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Abstract. We calculate the monodromies of the canonical Lefschetz
pencils on a pair of homeomorphic Horikawa surfaces. We show in par-
ticular that the (pluri)canonical pencils on these surfaces have the same
monodromy groups, and are related by a “partial twisting” operation.

1. Introduction

Horikawa surfaces are minimal complex surfaces of general type which
realize the equality case in Noether’s inequality c21 ≥ 2pg − 4. While their
classification as complex surfaces has been completed a long time ago [16],
the topology of these surfaces viewed as smooth 4-manifolds, or as symplectic
4-manifolds, remains mysterious. In this paper we consider two specific
Horikawa surfaces:

Definition 1.1. Denote by X1 a double cover of CP1×CP1 branched along
a smooth algebraic curve C1 of bidegree (6, 12). Denote by X2 a double cover
of the Hirzebruch surface F6 = P(OP1 ⊕ OP1(6)) branched along ∆∞ ∪ C2,
where ∆∞ is the exceptional section of F6 (∆∞ · ∆∞ = −6), and C2 is
a smooth algebraic curve in the linear system |5∆0| (where ∆0 is the zero
section, satisfying ∆0 · ∆0 = +6).

(The actual choices of C1 and C2 are irrelevant from the point of view of
symplectic topology, hence we do not specify them here).

The complex surfaces X1 and X2 are simply-connected, non-spin, and
have the same Euler characteristic e(X1) = e(X2) = 116 and signature
σ(X1) = σ(X2) = −72; hence by a classical result of Freedman they are
homeomorphic. Moreover, the homeomorphism between them can be chosen
so that the canonical classes KX1

and KX2
are the image of each other under

the induced map on cohomology. However, X1 and X2 are not deformation
equivalent as complex surfaces [16]. The question of whether X1 and X2 are
diffeomorphic is open to this date; although the expected answer is negative,
a result of Friedman and Morgan [10] shows that X1 and X2 cannot be
distinguished using Seiberg-Witten theory.

Since the canonical classes KX1
, KX2

are ample, one can equip X1 and
X2 with Kähler forms such that [ωi] = c1(KXi

) and view them as symplectic
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4-manifolds. The question of whether (X1, ω1) and (X2, ω2) are symplecto-
morphic is again open; following a strategy proposed by Donaldson [7], one
can try to approach this problem from the perspective of Lefschetz pencils.

Namely, considering a generic pencil of curves in the linear system |KXi
|

and blowing up its 16 base points, we obtain a fibration f̂i : X̂i → CP1.
The generic fiber of f̂i is a smooth curve of genus 17, and the singular fibers
are nodal (there are 196 nodes in total); moreover, the exceptional divisors

of the blowups determine 16 distinguished sections of f̂i. It is well-known
(see §2.1) that the monodromy of such a fibration can be described by an
ordered tuple of Dehn twists in the mapping class group Map17,16 of a genus
17 surface with 16 boundary components (up to Hurwitz equivalence and
global conjugation).

Theorem 1.2. The canonical pencils on X1 and X2 are related by a “partial
twisting” operation, i.e. there exist Dehn twists φ, t1, . . . , t196 ∈ Map17,16

such that the monodromy of f̂1 can be expressed by the tuple (φt1φ
−1, . . . ,

φt64φ
−1, t65, . . . , t196), and the monodromy of f̂2 can be expressed by the tuple

(t1, . . . , t64, t65, . . . , t196).

There is a geometric reason for this property of the canonical pencils:
the Horikawa surfaces X1 and X2 can be obtained from each other by a
Luttinger surgery operation (cf. Theorem 4.3).

In fact, we determine the monodromies of f̂1 and f̂2 explicitly (the for-
mulas are given in Theorems 3.2 and 4.4); as a consequence, we also get:

Theorem 1.3. The monodromy groups of f̂1 and f̂2, i.e. the subgroups of
Map17,16 generated by the Dehn twists in their monodromy, are isomorphic
to each other.

All these results suggest that (somewhat unsurprisingly) the pencils f̂1

and f̂2 are very similar to each other, and difficult to tell apart. This is in
sharp contrast with the well-known genus 2 fibrations carried by X1 and X2,
whose monodromies are easily distinguished (see Section 2.3).

By the work of Gompf [13, 12], if the tuples of Dehn twists describing f̂1

and f̂2 are Hurwitz and conjugation equivalent, then (X1, ω1) and (X2, ω2)
are symplectomorphic. The converse is not necessarily true. However, by
Donaldson’s asymptotic uniqueness result for symplectic Lefschetz pencils
[8], if (X1, ω1) and (X2, ω2) are symplectomorphic then there exists an in-
teger k0 such that the pluricanonical Lefschetz pencils on X1 and X2 (i.e.,
generic pencils of curves in the linear systems |kKXi

|) have equivalent mon-
odromies for all k ≥ k0. Hence, in order to prove that (X1, ω1) and (X2, ω2)
are not symplectomorphic, one needs to compare not just the canonical
pencils of X1 and X2, but also a sequence of pluricanonical pencils.

“Degree doubling” arguments [4, 26] (see also Section 7) imply that the
monodromies of the pluricanonical pencils (for the linear systems |2mKXi

|)
are determined by those of the canonical pencils in an explicit and “univer-
sal” manner. In particular, it is expected that an invariant that distinguishes
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the canonical pencils should also be able to distinguish the pluricanonical
pencils (and hence prove that X1 and X2 are not symplectomorphic). While
no such invariant is known to this date, it is still worth mentioning the fol-
lowing consequence of Theorems 1.2 and 1.3:

Theorem 1.4. For all m ≥ 0, generic pencils of curves in the linear sys-
tems |2mKXi

| on X1 and X2 are related to each other by “partial twisting”
operations, and their monodromy subgroups are isomorphic.

The rest of this paper is organized as follows: in Section 2 we review
some background material on Lefschetz fibrations and their monodromy
(§2.1), lifting homomorphisms (§2.2), Horikawa surfaces (§2.3), and Lut-
tinger surgery (§2.4). Section 3 is devoted to the calculation of the mon-
odromy of the canonical pencil on X2. In Section 4 we show that X1 and X2

are related by Luttinger surgery, and which allows us to determine the mon-
odromy of a certain symplectic Lefschetz pencil on X1; using the theory of
pseudo-holomorphic curves, we prove in Section 5 that this Lefschetz pencil
is isomorphic to the canonical pencil of X1. This allows us to complete the
proof of Theorem 1.2, while Theorem 1.3 is proved in Section 6. The paper
ends with considerations about degree doubling and pluricanonical pencils
in Section 7, and Lagrangian spheres and matching paths in Section 8.

While we are still a long way from proving that X1 and X2 are not sym-
plectomorphic, the explicit calculation of the monodromies of their canonical
pencils sheds some light on the situation; we hope that it will lead to further
advances on this problem, and give some insight about what kind of invari-
ants one might consider in order to distinguish homeomorphic surfaces of
general type.

Acknowledgement. The author wishes to thank the Department of Mathematics

at UC Berkeley for its hospitality during part of the preparation of this work.

2. Preliminaries

2.1. Lefschetz fibrations and symplectic 4-manifolds.

Definition 2.1. A Lefschetz fibration on an oriented compact smooth 4-
manifold M is a smooth map f : M → S2 which is a submersion everywhere
except at finitely many non-degenerate critical points p1, . . . , pr, near which f
identifies in local orientation-preserving complex coordinates with the model
map (z1, z2) 7→ z2

1 + z2
2.

The fibers of a Lefschetz fibration f are compact oriented surfaces, smooth
except for finitely many of them. The fiber through pi presents a transverse
double point, or node, at pi. Without loss of generality, we can assume after
perturbing f slightly that the critical values qi = f(pi) are all distinct. Fix a
reference point q∗ in S2 \ crit(f), and let Σ = f−1(q∗) be the corresponding
fiber. Then we can consider the monodromy homomorphism

ψ : π1(S
2 \ crit(f), q∗) → Map(Σ),
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where Map(Σ) = π0Diff+(Σ) is the mapping class group of Σ. The image
ψ(γ) of a loop γ ⊂ S2 \ crit(f) is the isotopy class of the diffeomorphism
of Σ induced by parallel transport (with respect to an arbitrary horizontal
distribution) along the loop γ.

The singular fibers of f are obtained from the nearby smooth fibers
by collapsing a simple closed loop, called the vanishing cycle. The mon-
odromy of a Lefschetz fibration around a singular fiber is the positive Dehn
twist along the corresponding vanishing cycle. Choose an ordered collec-
tion η1, . . . , ηr of arcs joining q∗ to the various critical values of f , and
thicken them to obtain closed loops γ1, . . . , γr based at q∗ in S2 \ crit(f),
such that each γi encircles exactly one of the critical values of f , and
π1(S

2 \ crit(f), q∗) = 〈γ1, . . . , γr |
∏

γi = 1〉. Then the monodromy of f
along each γi is a positive Dehn twist ti along an embedded loop δi ⊂ Σ,
obtained by parallel transport along ηi of the vanishing cycle at the critical
point pi, and in Map(Σ) we have the relation t1 . . . tr = Id.

Hence, to every Lefschetz fibration we can associate a factorization of the
identity element as a product of positive Dehn twists in the mapping class
group of the fiber, i.e. an ordered tuple of Dehn twists whose product is equal
to Id; we will often use the multiplicative notation, with the understanding
that what is important is not the product of the factors but rather the
factors themselves.

Given the collection of Dehn twists t1, . . . , tr we can reconstruct the Lef-
schetz fibration f above a large disc D containing all the critical values,
by starting from Σ × D2 and adding handles as specified by the vanishing
cycles [17]. To recover the 4-manifold M we need to glue f−1(D) and the
trivial fibration f−1(S2 \ D) = Σ × D2 along their common boundary, in
a manner compatible with the fibration structures. In general this gluing
involves the choice of an element in π1Diff+(Σ); however the diffeomorphism
group is simply connected if the genus of Σ is at least 2, and in that case the
factorization t1 . . . tr = Id determines the Lefschetz fibration f : M → S2

completely (up to isotopy).
The monodromy factorization t1 . . . tr = Id depends not only on the topol-

ogy of f , but also on the choice of an ordered collection γ1, . . . , γr of gener-
ators of π1(S

2 \ crit(f), q∗); the braid group Br acts transitively on the set
of all such ordered collections, by Hurwitz moves. The equivalence relation
induced by this action on the set of mapping class group factorizations is
generated by

(t1, . . . , ti, ti+1, . . . , tr) ∼ (t1, . . . , titi+1t
−1
i , ti, . . . , tr) ∀1 ≤ i < r,

and is called Hurwitz equivalence. Additionally, in order to remove the de-
pendence on the choice of the reference fiber Σ, we should view the Dehn
twists ti as elements of the mapping class group Mapg of an abstract surface
of genus g = g(Σ). This requires the choice of an identification diffeomor-
phism, and introduces another equivalence relation on the set of mapping
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class group factorizations: global conjugation,

(t1, . . . , tr) ∼ (φt1φ
−1, . . . , φtrφ

−1) ∀φ ∈ Mapg.

