z) ' Zk .

All our Lagrangians LS are contractible, so they can be graded
(uniquely up to a shift by Z).

Proposition. For any assignment of degrees, deg(xi) = di ∈ Z,
i = 1, . . . , k , there is a unique Z-grading on the algebra

A =
⊕
S,S′

Hom(LS,LS′)

coming from some choices of deg(fS,S′) = dS,S′ ∈ Z, for S,S′

close, up to a transformation of the form
dS,S′ 7→ dS,S′ + dS′ − dS.
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B-side

Let R = R[1,k ] = k[x1, . . . , xk ]/(x1 . . . xk ). We construct an
nc-resolution of R.

B = B[1,k ] := EndR(
⊕

I⊂[1,k ],I 6=∅

R/(xI)),

where the summation is over all nonempty subintervals of [1, k ],
xI =

∏
i∈I xi .

E.g, for k = 2, this is precisely the Auslander order.

For each subinterval I ⊂ [1, k ], denote by PI the corresponding
projective module over B. Note that EndB(PI) = R/(xI). So we
have a fully faithful embedding

iBR : Perf(R)→ Perf(B) : R 7→ P[1,k ]
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Localization on the B-side

We also have the right adjoint functor to iBR ,

rBR : Db(B)→ Db(R) : M 7→ HomB(P[1,k ],M).

For a pair of nonempty disjoint subintervals I, J ⊂ [1, k ], such
that I t J is also a subinterval, can define a B-module M{I, J},
so that we have an exact sequence

0→ PI → PItJ → PJ → M{I, J} → 0.

Proposition. Assume k is regular. Then rBR induces an
equivalence

Db(B)/ ker(rBR ) ' Db(R),

and ker(rBR ) is generated by the modules
(M{[i], [i + 1, j]},M{[j], [i , j − 1]})i<j .
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Matching the A-side with the B-side

For n = k − 1 the Lagrangians LS are numbered by subsets
S ⊂ [0, k ] with |S| = k − 1. Now we define the correspondence
between such LS and subintervals I ⊂ [1, k ] by

L[0,k ]\{i,j} ↔ [i + 1, j],

where 0 ≤ i < j ≤ k .

Theorem. This extends to an isomorphism of algebras A ' B,
so that we get an equivalence of categories

W(Πk−1,Λ) ' Perf(Bk ).

The Z-grading on the left is the unique one with deg(xi) = 0.

Furthermore, the subcategory corresponding to stops matches
with ker(rBR ), so for k regular, we deduce

W(Πk−1) ' Db(k[x1, . . . , xk ]/(x1 . . . xk )).
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Additional features

1. Can similarly identify the nc resolution of
R = k[x1, . . . , xk ]/(x1 . . . xk ) corresponding toW(Πk−1,Λ1)
(only one stop). It is given by

B◦ := EndR(R/(x1)⊕ R/(x[1,2])⊕ . . .⊕ R/(x[1,k−1])⊕ R).

2. There is a semiorthogonal decomposition

Perf(B◦) = 〈Perf(R/(xk )), . . . ,Perf(R/(x2)),Perf(R/(x1))〉

and a semiorthogonal decomposition

Perf(B) = 〈C1, . . . , CN ,Perf(B◦)〉

where each Ci is of the form Perf(R/(x1, xj)) for some j ≥ 2.
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Abelian covers

For k > 2 we have a natural isomorphism π1(Πk−1) ' Zk . Fix a
homomorphism

φ : π1(Πk−1) ' Zk → Γ,

where Γ is a finite abelian group, and let

π : M → Πk−1

be the corresponding finite covering.

Let G = Hom(Γ,Gm) denote the dual abelian group scheme to
Γ, and let

G→ Gk
m

be the homomorphism corresponding to φ.

Theorem. For k regular, we have an equivalence

W(M) ' Db
G(k[x1, . . . , xk ]/(x1 . . . xk ))
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Punctured Milnor fibers for invertible polynomial

Let w =
∑k

i=1
∏k

j=1 xaij
j be an invertible polynomial described by

the matrix of exponents (aij).

Let

Mw := {(x1, . . . , xk ) ∈ (C∗)×k | w(x1, . . . , xk ) = 1}

be the punctured Milnor fiber.

We have a covering map

π : Mw → Πk−1

given by (x1, x2, . . . , xk )→ (
∏k

j=1 xa1j
j ,

∏k
j=1 xa2j

j , . . . ,
∏k

j=1 xakj
j )

where we view Πk−1 as a hypersurface in (C∗)×k via the
identification

Πk−1 = {(x1, . . . , xk ) ∈ (C∗)×k : x1 + x2 + . . .+ xk = 1}.

19



Punctured Milnor fibers for invertible polynomial

Let w =
∑k

i=1
∏k

j=1 xaij
j be an invertible polynomial described by
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Punctured Milnor fibers for invertible polynomial

The group of deck transformations of this covering map is

Γ = {(t1, t2, . . . , tk ) ∈ G×k
m : ∀i , tai1

1 tai2
2 . . . taik

k = 1},

which is exactly the group of diagonal symmetries of w.
Let G = Hom(Γ,Gm) be the dual abelian group.

Corollary. For k regular we have an equivalence
W(Mw) ' Db

G(k[x1, . . . , xk ]/(x1 . . . xk )).
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