Proposition 2.2. For g ≥ 2, there is a one to one correspondence between
(a) factorizations of Id as a product of positive Dehn twists in Mapg, up
to Hurwitz equivalence and global conjugation, and (b) genus g Lefschetz
fibrations over S2, up to isomorphism.

It is a classical result of Thurston that, if M is an oriented surface bundle
over an oriented surface, thenM is a symplectic 4-manifold, at least provided
that the homology class of the fiber is nonzero in H2(M,R). As shown by
Gompf, the argument extends to the case of Lefschetz fibrations (Theorem
10.2.18 in [13]):

Theorem 2.3 (Gompf). Let f : M → S2 be a Lefschetz fibration, and as-
sume that the fiber represents a nonzero class in H2(M,R). Then M admits
a symplectic structure for which the fibers of f are symplectic submanifolds;
this symplectic structure is unique up to deformation.

Lefschetz fibrations arise naturally in algebraic geometry: if X is a com-
plex surface, and L → X is a sufficiently ample line bundle, then the ratio
between two suitably chosen sections s0, s1 ∈ H0(L) determines a Lefschetz
pencil, i.e. a map f = (s0/s1) : X \ B → CP1, defined on the comple-
ment of the finite set B = {s0 = s1 = 0} (the base points), with isolated
nondegenerate critical points in X \B.

More generally, Donaldson has shown that this construction extends to
the symplectic setting [8]:

Theorem 2.4 (Donaldson). Let (X,ω) be a compact symplectic 4-manifold
with [ω] ∈ H2(X,Z). Then X carries a symplectic Lefschetz pencil, i.e.
there exist a finite set B ⊂ X and a map f : X \B → CP1 = S2 such that f
is modelled on (z1, z2) 7→ (z1 : z2) near each point of B, and f is a Lefschetz
fibration with symplectic fibers outside of B.

More precisely, given a compact symplectic 4-manifold (X,ω) such that
[ω] ∈ H2(X,Z), and given a complex line bundle L → X with c1(L) = [ω],
one can construct symplectic Lefschetz pencils from suitably chosen pairs of
sections s0, s1 ∈ C∞(L⊗k) for all sufficiently large values of the integer k.
Moreover, Donaldson has shown that for all sufficiently large values k, there
is a distinguished connected component of the space of symplectic Lefschetz
pencils obtained from pairs of sections of L⊗k; in the Kähler case, this com-
ponent contains pencils defined from pairs of generic holomorphic sections
of L⊗k [8]. Hence, if two complex projective surfaces are symplectomorphic,
then generic pencils of curves in the linear systems considered by Donald-
son are mutually isomorphic (as symplectic Lefschetz pencils) whenever the
integer k is sufficiently large.

Given a symplectic Lefschez pencil f : X \ B → S2, the manifold X̂
obtained from X by blowing up the points of B admits a Lefschetz fibration
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f̂ : X̂ → S2 with symplectic fibers, and can be described by its monodromy
as discussed above.

Moreover, the fibration f̂ has n = |B| distinguished sections e1, . . . , en,
corresponding to the exceptional divisors of the blowups. Therefore, each
fiber of f̂ comes equipped with n marked points, and the monodromy of f̂
lifts to the mapping class group of a genus g surface with n marked points.

The normal bundles of the sections ei are not trivial, but it is possible to
trivialize them over the preimage of a large disc D containing all the chosen
generators of π1(S

2\crit(f̂)). Deleting a small tubular neighborhood of each

exceptional section, we can now view the monodromy of f̂ as a morphism

ψ̂ : π1(D \ crit(f̂)) → Mapg,n,

where Mapg,n is the mapping class group of a genus g surface with n bound-
ary components (i.e., π0Diff+(Σ, ∂Σ)).

The product of the Dehn twists ti = ψ̂(γi) is no longer the identity element
in Mapg,n. Instead, since

∏

γi is homotopic to the boundary of the disc D,
and since the normal bundle to ei has degree −1, we have

∏

ti = T∂ , where
T∂ ∈ Mapg,n is the boundary twist, i.e. the product of the positive Dehn
twists along n loops parallel to the boundary components.

With this understood, the previous discussion carries over, and under the
assumption 2 − 2g − n < 0 there is a one to one correspondence between
factorizations of the boundary twist T∂ as a product of positive Dehn twists
in Mapg,n, up to Hurwitz equivalence and global conjugation, and genus g
Lefschetz fibrations over S2 equipped with n distinguished sections of square
−1, up to isomorphism.

Moreover, Theorem 2.3 admits a strengthening in this context: for sym-
plectic Lefschetz pencils whose fibers are Poincaré dual to a symplectic form,
the monodromy data determines the symplectic structure up to isotopy (i.e.,
symplectomorphism), rather than just up to deformation [12]. Combining
this with the discussion after Theorem 2.4, we conclude:

Corollary 2.5 (Donaldson, Gompf). The following three properties are
equivalent:

(i) the Horikawa surfaces X1 and X2 equipped with their canonical Kähler
forms are symplectomorphic;

(ii) there exists an integer k ≥ 1 such that generic pencils of curves in
the linear systems |kKXi

| have equivalent monodromy factorizations;
(ii) there exists an integer k0 such that, for all k ≥ k0, generic pencils of

curves in the linear systems |kKXi
| have equivalent monodromy factoriza-

tions.

2.2. Double covers and lifting homomorphisms. Let X and Y be
smooth complex surfaces, such that there exists a 2:1 covering map π :
X → Y , branched along a smooth curve C ⊂ Y . Assume that we have
a Lefschetz pencil f : Y \ B → CP1 (we also allow f to be a fibration,



THE CANONICAL PENCILS ON HORIKAWA SURFACES 7

i.e. B may be empty), and that the branch curve C satisfies the following
properties:

(i) C does not pass through the base points or the critical points of f ;
(ii) C is everywhere transverse to the fibers of f , except at isolated points

p1, . . . , ps where C is nondegenerately tangent to the fiber of f (i.e., at pi
the multiplicity of the intersection between C and the fiber of f is 2);

(iii) for simplicity we also assume that the points pi lie in distinct smooth
fibers of the pencil f .

Then f̃ = f ◦π : X \ B̃ → CP1 is also a Lefschetz pencil, with base points

B̃ = π−1(B).

Remark 2.6. The discussion extends without modification to the situation
where π : X → Y is a branched covering of symplectic 4-manifolds with a
smooth symplectic branch curve, and f is a symplectic Lefschetz pencil.

Denote by Σ the generic fiber of f , with a neighborhood of the base points
removed (so Σ is a compact surface with n = |B| boundary components, and
the monodromy of f takes values in the mapping class group of Σ). The

generic fiber of f̃ is a double cover of Σ branched at d = [C] · [Σ] points,

which we denote by Σ̃. Abusing notation, we denote the restriction of the
double cover to the fiber by the same letter: π : Σ̃ → Σ.

It is a classical fact that the double covering π determines a lifting ho-
momorphism L from (a subgroup of) the braid group Bd(Σ) (i.e., the fun-
damental group of the space Cd(Σ) of unordered configurations of d distinct

points in the interior of Σ) to the mapping class group of Σ̃. In the case
where Σ has genus 0, which is the only one we will be considering, one way
to describe the lifting homomorphism is to consider the universal family
X → Cd(Σ) whose fiber above a configuration {x1, . . . , xd} ⊂ Σ is the dou-
ble cover of Σ branched at x1, . . . , xd (with trivial monodromy along each
component of ∂Σ). (When the genus of Σ is nonzero, this universal family
is only defined over a finite covering of Cd(Σ)). The lifting homomorphism
is simply the monodromy of the fibration X → Cd(Σ); however not every
element of Bd(Σ) is liftable, because some braids lift to diffeomorphisms of

Σ̃ which exchange the two lifts of some boundary components of Σ instead
of fixing ∂Σ̃ pointwise.

Given any arc η joining two points x0
i , x

0
j of the reference configuration

{x0
1, . . . , x

0
d} = Σ ∩ C ⊂ Σ inside Σ \ {x0

1, . . . , x
0
d}, we can consider the half-

twist along η, which is the braid exchanging the two points x0
i and x0

j by
a counterclockwise 180 degree rotation inside a small tubular neighborhood
of η. The preimage π−1(η) is a simple closed curve in Σ̃, and it is a classical
observation that the half-twist along η lifts to the Dehn twist along π−1(η).

We claim that the monodromy of the Lefschetz fibration f̃ is completely
determined by the monodromy of f and by the braid monodromy of the
branch curve C. Indeed, the singular fibers of f̃ are of two types:
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(a) preimages by π of the singular fibers of f ;
(b) preimages by π of smooth fibers of f which are tangent to C.

Denote by q1, . . . , qr the critical points of f , which we assume to lie
in distinct fibers, and choose an ordered collection of generating loops for
π1(D \ crit(f̃)), where D is a large disc containing all the points of crit(f̃) =
{f(q1), . . . , f(qr), f(p1), . . . , f(ps)}. This allows us to define the monodromy

of f̃ around its various critical values as in §2.1.
First consider a singular fiber of f , containing a critical point qj . The

corresponding fiber of f̃ possesses two nodal singularities (the two preimages
of qj), and we claim that the corresponding vanishing cycles are the two lifts
by π of the vanishing cycle at qj .

Indeed, by assumption qj 6∈ C, and since C is transverse to the fibers of f
in the considered region, we can locally choose the parallel transport maps
between the various fibers of f in a manner such that the intersection points
with C are preserved. Therefore, the vanishing cycle of f associated to the
critical point qj and to the chosen generator of π1(D\crit(f̃)) can be naturally
represented by a simple closed curve δj ⊂ Σ \ {x0

1, . . . , x
0
d}. The preimage

π−1(δj) consists of two disjoint simple closed curves δ′j and δ′′j , which are

precisely the two vanishing cycles of f̃ . The monodromy of f along the
chosen loop around qj is the Dehn twist along δj , and the monodromy of f̃
along the same loop is the product of the Dehn twists along δ ′j and δ′′j .

Remark 2.7. By construction, the critical values of f̃ are not distinct, since
critical points of f lift to pairs of critical points in the same fiber. However,
when the chosen linear system is sufficiently ample, the critical values can
be made distinct by considering a small generic perturbation of f̃ ; if the
perturbation is chosen sufficiently small then the vanishing cycles are not
affected. More generally, even when such a perturbation does not exist in
the algebraic setting (as is the case for canonical pencils on Horikawa sur-
faces), it can still be carried out among symplectic Lefschetz pencils. Hence,
when viewing Horikawa surfaces as symplectic 4-manifolds it is natural (and
desirable) to consider the individual Dehn twists arising in the monodromy,
even though the critical values of the pencils are not pairwise distinct.

We now consider the fiber of f through the point pj . Denote by γj the
loop around f(pj) chosen as part of our fixed collection of generators of

π1(D \ crit(f̃)), and by Dj the disc bounded by δj . Since f has no critical
values in Dj , we can identify f−1(Dj) with Dj × Σ. The branch curve C
intersects the fiber of f above any point z ∈ Dj \ {f(pj)} transversely in
d distinct points, which determines an element σ(z) of the configuration
space Cd(Σ) (using the trivialization of f). The manner in which two of
the points in these configurations converge to each other (while remaining
distinct from the others) as z approaches f(pj) is encoded by a vanishing arc
ηj ⊂ Σ \ {x0

1, . . . , x
0
d}, with end points in {x0

1, . . . , x
0
d} (recall that we denote

by {x0
1, . . . , x

0
d} ⊂ Σ the configuration above the base point). Local models
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for C and f near pj are given by the plane curve {y2 = x} ⊂ C2 and the
projection to the first coordinate. Therefore, as one moves around f(pj), the
two end points of the vanishing arc are exchanged by a counterclockwise half-
twist. It follows that the braid monodromy of C along γj , i.e. the element
of Bd(Σ) determined by the configurations {σ(z), z ∈ γj}, is precisely the

half-twist along the vanishing arc ηj . By construction, the monodromy of f̃
along γj is the image of this half-twist under the lifting homomorphism, i.e.
the Dehn twist along π−1(ηj).

In conclusion, we have proved:

Proposition 2.8. The vanishing cycles of f̃ are exactly the preimages by
π : Σ̃ → Σ of (a) the vanishing cycles of f , and (b) the vanishing arcs of the
branch curve C.

2.3. Horikawa surfaces as genus 2 fibrations. The composition of the
covering map π1 : X1 → CP1 × CP1 with the projection to the first factor
defines a genus 2 fibration ϕ1 : X1 → CP1. A generic choice of the branch
curve C1 ⊂ CP1 ×CP1 ensures that every fiber of the projection to the first
factor is tangent to C1 in at most one point, and that every such tangency
is nondegenerate. We can then derive the monodromy of the Lefschetz
fibration ϕ1 from the braid monodromy of the curve C1, as in §2.2. It is
easy to check (see e.g. §3 of [1]) that the braid monodromy of C1 corresponds
to the factorization

(σ1 · σ2 · σ3 · σ4 · σ5 · σ5 · σ4 · σ3 · σ2 · σ1)
12 = 1

in the spherical braid group B6(S
2), where σ1, . . . , σ5 are the standard Artin

generators (half-twists exchanging two consecutive points).
Similarly, the composition of the covering map π2 : X2 → F6 with the

projection pr : F6 → CP1 defines a genus 2 fibration ϕ2 : X2 → CP1; the
braid monodromy of the branch curve ∆∞ ∪ C2 can again be expressed in
terms of a factorization in B6(S

2), namely

(σ1 · σ2 · σ3 · σ4)
30 = 1.

Using the fact that the half-twists σ1, . . . , σ5 lift to the Dehn twists
τ1, . . . , τ5 ∈ Map2 represented in Figure 1 (the standard generators of Map2),
we obtain formulas for the monodromies of the Lefschetz fibrations ϕ1 and
ϕ2. For another derivation of these formulas, see the work of Fuller [11]; see
also §4 of [23] for related considerations.

τ1 τ5

τ2 τ4τ3

Figure 1. Standard generators of Map2
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Proposition 2.9 (Fuller). X1 and X2 admit genus 2 Lefschetz fibrations
with 120 singular fibers; the corresponding monodromy factorizations in
Map2 are (τ1 · τ2 · τ3 · τ4 · τ5 · τ5 · τ4 · τ3 · τ2 · τ1)

12 = 1 and (τ1 · τ2 · τ3 · τ4)
30 = 1,

respectively.

It is easy to see that the Lefschetz fibrations ϕ1 and ϕ2 are not isomorphic.
For example, their monodromy groups are different: the monodromy of ϕ1

surjects onto Map2, while that of ϕ2 takes values in the subgroup of Map2

generated by τ1, τ2, τ3 and τ4 (this is a proper subgroup since its image under
the natural surjective homomorphism Map2 → S6 mapping τi to (i, i+1) is
S5 ( S6). However, this difference sheds very little light on the structure
of X1 and X2 as symplectic 4-manifolds; in fact, it can be understood in
terms of elementary topological considerations. We start with a remark.

Remark 2.10. As a smooth 4-manifold, X1 can also be constructed as
follows: in CP1 ×CP1, consider a configuration of 6 “horizontal” lines Hi =
CP1 × {bi} and 12 “vertical” lines Fj = {aj} × CP1; blow up CP1 × CP1

at the 72 intersection points (aj , bi), and denote by Ĥi and F̂j the proper
transforms of the lines Hi and Fj . Then X1 is diffeomorphic to the double

cover of the blowup of CP1 × CP1 branched along
⋃

Ĥi ∪
⋃

F̂j .
Indeed, this follows from simultaneous resolution of singularities: the dou-

ble cover of CP1 ×CP1 branched along the nodal configuration
⋃

Hi ∪
⋃

Fj
is a singular surface with 72 ordinary double points. The double points
can be either smoothed, which amounts to smoothing of the branch curve in
CP1×CP1, or blown up, which amounts to blowing up CP1×CP1 and taking
the proper transform of the branch curve. Even though these two construc-
tions differ from a symplectic point of view (blowing up creates symplectic
−2-spheres, while smoothing creates Lagrangian −2-spheres), the resulting
4-manifolds are diffeomorphic.

The same argument yields an alternative construction of X2 as a double
cover of a blow-up of F6.

The cohomology groups H2(X1,Z) and H2(X2,Z) contain rank 2 sublat-
tices Λ1 = π∗1H

2(CP1 × CP1,Z) and Λ2 = π∗2H
2(F6,Z). Even though the

lattices H2(X1,Z) and H2(X2,Z) (equipped with the intersection pairings)
are isomorphic, and the sublattices Λ1 and Λ2 (equipped with the restric-
tions of the intersection pairings) are also isomorphic, we claim that the
pairs (H2(Xi,Z),Λi) are not isomorphic. This implies:

Proposition 2.11. There is no homeomorphism h : X1 → X2 such that
h∗(Λ2) = Λ1.

Proof. Take an element of Λ1 of the form π∗1(p, q), where we implicitly iden-
tify H2(CP1 × CP1,Z) with Z2. Recall the description of X1 given in Re-
mark 2.10, and consider the homology classes A,B ∈ H2(X1,Z) represented

by the preimages of Ĥ1 and F̂1. By construction, 〈π∗1(p, q), A〉 = p and
〈π∗1(p, q), B〉 = q. This implies that, if π∗1(p, q) is divisible by 2 in H2(X1,Z),
then p and q are both even, and hence π∗1(p, q) is also divisible by 2 in Λ1.
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On the other hand, let α ∈ H2(F6,Z) be the class Poincaré dual to
the exceptional section ∆∞, and consider π∗2α ∈ Λ2: for every class [C] ∈
H2(X2,Z), we have

〈π∗2α, [C]〉 = 〈α, (π2)∗[C]〉 = [∆∞] · (π2)∗[C] = 2 [π−1
2 (∆∞)] · [C]

(in the last equality we have used the fact that ∆∞ is a component of the
branch curve of π2). This implies that π∗2α is divisible by 2 in H2(X2,Z);
however, α is primitive in H2(F6,Z), so π∗2α is not divisible by 2 in Λ2. This
completes the proof. �

The fibers of ϕ1 represent the class π∗1(0, 1), while the fibers of ϕ2 represent
the class π∗2[F ] where [F ] is the class of the fiber of F6. Moreover, the
canonical classes of X1 and X2 are c1(KX1

) = π∗1(1, 4) and c1(KX2
) =

π∗2([∆0] + [F ]). (Here we are implicitly using the isomorphism between
homology and cohomology given by Poincaré duality).

If the two Lefschetz fibrations ϕ1 and ϕ2 were isomorphic then we would
have a diffeomorphism h : X1 → X2 taking the fiber class to the fiber
class. Moreover, h would also map the canonical class to the canonical
class (this follows e.g. from Seiberg-Witten theory, since ±KXi

are the only
basic classes, and evaluation on the fiber classes shows that the signs are
preserved). Since the fiber classes and canonical classes generate Λ1 and Λ2,
this contradicts Proposition 2.11.

Remark 2.12. These simple topological considerations are at the heart of
the problem. Indeed, it is easy to distinguish X1 and X2 as complex surfaces
because the projections π1, π2 and the lattices Λ1,Λ2 are naturally deter-
mined by the complex geometry of the Horikawa surfaces: they can e.g. be
interpreted in terms of the canonical linear systems, or in terms of algebraic
vanishing cycles for nodal degenerations. If there were a purely symplectic
construction allowing us to characterize the lattices Λ1 and Λ2 in terms of
the symplectic topology of X1 and X2 (without using the extra data pro-
vided by the coverings πi), then it would follow that X1 and X2 are different
symplectic 4-manifolds. Donaldson has suggested that one should compare
the sets of homology classes realized by embedded Lagrangian spheres in X1

and X2; it is conjectured that these coincide with algebraic vanishing cycles,
and hence span precisely the orthogonal complements to Λ1 and Λ2 (see §8
for more on this topic). However, to this date little progress has been made
in this direction.

2.4. Luttinger surgery and partial twistings. We now discuss some
properties of braiding constructions and Luttinger surgery in the context of
Lefschetz pencils and double covers. The reader is referred to [2] for more
background on these topics (see also [9]).

Consider a 2:1 covering π : X → Y of symplectic 4-manifolds, branched
along a smooth symplectic curve C ⊂ Y . Assume that we are given a
Lagrangian annulus A with interior in Y \C and boundary contained in C.
Then we can obtain a new symplectic curve C ′ ⊂ Y by braiding the curve C
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A

C’C

Figure 2. Braiding a branch curve

along the annulus A, in the manner depicted on Figure 2. Namely, we cut
out a neighborhood U of A, and glue it back via a non-trivial diffeomorphism
which interchanges two of the connected components of C ∩ ∂U . in such a
way that the product of S1 with the trivial two-strand braid is replaced by
the product of S1 with a half-twist (see [2] for details).

Braiding the curve C along the Lagrangian annulus A affects the branched
cover X by a Luttinger surgery along the smooth embedded Lagrangian
torus T = π−1(A) [2]. This operation consists of cutting out from X a
tubular neighborhood of T , foliated by parallel Lagrangian tori, and gluing
it back via a symplectomorphism wrapping the meridian around the torus
(in the direction of the preimage of an arc joining the two boundaries of A),
while the longitudes are not affected.

Here we are specifically interested in the situation already considered in
§2.2, namely when we are given a Lefschetz pencil (or fibration) f : Y \B →
CP1 with respect to which C lies in a generic position. Assume that we have
a loop γ ∈ π1(CP1 \ crit(f)) along which the monodromy of f is trivial, and
that C is transverse to the fibers of f in a neighborhood of f−1(γ). Also
assume for now that the braid monodromy of C along γ is trivial.

Consider an arc η in the fiber Σ of f above a point of γ, with end points
x′, x′′ ∈ Σ ∩ C. We can locally identify Y with a product V1 × V2, where
V1 is a neighborhood of γ in CP1 \ crit(f) (such that C is transverse to the
fibers of f over V1), and V2 is a neighborhood of η in Σ. In this local model,
we can assume that f is the projection to the first factor V1, and that C is
the subset V1 × {x′, x′′} ⊂ V1 × V2. Consider the annulus A = γ × η with
boundary in C. Standard results about symplectic structures on Lefschetz
fibrations (see e.g. [12, 13]) imply that, up to a small perturbation of the
symplectic form, we can assume the annulus A to be Lagrangian. We can
then braid C along A as described above, to obtain a new symplectic curve
C ′ ⊂ Y which coincides with C outside of V1 × V2 and is transverse to the
fibers of f inside V1×V2. (In fact, the construction could also be carried out
without perturbing the symplectic form, provided one is careful to choose
the neighborhood V1 large enough to allow C to be distorted in the direction
of η while remaining symplectic).
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The braid monodromy of C ′ differs from that of C by a partial conjugation
operation. Namely, let D± be the two components of CP1 \ V1, and choose
the base point in CP1 \ crit(f) to lie on the boundary of D+. Then C and
C ′ have the same braid monodromy along any loop in D+, but their braid
monodromies around points of D− differ by conjugation by the half-twist
ση along η. In other terms, the vanishing arcs corresponding to the vertical
tangencies of C inside f−1(D−) are replaced by their images under ση.

Since we have only used the local structure near the annulus A, we can
in fact relax our assumption concerning the braid monodromy of C along
γ: it is sufficient to assume that this braid monodromy fixes the arc η (i.e.,
that it can be realized by an isotopy of Σ supported in the complement of
V2. Similarly, we do not have to assume that the monodromy of f along γ
is trivial, we only need to assume triviality in the considered portion of the
fiber (however, we will only consider situations in which the monodromy of
f along γ is trivial away from the boundary of Σ).

Now consider the double covers π : X → Y and π′ : X ′ → Y branched
along C and C ′, and the Lefschetz pencils f̃ = f ◦ π and f̃ ′ = f ◦ π′. By the
result of [2], these differ by a Luttinger surgery along the Lagrangian torus

T = π−1(A), performed in the direction of the loop δ = π−1(η) ⊂ Σ̃.

The monodromies of f̃ and f̃ ′ differ by a partial conjugation:

Proposition 2.13. The Lefschetz pencils f̃ and f̃ ′ have the same mon-
odromy along any loop in D+, but their monodromies around critical values
in D− differ by conjugation by the Dehn twist along δ.

Proof. The result follows directly from Proposition 2.8. Indeed, it is clear
that the monodromies over D+ coincide. If we consider a vertical tangency
of C in f−1(D−), the braiding operation replaces the vanishing arc by its
image under ση; since the lifting homomorphism maps ση to the Dehn twist

tδ, the corresponding vanishing cycles of f̃ and f̃ ′ differ precisely by tδ. Next,
consider a critical point of f in f−1(D−). Braiding is only a modification of
the curve C, so the vanishing cycles of f are not affected, and neither are
the corresponding vanishing cycles of f̃ . However, viewing the half-twist ση
as an isotopy of Σ supported in V2, and observing that [ση] is the identity
element in the mapping class group of Σ, we can also replace each vanishing
cycle of f by its image under ση; after lifting, the corresponding vanishing

cycles of f̃ ′ become the images of those of f̃ under tδ (which, in fact, acts
trivially). �

Another way to interpret these constructions is in terms of twisted fiber
sums. Namely, Y can be obtained by gluing Y+ = f−1(D+) and Y− =
f−1(D−) along their boundary via a diffeomorphism ψ : ∂Y+ → ∂Y− com-
patible with the Lefschetz fibrations f± = f|Y± ; the branch curve C is also

obtained by gluing C± = C ∩f−1(D±) along their boundaries via the diffeo-
morphism ψ. This realizes (Y,C) as the pairwise fiber sum of (Y+, C+) and
(Y−, C−). If we instead glue (Y+, C+) to (Y−, C−) by the diffeomorphism
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obtained by composing ψ with the half-twist ση inside each fiber of f above
the boundary (abusing notation we denote this diffeomorphism by ση ◦ ψ),
we obtain the pair (Y,C ′), realized as the twisted fiber sum of (Y+, C+) and
(Y−, C−).

Passing to the double covers, we can view X as a fiber sum X+ ∪ψ̃ X−,
where X± = π−1(Y±) and ψ̃ is a fiber-preserving diffeomorphism which lifts

ψ. In this language, the Lefschetz pencil f̃ ′ on X ′ is the twisted fiber sum
X+ ∪ψ̃′ X− of f̃+ = f̃|X+

and f̃− = f̃|X−
, where ψ̃′ = tδ ◦ ψ̃ is obtained by

composing ψ̃ with the Dehn twist tδ inside each fiber of f̃ . We also say that
f̃ ′ is a “partial twisting” of f̃ .

3. The monodromy of the canonical pencil on X2

The goal of this section is to compute the monodromy of a canonical
pencil of curves on the Horikawa surface X2 (expressed as a collection of
196 Dehn twists in Map17,16). The reader who does not care about details
of the setup and calculations may skip directly ahead to §3.4, where the final
formula is given along with the necessary notations.

3.1. A special configuration. Recall that X2 is the double cover of F6

branched along ∆∞ ∪ C2, where ∆∞ is the exceptional section and C2 is a
smooth curve in the linear system |5∆0|. Since KX2

= π∗2([∆0] + [F ]), we
can obtain a pencil of curves in the linear system |KX2

| on X2 by taking the
preimages of a pencil of curves in the linear system |∆0 + F | on F6.

The connectedness of the space of generic configurations (which is the
complement of a divisor in some projective variety) implies that the topology
of the resulting pencil of curves on X2 does not depend on the choices
made, as long as the curve C2 and the chosen pencil on F6 are in general
position with respect to each other. Accordingly, we will choose a particular
configuration for which the monodromy calculations are manageable.

The Hirzebruch surface F6 = P(O⊕O(6)) can be thought of as a fiberwise
compactification of the line bundle O(6) over CP1; in this sense, ∆0 is the
zero section, and ∆∞ is the section at infinity. Moreover, we think of CP1

as C ∪ {∞}, and trivialize O(6) over C by means of a holomorphic section
vanishing with order 6 at infinity. In this trivialization, sections of O(6) are
represented by polynomials of degree at most 6 in one complex variable.

We will be considering a pencil of curves in the linear system |∆0 + F |,
with base points p1, . . . , p8 ∈ F6; this pencil can be viewed equivalently as a
family of curves Σα ⊂ F6, α ∈ CP1, or as a map f : F6 \{p1, . . . , p8} → CP1.
We choose the base points p1 = (z1, 0), . . . , p7 = (z7, 0) on the zero section,
and p8 = (z8, ε) close to the zero section (ε is a small nonzero constant). We
will set things up in such a way that all the interesting phenomena happen
in the real part of F6 (thus making it easier to visualize the monodromy).
Accordingly, we choose the constants z1, . . . , z8, ε to be real numbers, with
z1 < · · · < z8 and ε < 0.
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Each curve of the pencil through p1, . . . , p8 intersects ∆∞ in exactly one
point, and so we can parameterize the pencil by its restriction to ∆∞:
namely, for each α ∈ CP1, we call Σα the curve in the pencil which passes
through the point (α,∞) ∈ ∆∞. If Σα is smooth, then it can be viewed as
the graph of a meromorphic section sα of O(6) with a simple pole at α and
zeroes at z1, . . . , z7; in the given trivialization of O(6), this section is given
by the formula

sα(z) = ε′
z8 − α

z − α

7
∏

i=1

(z − zi),

where ε′ = ε/
∏

(z8−zi). By projecting to CP1, we can identify each smooth
fiber of f (i.e., Σα with the base points removed) with CP1 \ {z1, . . . , z8}.
Accordingly, the monodromy of f takes values in the mapping class group
Map0,8 of CP1 with small discs around each zi removed.

It is easy to check that f has 8 singular fibers, corresponding to the values
α = z1, . . . , z8; for α = zi, the curve Σα consists of two components: the fiber
of F6 over zi, and the unique curve in |∆0| passing through all pj , j 6= i (for
i = 8 this is the zero section). The base point pi lies in the fiber component,
and the seven other base points lie in the section component; hence, the
vanishing cycle of f at α = zi is a boundary curve (a circle separating zi
from the other punctures).

Choosing ε small enough ensures that, outside of a fixed neighborhood
of ∆0, the pencil of curves (Σα)α∈CP

1 is arbitrarily close to the standard

fibration F6 → CP1. In fact, each Σα lies in a small neighborhood of ∆0 ∪
({α} × CP1); therefore, by choosing the curve C2 (the “main” component
of the branch curve of π2) transverse to the zero section, we can obtain an
explicit description of its behavior with respect to the pencil f .

Choose real numbers q1, . . . , q6 and r1, . . . , r6 such that

q1 < z1 < r1 < q2 < z2 < r2 < · · · < q6 < z6 < r6 < z7 < z8,

and consider the graph of the holomorphic section u(z) =
∏6

i=1(z − qi) of
O(6). Taking nearby curves in the real part of the pencil of curves in |∆0|
passing through the six points (ri, u(ri)), we obtain five holomorphic sections
u1, . . . , u5 of O(6), whose graphs Γ1, . . . ,Γ5 intersect each other transversely
at (ri, u(ri)) (1 ≤ i ≤ 6), and intersect the zero section transversely at real
points near q1, . . . , q6. We define Γj ∩∆0 = {q1,j , . . . , q6,j}, with qi,j ≈ qi. It
is easy to check that the various points qi,j are in the same order near each qi,
so we can assume that qi,1 < · · · < qi,5 for all i. Choosing the perturbations
small enough, we can also assume that qi,1 > ri−1 and qi,5 < zi.

The configuration Γ1 ∪ · · · ∪Γ5 can be smoothed to a nearby curve in the
linear system |5∆0|, which we take as our choice for C2. Since this smoothing
can be realized by an arbitrarily small perturbation, we can ensure that C2

is contained in an arbitrarily small neighborhood of
⋃

Γi, and arbitrarily
C1-close to

⋃

Γi outside of an arbitrarily small neighborhood of the points
(ri, u(ri)). Moreover, we choose the smoothing perturbation to be real and
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Figure 3. The curves C2 (solid) and Σα (dashed) in F6

generic, so that C2 is defined by an equation with real coefficients, and its
tangencies with the fibers of F6 are nondegenerate, real, and lie in distinct
fibers near ri. Finally, the points of C2 ∩ ∆0 lie arbitrarily close to those
of Γj ∩ ∆0; changing our notation, we will again call them qi,j , 1 ≤ i ≤ 6,
1 ≤ j ≤ 5, and observe that we still have ri−1 < qi,1 < · · · < qi,5 < zi. Our
choices for C2 and Σα are summarized on Figure 3.

3.2. More notations and conventions. We need to study the braid mon-
odromy of the branch curve ∆∞ ∪ C2 with respect to the pencil f , i.e. the
manner in which the intersection points of ∆∞ ∪C2 with Σα depend on the
choice of α. Recall that we can trivialize the pencil f (except at its singular
fibers) by using the standard projection pr : F6 → CP1, which allows us to
identify the complement of the base points in Σα with CP1 \ {z1, . . . , z8}.

Assume that α is not too close to any of the special values zi, qi, ri. Then
the projections to CP1 \ {z1, . . . , z8} of the 36 points where Σα intersects
∆∞∪C2 all lie in a small neighborhood of {α, q1, . . . , q6}, and can be labelled
in a simple manner according to their respective positions:

• the intersection between Σα and ∆∞ takes place at α.
• the 5 intersections between C2 and the “vertical” part of Σα take place

at α̃1, . . . , α̃5 in a neighborhood of α. We label them in such a way that,
upon deforming C2 back to the nearby singular configuration Γ1∪· · ·∪Γ5,
α̃i corresponds to an intersection of Σα with Γi.

• the 30 intersections between C2 and the “horizontal” part of Σα take
place at q̃1,1, . . . , q̃6,5, where each q̃i,j is close to qi,j .

In order to define braid monodromy and vanishing arcs, we need to fix a
reference fiber of the pencil f , i.e. some reference value α0, and arcs from
this reference value to the various values of α for which ∆∞ ∪C2 is tangent
to Σα. We choose the reference value α0 to be a sufficiently negative real
number, so that α0 � q1,1. The respective positions of Σα0

and ∆∞∪C2 are
then as pictured on Figure 3. In particular, the images under the projection
from Σα0

to CP1 of the 36 intersection points and the 8 base points are all
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real, and in the order

α < α̃5 < · · · < α̃1 < q̃1,1 < · · · < q̃1,5 < z1 < q̃2,1 < · · · < q̃2,5 < z2 < . . .

· · · < z5 < q̃6,1 < · · · < q̃6,5 < z6 < z7 < z8.

To determine the braid monodromy of ∆∞ ∪C2, we consider what happens
to these various intersections as the value of α increases along the real axis
from α0 to a large positive value. As we will see below, there are in total
180 values of α for which the curve Σα is tangent to C2, in addition to
the 8 values of α for which Σα is nodal. Our convention will be that we
determine the monodromy around each critical value αcr,i by considering a
loop in π1(C \ {αcr,j}, α0) constructed as follows: choose a point α′

i on the
real axis just to the left of the critical value αcr,i, and an arc ηi joining α0

to α′
i inside the upper half-plane (i.e., passing above all the critical values

between α0 and αcr,i); then we consider the loop γi obtained by composing
the arc ηi from α0 to α′

i, a small circle around αcr,i (counterclockwise), and

the arc η−1
i back to α0. This choice ensures in particular that, if we order

the critical values αcr,i in increasing order along the real axis, the loops γi
form an ordered collection of generators for π1(C \ {αcr,j}, α0).

Our calculation of braid monodromy relies on the following ingredients:

(1) The configuration of intersection points for α = α′
i determines readily

the vanishing arc at αcr,i: namely, in the nearby fiber Σα′
i
the vanishing

arc is simply a straight line segment joining the two intersection points
which approach each other as α→ αcr,i.

(2) The vanishing arc in the reference fiber Σα0
is obtained from the local

configuration in Σα′
i
by transporting along the arc η−1

i , or equivalently,
along a succession of counterclockwise half-circles around all the critical
values αcr,j < αcr,i. (As a general principle, the main feature is that
the intersection points labelled α, α̃5, . . . , α̃1 are moved counterclockwise
back to the leftmost positions, since these intersection points stay close
to α while the others remain close to q1, . . . , q5).

(3) The configuration of intersection points for a value of α on the real axis
just to the right of αcr,i can be deduced from the configuration at α = α′

i

by applying the “square root” of the monodromy around αcr,i, namely
a 90 degree rotation of the two end points of the local vanishing arc.

3.3. The braid monodromy. Upon increasing α along the real axis, the
first critical values encountered lie near q1. The braid monodromy near
q1 can be understood by following the approach outlined above. The real
part of the local configuration looks as in Figure 4 (a translating hyperbola
passing through five parallel lines); in particular, near q1 there are 10 values
αcr,1 < · · · < αcr,10 of α for which Σα is tangent to C2.

The local configurations of the intersection points in the fibers immedi-
ately to the left of each critical value αcr,1, . . . , αcr,10 are shown in Figure 5
(left), together with the corresponding vanishing arcs. Transporting these
vanishing arcs back to the reference fiber Σα0

(by going counterclockwise
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Figure 4. The configuration near q1

around the previous critical values) yields the vanishing arcs represented in
Figure 5 (right), which determine the braid monodromy of ∆∞∪C2 near q1.

The product of the 10 half-twists along these vanishing arcs is the braid
which translates the disc D containing α, α̃5, . . . , α̃1 counterclockwise around
the points q̃1,1, . . . , q̃1,5 by 360 degrees, while simultaneously rotating the
interior of D clockwise by 360 degrees, and rotating the interior of the smaller
disc D

′ containing α̃5, . . . , α̃1 clockwise by another 360 degrees.

at α′
i at α0
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Figure 5. The vanishing arcs near q1



THE CANONICAL PENCILS ON HORIKAWA SURFACES 19

r r r r r r r r r r r b

α α̃5
α̃1 q̃1,1 q̃1,5

z1

Figure 6. The vanishing cycle at z1

The next contribution to monodromy occurs at α = z1; the curve Σα is
then reducible, with one component (the fiber of F6 above z1) containing
the intersection points labelled α, α̃5, . . . , α̃1 and the base point z1, while the
other component contains all the other intersection points and base points.
Hence, in a nearby smooth fiber the vanishing cycle is a simple closed curve
around the points α̃5, . . . , α̃1, α, z1 (which are adjacent in that order along
the real axis). Transporting things back to the reference fiber Σα0

in the
prescribed manner yields the vanishing cycle represented in Figure 6.

Next, we consider the monodromy near α = r1. Because the point
(r1, u(r1)) lies away from the zero section, the tangencies between C2 and
Σα occur in the portion of Σα which lies close to the fiber {α} × CP1. In
particular, the braid monodromy consists of half-twists supported in a small
disc containing the points α̃1, . . . , α̃5, and can be understood in terms of the
local model represented on Figure 7.

Hence, in a neighborhood of r1, the braid monodromy of ∆∞ ∪ C2 with
respect to the pencil f coincides with the braid monodromy with respect
to a generic linear projection of a smooth algebraic plane curve of degree 5
obtained by smoothing a configuration of five lines in general position. The
braid monodromy of such a smooth algebraic plane curve has been studied
extensively, and there are various well-known formulas for it (Hurwitz equiv-
alent to each other, of course). The reader is referred to [21] for details. For
example, consistently with the choice we have made so far, we can consider
loops that reach each critical value αcr,i via an arc in the upper half-plane.
In that case, the braid monodromy can be read off from Figure 7 using the
same method as previously; the braid monodromy factorization that arises

-
q

q

q

q

q

α̃1

α̃2

α̃3

α̃4

α̃5

r r r r r r

r r r r r r

r r r r r r

r r r r r r

α α̃5 α̃1

×5

Figure 7. The monodromy near r1
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in this way is a product of 20 half-twists,

4
∏

i=1

5
∏

j=i+1

(σi,j · σi,j),

where σij is the half-twist along an arc that joins α̃i to α̃j passing below the
real axis (see also [21] for a careful derivation of this formula). However, it
is well-known (see e.g. [21]) that this expression is Hurwitz equivalent to the
simpler expression

(σ1,2 · σ2,3 · σ3,4 · σ4,5)
5.

In other terms, if we change our choice of ordered collection of generators
for π1(C \ {αcr,j}, α0), we can assume that the 20 vanishing arcs near r1 are
as pictured in Figure 7 (right).

The product of all the monodromies encountered so far (near q1, z1 and
r1) is simply the braid which moves the disc D containing α, α̃5, . . . , α̃1 by
360 degrees counterclockwise around the points q̃1,1, . . . , q̃1,5, z1. Moreover,
for a real value of α such that r1 � α � q2, the intersections of Σα with
∆∞ ∪ C2 are all real, and in the order

q̃1,1 < · · · < q̃1,5 < z1 < α < α̃5 < · · · < α̃1 < q̃2,1 < · · · < q̃2,5 < z2 < . . .

· · · < z5 < q̃6,1 < · · · < q̃6,5 < z6 < z7 < z8.

Hence, the local pictures near q2, z2 and r2 are exactly the same as near q1, z1
and r1 respectively (except that the configurations are flipped in the vertical
direction, which does not change anything since we characterize intersection
points in terms of their projections to the horizontal direction). When we
transport the local monodromies back to the reference fiber Σα0

by an arc
that goes counterclockwise around q1, z1 and r1, the points α, α̃5, . . . , α̃1 are
moved back to the left of q̃1,1, . . . , q̃1,5, z1 by a 180 degree counterclockwise
motion around these points. For example, the vanishing arcs near q2 look
identical to those near q1 except that they connect α̃j to q̃2,j by passing
above the points q̃1,1, . . . , q̃1,5, z1.

The same argument holds for the monodromies near qi, zi and ri for i ≥ 3;
hence, we have now determined 180 vanishing arcs for ∆∞ ∪C2 (10 at each
qi and 20 at each ri), and 8 vanishing cycles of f ; see Figure 8. Using
Proposition 2.8, these calculations yield 196 vanishing cycles for the pencil
f̃2 = f ◦ π2 on X2 (one for each vanishing arc of ∆∞ ∪ C2 and two for each
vanishing cycle of f).

3.4. The monodromy of the canonical pencil on X2.

Lemma 3.1. A generic curve in the linear system |KX2
| has genus 17; a

generic pencil of such curves has 16 base points, and 196 nodal singularities.

Proof. Since KX2
·KX2

= 2[∆0 +F ] · [∆0 +F ] = 16, the adjunction formula
yields that a generic curve in |KX2

| has genus g = 1 +KX2
·KX2

= 17, and
two such curves intersect in 16 points. By blowing up the 16 base points of
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r r r r r r r r. . . . . . . . .
α α̃jα̃5

α̃1

q̃1,1 q̃i,j
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Figure 8. The vanishing cycles of the canonical pencil on X2

a canonical pencil on X2, we obtain a surface X̂2 with Euler characteristic
e(X̂2) = e(X2)+16 = 132. This surface carries a Lefschetz fibration of genus
g = 17, and the Euler characteristic is related to the number N of nodal
singularities by the classical formula e(X̂2) = 4−4g+N , which implies that
N = 196. �

Hence, the monodromy of a generic pencil of curves in the linear system
|KX2

| can be expressed in terms of 196 Dehn twists in the mapping class
group Map17,16; in particular, this confirms that all the vanishing cycles of

the pencil f̃2 = f ◦ π2 have been accounted for in the above calculations.

Recall that we view the reference fiber Σ̃ of f̃2 as a double cover of a
sphere with 8 punctures Σ = CP1 \{z1, . . . , z8}, branched in 36 points. Also
recall that, in Σ, the punctures {zi, 1 ≤ i ≤ 8} and the branch points
{α, α̃j , q̃i,j , 1 ≤ i ≤ 6, 1 ≤ j ≤ 5} all lie on the real axis, in the order

α < α̃5 < · · · < α̃1 < q̃1,1 < · · · < q̃1,5 < z1 < q̃2,1 < · · · < q̃2,5 < z2 < . . .

· · · < z5 < q̃6,1 < · · · < q̃6,5 < z6 < z7 < z8.

With this notation, the calculations in §3.3 imply:

Theorem 3.2. Up to global conjugation and Hurwitz equivalence, the mon-
odromy of a generic pencil of curves in the linear system |KX2

| is expressed
by the factorization of the boundary twist into the following product of 196
Dehn twists:

6
∏

i=1

[

5
∏

j=1

ζi,j ·
5

∏

j=1

ξi,j · δ
+
i · δ−i · (τ̄1 · τ̄2 · τ̄3 · τ̄4)

5

]

· δ+7 · δ−7 · δ+8 · δ−8 ,

where ζi,j, ξi,j, δ
±
i , and τ̄i are the Dehn twists along the preimages of the

arcs and curves in Σ represented in Figure 8.

Remark 3.3. Our convention is to write products of elements in the map-
ping class group in the left-to-right order, consistently with the standard
convention for braid groups. Hence, ϕ1 ·ϕ2 is the mapping class represented
by the composition ϕ2 ◦ ϕ1.
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4. A symplectic Lefschetz pencil on X1

4.1. Horikawa surfaces and Luttinger surgery. The Hirzebruch sur-
face F6 can be realized as the fiber sum of the Hirzebruch surfaces F2 and
F4, in such a way that ∆∞∪C2 decomposes into the fiber sum of two curves
D2 ⊂ F2 and D4 ⊂ F4. Here each Dk (k ∈ {2, 4}) is the disjoint union
of the exceptional section (of square −k) and a smooth curve in the linear
system corresponding to five times a section of square +k. Hence, the genus
2 fibration ϕ2 : X2 → CP1 introduced in §2.3 (obtained by composing the
double cover π2 : X2 → F6 with the standard projection pr : F6 → CP1)
is actually the fiber sum of two genus 2 fibrations similarly defined on the
double covers of F2 and F4 branched along D2 and D4.

With the notations of §3.1, let γ be a loop in CP1 \ crit(ϕ2) which bounds
a disc D− ⊂ CP1 containing the points q1, z1, r1, q2, z2, r2, while the points
qi, zi, ri for i ≥ 3 lie in D+ = CP1 \D−. The vertical tangencies of ∆∞ ∪C2

lie near the points ri, 1 ≤ i ≤ 6, and each ri contributes (σ1 · σ2 · σ3 · σ4)
5

to the braid monodromy factorization. Hence, the fiber sum decomposition
described above corresponds exactly to a decomposition of CP1 into the two
discs D±. The braid monodromy of ∆∞∪C2 over D− can be represented by
the factorization (σ1 · σ2 · σ3 · σ4)

10 in B6(S
2), while the braid monodromy

over D+ is (σ1 · σ2 · σ3 · σ4)
20; these two expressions are precisely the braid

monodromy factorizations of D2 and D4 with respect to the natural projec-
tions. A similar property holds for the monodromies of the corresponding
genus 2 Lefschetz fibrations.

The braid monodromy of ∆∞ ∪C2 along γ is trivial, and hence preserves
any arc in the fiber of F6 with end points on the branch curve. This allows
us to apply the considerations of §2.4. Namely, choose the reference fiber of
F6 to be the fiber above a point of γ, and in this fiber let η be the supporting
arc of the standard half-twist σ5 ∈ B6(S

2), so that one end point of η lies
on C2 and the other lies on ∆∞; we additionally assume that η lies away
from the point where the zero section hits the reference fiber. In fact, any
other arc in the reference fiber with one end point on C2 and the other in
∆∞ and avoiding the zero section would be equally suitable.

As in §2.4, consider the annulus A = γ × η ⊂ F6 (with one boundary
on ∆∞ and the other on C2), and its preimage T = π−1

2 (A), which is a
smoothly embedded torus in X2. Up to suitable perturbations, A and T can
be assumed to be Lagrangian.

Let C ′ ⊂ F6 be the symplectic curve obtained by braiding ∆∞ ∪C2 along
the annulus A. This curve is connected, coincides with ∆∞∪C2 outside of a
neighborhood of A, intersects the fibers of F6 transversely in a neighborhood
of A, and represents the same homology class 5[∆0] + [∆∞] as ∆∞ ∪ C2.

Proposition 4.1. Equip F6 and CP1 × CP1 with fixed Kähler forms in the
cohomology classes Poincaré dual to [∆0]+[F ] and (1, 4), respectively. Then
there exists a symplectomorphism ψ : CP1×CP1 → F6 such that ψ(C1) = C ′.
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Proof. It is a classical fact that F6 and CP1 × CP1 are diffeomorphic; such
a diffeomorphism can be assumed to preserve the fiber class, and map the
homology classes [∆0] and [∆∞] to (1, 3) and (1,−3) respectively. Moreover,
it is well-known that F6 and CP1 × CP1 equipped with the chosen Kähler
forms are in fact symplectomorphic, even though their complex structures
are different (see e.g. §9.4 of [19]; see also [18]).

Hence, we can think of C ′ as a connected symplectic curve in CP1 ×CP1,
representing the homology class 5 · (1, 3)+ (1,−3) = (6, 12). We now appeal
to the following isotopy result, due to Siebert and Tian [24]:

Theorem 4.2 (Siebert-Tian). Let Σ ⊂ CP1×CP1 be a connected symplectic
submanifold, such that the intersection number between Σ and the fiber class
is at most 7. Then Σ is symplectically isotopic to a holomorphic curve.

Since any two smooth holomorphic curves in the homology class (6, 12)
are mutually isotopic, we conclude that C ′ is symplectically isotopic to the
branch curve C1 of π1 : X1 → CP1 × CP1. This implies the existence of a
symplectomorphism of CP1 × CP1 (in fact, an isotopy, see e.g. Proposition
0.2 in [24]) which maps C1 to C ′. �

Theorem 4.3. The manifold obtained from (X2, ω2) by Luttinger surgery
along the torus T in the direction of π−1

2 (η) is symplectomorphic to (X1, ω1).

Proof. As we have seen in §2.4, the symplectic manifold (X ′, ω′) obtained
from (X2, ω2) by Luttinger surgery along T is precisely the double cover of
F6 branched along C ′. In fact, recall that the double cover of a symplectic
4-manifold branched along a symplectic curve carries a natural symplec-
tic structure, canonically determined up to symplectomorphism (see e.g.
Proposition 3.2 in [6]). The symplectic forms ω′ and ω1 are precisely those
induced on the double covers X ′ and X1 by the chosen Kähler forms on F6

and CP1 ×CP1. Hence, the symplectomorphism ψ given by Proposition 4.1
can be lifted to a symplectomorphism from (X ′, ω′) to (X1, ω1). �

Since the Luttinger surgery operation which yields X1 from X2 is carried
out in a manner compatible with the genus 2 fibration ϕ2 : X2 → CP1, it
yields a symplectic Lefschetz fibration ϕ′ : X ′ = X1 → CP1, whose mon-
odromy differs from that of ϕ2 in the manner described by Proposition 2.13.
Together with Proposition 2.9, this implies that the monodromy of ϕ′ is
described by the factorization (τ1 · τ2 · τ3 · τ ′)10 · (τ1 · τ2 · τ3 · τ4)

20 = 1 in
Map2, where τ ′ = τ5τ4τ

−1
5 . With some work, one can verify that this fac-

torization is Hurwitz equivalent to the monodromy of ϕ1, which means that
the Lefschetz fibrations ϕ′ and ϕ1 are isomorphic. However, such a result
also follows more directly from the work of Siebert and Tian [24].

4.2. A symplectic Lefschetz pencil on X1. The monodromy of a canon-
ical pencil on X1 can be determined directly by the same methods as in §3.
However this calculation would yield an expression that looks very differ-
ent from that of Theorem 3.2, much like the two monodromy factorization
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given in Proposition 2.9 look very different, and comparing the two canon-
ical pencils would be very difficult. On the other hand, if we can place the
Lagrangian torus T ⊂ X2 in standard position with respect to the canonical
pencil studied in §3, then Theorem 4.3 and Proposition 2.13 allow us to
determine immediately the monodromy of a particular symplectic Lefschetz
pencil on X1. We will then prove in §5 that this symplectic Lefschetz pencil
is isotopic to a generic pencil of holomorphic curves in the canonical linear
system. For now, our main result is the following:

Theorem 4.4. X1 carries a symplectic Lefschetz pencil f̃ ′ whose fibers rep-
resent the canonical class and whose monodromy is described by the factor-
ization

2
∏

i=1

[

5
∏

j=1

ζ ′i,j ·
5

∏

j=1

ξ′i,j · δ
+
i · δ−i · (τ̄1 · τ̄2 · τ̄3 · τ̄

′)5

]

·

·
6

∏

i=3

[

5
∏

j=1

ζi,j ·
5

∏

j=1

ξi,j · δ
+
i · δ−i · (τ̄1 · τ̄2 · τ̄3 · τ̄4)

5

]

· δ+7 · δ−7 · δ+8 · δ−8

in Map17,16, where ζi,j, ξi,j, δ
±
i , and τ̄i are the Dehn twists along the preim-

ages of the arcs and curves represented in Figure 8, and ζ ′i,j = φζi,jφ
−1,

ξ′i,j = φξi,jφ
−1, τ̄ ′ = φτ̄4φ

−1, where φ is the Dehn twist along the preimage
of the line segment joining the two leftmost branch points α and α̃5.

Proof. We consider the loop γ ⊂ CP1 and the annulus A introduced in
§4.1. Since by construction A lies away from the zero section of F6, in a
neighborhood of A the pencil f : F6 \ {p1, . . . , p8} → CP1 introduced in §3.1
is very close to the standard projection pr : F6 → CP1. In particular, even
though f does not map A to γ, there is a nearby annulus A′ ⊂ F6 with
boundary on ∆∞ ∪C2 and with the property that f(A′) = γ. Up to a small
perturbation of the symplectic form we can assume that A′ is Lagrangian.

Recall that by construction the loop γ bounds a disc D− containing the
points q1, z1, r1, q2, z2, r2. Hence, the monodromy of f along γ (as an element
of Map0,8) is the product of two boundary twists (at the critical values z1

and z2), while the braid monodromy of ∆∞ ∪ C2 along γ is the product of
the contributions from the points inside D−; by the calculations in §3.3, this
is the braid which moves the points α, α̃5, . . . , α̃1 counterclockwise around
the points q̃1,1, . . . , q̃1,5, z1, q̃2,1, . . . , q̃2,5, z2 by 360 degrees. The annulus A′

intersects the fiber of f above any point of γ in an arc η′ which is isotopic
to a straight line segment joining the two points of ∆∞ ∪C2 labelled α and
α̃5; as expected, the monodromy along γ preserves the arc η′.

Braiding ∆∞ ∪ C2 along the annulus A′ yields a symplectic curve in F6

which is a small isotopic perturbation of the curve C ′ considered in §4.1; in
fact, for all practical purposes we can assume that this is the same curve (for
example Proposition 4.1 clearly still holds), and so we again denote it by
C ′. By the argument in §2.4, the double cover X ′ of F6 branched along the
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curve C ′ comes equipped with a symplectic Lefschetz pencil f̃ ′ with fibers
of genus 17, obtained as a partial twisting (along the torus T ′ = π−1

2 (A′))

of the pencil f̃2 = f ◦ π2 described in §3.
By Proposition 2.13, the monodromy of f̃ ′ is obtained from that of f̃2

by conjugating the monodromy around each critical value inside the disc
D− by the Dehn twist along the preimage of the arc η′. (Strictly speaking,
we have to assume that the loop γ ⊂ CP1 has been chosen in such a way
that the base point used for monodromy calculations in §3 lies in D+ and
close to its boundary; however, it is easy to ensure that this is the case).
The factors that need to be conjugated in the expression of Theorem 3.2 are
those corresponding to the monodromy near the points q1, z1, r1, q2, r2, z2,
namely the first 64 factors (those corresponding to i = 1 or i = 2 in the
product), and the conjugating Dehn twist is precisely φ. Hence, we obtain
the expression given in the statement of Theorem 4.4.

To complete the argument, we only need to show that the pencil f̃ ′ on X ′

can be viewed as a symplectic Lefschetz pencil on X1 whose fibers represent
the canonical class. Indeed, by Proposition 4.1 there exists a symplecto-
morphism ψ : CP1 × CP1 → F6 such that ψ(C1) = C ′. Composing the
pencil f : F6 \ {p1, . . . , p8} → CP1 with ψ, we obtain a symplectic Lefschetz
pencil on CP1 × CP1, whose fibers are symplectic curves representing the
homology class (1, 4). Moreover, the fibers of f ◦ψ intersect C1 transversely
and positively except at isolated nondegenerate tangency points. By con-
struction, the symplectic Lefschetz pencil f ◦ ψ ◦ π1 on X1 is isomorphic
to the symplectic Lefschetz pencil f̃ ′ on X ′ (the isomorphism is given by
the symplectomorphism from X1 to X ′ obtained by lifting ψ to the double
covers); and its fibers represent the homology class π∗

1(1, 4) = KX1
. �

5. Pencils of pseudo-holomorphic spheres in CP1 × CP1

Our goal in this section is to compare the symplectic Lefschetz pencil f̃ ′

described in Theorem 4.4 with a generic pencil f̃1 of holomorphic curves in
the linear system |KX1

|. We claim:

Theorem 5.1. The Lefschetz pencils f̃ ′ and f̃1 are isomorphic.

Recall from §4 that the Lefschetz pencil f̃ ′ is constructed as follows. Con-
sider the curve C ′ ⊂ F6 obtained by twisting ∆∞∪C2 along the Lagrangian
annulus A′, and a pencil f : F6 \ {p1, . . . , p8} → CP1 of curves in the linear
system |∆0 + F |. The symplectic curve C ′ intersects the fibers of f pos-
itively and transversely except at isolated nondegenerate tangency points
(which all lie away from A′), and the pencil f̃ ′ is obtained by lifting f via
the double cover π′ : X1 ' X ′ → F6 branched along C ′. Since CP1 × CP1

and F6 (with the chosen Kähler forms in the classes (1, 4) and [∆0]+[F ]) are
symplectomorphic, we can also view C ′ as a symplectic curve in CP1 ×CP1

representing the homology class (6, 12), and f as a symplectic Lefschetz
pencil on CP1 × CP1 whose fibers represent the homology class (1, 4).
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The pencil f̃1 can also be constructed in a similar manner, by considering
a pencil of algebraic curves in the class (1, 4) on CP1 ×CP1 whose fibers in-
tersect the algebraic curve C1 transversely except at isolated nondegenerate
tangency points, and lifting it via the double cover π1 : X1 → CP1 × CP1

branched along C1. Moreover, recall that Siebert and Tian’s isotopy re-
sult (Theorem 4.2) shows the existence of a symplectic isotopy between
the curves C ′ and C1, i.e. a continuous one-parameter family of symplectic
curves Ct ⊂ CP1 × CP1, t ∈ [0, 1], such that Ct equals C ′ for t = 0 and C1

for t = 1. With this understood, Theorem 5.1 is an immediate corollary of
the following statement:

Proposition 5.2. There exists a continuous family of symplectic Lefschetz
pencils ft, t ∈ [0, 1] on CP1×CP1 such that f0 = f , f1 is a pencil of algebraic
curves, and for all t the curve Ct intersects the fibers of ft positively and
transversely except at isolated nondegenerate tangency points which lie in
distinct smooth fibers of ft.

In fact, we will equip CP1 × CP1 with a family of almost-complex struc-
tures Jt, t ∈ [0, 1], tamed by the fixed symplectic form ω, and work with
pseudoholomorphic curves. We start with:

Lemma 5.3. F6 ' CP1 × CP1 carries an almost-complex structure J0

tamed by ω and such that the curve C ′ and the fibers of the pencil f are
J0-holomorphic.

Proof. By construction the fibers of f are holomorphic with respect to the
standard complex structure J on F6, and so is the curve C ′ outside of a
neighborhood of the annulus A′. Hence we only need to modify J in a
neighborhood of A′ in order to make C ′ pseudoholomorphic.

Over a neighborhood U of A′ (in which C ′ is transverse to the fibers of f ,
and outside of which C ′ coincides with the holomorphic curve ∆∞∪C2), we
can decompose the tangent bundle to F6 into a direct sum T1 ⊕ T2, where
T1 is the tangent space to the fiber of f and T2 is its symplectic orthogonal.
This splitting is preserved by J, and choosing orthonormal bases of T1 and
T2 for the metric induced by J and ω, we have

J =

(

j0 0
0 j0

)

, where j0 =

(

0 −1
1 0

)

.

At any point p ∈ C ′∩U , the transversality of C ′ to the fibers of f implies that
we can view the tangent space TpC

′ as the graph of a linear map h : T2 → T1;
the fact that C ′ is a symplectic curve means that det(h) > −1 (with respect
to the area forms induced by ω on T1 and T2). The almost-complex structure

J =

(

1 h
0 1

) (

j0 0
0 j0

) (

1 h
0 1

)−1

=

(

j0 hj0 − j0h
0 j0

)
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preserves T1 and TpC
′. Given a vector (X,Y ) ∈ T1 ⊕ T2, we have

ω((X,Y ), J(X,Y )) = ω
(

(X,Y ), (j0X + (hj0 − j0h)Y, j0Y )
)

= 〈X,X〉 − 〈X, (j0hj0 + h)Y 〉 + 〈Y, Y 〉,

where 〈·, ·〉 is the metric induced by J and ω. However, decomposing h into
its complex linear and antilinear parts h1,0 and h0,1 (with respect to j0), we
have det(h) = ‖h1,0‖2 − ‖h0,1‖2, so the norm of (j0hj0 + h)Y = 2h0,1Y is
less than twice the norm of Y . This implies that J is tamed by ω.

We have therefore obtained an almost-complex structure with the desired
properties at every point of C ′ ∩ U ; moreover, near the boundary of U the
curve C ′ is J-holomorphic and hence h is complex linear, so that J coincides
with J. We can extend this construction to a tubular neighborhood of C ′∩U
by choosing a suitable extension of h (preserving the condition det(h) > −1
and the complex linearity near the boundary of U); patching this together
with J by means of a suitable cut-off function, we obtain a globally defined
almost-complex structure with the desired properties. �

Starting from the J0-holomorphic curve C ′, the method used by Siebert
and Tian to prove symplectic isotopy [24] yields a family of ω-tame almost-
complex structures Jt, t ∈ [0, 1] on CP1×CP1, with J1 equal to the standard
(product) complex structure, and a family of smooth Jt-holomorphic curves
Ct realizing the isotopy between C ′ and C1.

At this point, we need to review some standard results about pseudoholo-
morphic spheres in CP1 × CP1. As observed by Hofer-Lizan-Sikorav [15],
the linearized ∂̄-operator is always surjective for embedded pseudoholomor-
phic spheres of self-intersection number at least −1 in an almost-complex
4-manifold (see also Lemma 3.3.3 in [19]); this property is sometimes called
automatic regularity. Hence, the moduli spaces of Jt-holomorphic spheres
(i.e., embedded irreducible Jt-holomorphic curves of genus 0) considered be-
low are always smooth manifolds of the expected dimensions (provided they
are non-empty). This implies:

Lemma 5.4. Let J be any ω-tame almost-complex structure on CP1 ×CP1.
(i) Given any point p ∈ CP1 × CP1, the point p lies on a unique J-

holomorphic sphere representing the homology class (0, 1), which we call the
J-fiber through p.

(ii) Given an integer k ≥ 0 and 2k + 1 distinct points p1, . . . , p2k+1 in
CP1 × CP1, there exists at most one J-holomorphic sphere representing the
homology class (1, k) and passing through the points p1, . . . , p2k+1.

(iii) Fix k ≥ 0, and assume that CP1 × CP1 contains no J-holomorphic
spheres in the homology class (1, j) for any j < −k. Let p1, . . . , p2k+1 be
distinct points in CP1 × CP1, such that no two of them lie in a same J-
fiber. Assume moreover that for all −k ≤ j < k, no j + k + 1 of the
points p1, . . . , p2k+1 lie on a same J-holomorphic sphere in the homology
class (1, j). Then there exists a unique J-holomorphic sphere representing
the homology class (1, k) and passing through the points p1, . . . , p2k+1.
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Proof. The first statement is classical and due to Gromov (Theorem 0.2.A
in [14]). The second statement is also classical and follows from positivity
of intersections: if two J-holomorphic curves in the class (1, k) intersect in
2k + 1 distinct points then they must share a component; since we assume
irreducibility, they must be equal.

To prove the third statement, we use the fact that the Gromov-Witten
invariant which counts pseudoholomorphic curves of genus 0 in the class
(1, k) passing through 2k + 1 points is non-zero. Indeed, when J is the
standard complex structure and p1, . . . , p2k+1 are generic, the 2k + 1 inci-
dence conditions determine a one-dimensional linear subspace in the vector
space H0(OP1×P1(1, k)), i.e. there is a unique algebraic curve through the
given points. For a generic choice of the points this curve is smooth and
hence automatically regular; since the complex structure is integrable, its
contribution to the Gromov-Witten invariant is 1.

Returning to the case of arbitrary J , this implies the existence of a (pos-
sibly singular) J-holomorphic curve of genus 0 through p1, . . . , p2k+1 in the
homology class (1, k). We claim that the assumptions on p1, . . . , p2k+1 imply
smoothness. Indeed, if the curve is not smooth then it must be reducible
and a union of smoothly embedded J-holomorphic spheres (this follows e.g.
from the adjunction formula). However, by positivity of intersection with
the J-fibers, every irreducible J-holomorphic curve must represent a homol-
ogy class of the form (a, b) with a ≥ 0; and if a = 0 then necessarily b = 1
(positivity of area implies b ≥ 1, and adjunction implies b = 1). There-
fore, our curve must be the union of a J-holomorphic sphere representing
the homology class (1, j) for some integer −k ≤ j < k, and k − j fibers.
However, by assumption each of the k− j fibers contains at most one of the
points p1, . . . , p2k+1, and the component representing the class (1, j) passes
through at most j + k of them. This yields a contradiction. �

Definition 5.5. We say that a configuration of 8 distinct points p1, . . . , p8 ∈
CP1 ×CP1 is J-regular if the following conditions hold: none of them lie on
a J-holomorphic sphere in the homology class (1, j) for some j < 0; no two
of them lie in a same J-fiber; and for all j ∈ {0, 1, 2, 3}, no 2j + 2 of them
lie on a same J-holomorphic sphere in the homology class (1, j).

Lemma 5.6. For any ω-tame almost-complex structure, the set of J-regular
configurations is a connected open subset of (CP1×CP1)8 whose complement
has real codimension 2.

Proof. By positivity of intersections, there is at most one J-holomorphic
sphere representing a homology class of the form (1, j) with j < 0; configu-
rations containing a point on such a sphere therefore form a codimension 2
subset. The moduli space of J-fibers has real dimension 2, so the space of
configurations of two points on a same J-fiber has real dimension 6, and the
space of configurations of 8 points of which two lie on a same J-fiber has real
dimension 30, i.e. codimension 2. Similarly, for 0 ≤ j ≤ 3, automatic reg-
ularity implies that the moduli space of J-holomorphic spheres in the class
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(1, j) has real dimension 4j + 2, the space of configurations of 2j + 2 points
on such a sphere has real dimension 8j + 6, and the space of configurations
of 8 points of which 2j+2 lie on such a sphere again has codimension 2. �

Proposition 5.7. Let (p1, . . . , p8) be a J-regular configuration of points
in CP1 × CP1. Then the family of all J-holomorphic curves of genus 0
which represent the homology class (1, 4) and pass through p1, . . . , p8 forms
a Lefschetz pencil. Moreover, the 8 singular fibers of this pencil are reducible
J-holomorphic curves consisting of the J-fiber through some pi (1 ≤ i ≤ 8)
and the J-holomorphic sphere in the class (1, 3) through all pj, j 6= i.

Proof. Since [ω] is Poincaré dual to (1, 4), there are no symplectic spheres
in the homology classes (1, j) for j ≤ −4. Hence, Lemma 5.4 (iii) implies
the existence of a unique J-holomorphic sphere in the homology class (1, 3)
through any 7 of the points p1, . . . , p8.

Consider any point p ∈ CP1 × CP1 \ {p1, . . . , p8}. There are two cases. If
p does not lie on any of the J-fibers through p1, . . . , p8, nor on any of the
J-holomorphic spheres in the homology class (1, 3) through seven of these
points, then one easily checks that the 9 points p1, . . . , p8, p satisfy the as-
sumptions of Lemma 5.4 (iii), and so they lie on a unique J-holomorphic
sphere in the homology class (1, 4). Otherwise, p1, . . . , p8, p lie on a re-
ducible J-holomorphic curve of the type described in the statement of the
proposition, and by positivity of intersections no other J-holomorphic curve
representing the homology class (1, 4) can pass through these 9 points.

To see that this family of J-holomorphic curves is parameterized by CP1,
consider a J-fiber F (not passing through any pi), and observe that each
curve in the family intersects F transversely in a single point, and conversely
through any point of F there is a single curve in the family. Hence, we can
define a map from CP1 × CP1 \ {p1, . . . , p8} to CP1 ' F by mapping each
point p to the point where the curve through p1, . . . , p8, p intersects F . The
fact that this is a Lefschetz pencil follows from automatic regularity and
standard arguments about deformations of J-holomorphic curves; in partic-
ular, the structure of the moduli space near the nodal curves follows from
gluing arguments (see e.g. Corollary 2 in [25]). In fact, the key ingredient is
again automatic regularity, which implies that the local behavior of families
of J-holomorphic spheres is the same as in the usual holomorphic case. �

Proof of Proposition 5.2. Consider the family of almost-complex structures
Jt and pseudoholomorphic curves Ct introduced above. By Lemma 5.6,
we can find a continuous family of Jt-regular configurations (p1,t, . . . , p8,t),
t ∈ [0, 1], starting from the configuration chosen in §3.1 at t = 0 (which is
easily seen to be J0-regular, recalling that ∆0 ⊂ F6 represents the class (1, 3)
in CP1 × CP1). Moreover, we can choose these points in such a way that,
for all 1 ≤ i ≤ 8, the point pi,t does not lie on Ct, and the point where the
Jt-fiber through pi,t intersects the Jt-holomorphic sphere in the class (1, 3)
through all pj,t, j 6= i, does not lie on Ct either.
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By Proposition 5.7, for each t the points (p1,t, . . . , p8,t) determine a pencil
ft of Jt-holomorphic curves in the homology class (1, 4). Since the curve Ct
is irreducible, every intersection of Ct with a fiber of ft has a finite positive
multiplicity; see e.g. Appendix E in [19] for a detailed discussion of this fact,
which follows from Micallef and White’s result about the local structure of
pseudoholomorphic curves [20]. Moreover, the restriction of ft to Ct is an
open mapping φt : Ct → CP1 of degree 36, whose critical points are precisely
the non-transverse intersections between Ct and fibers of ft.

The preimage by φt of a small disc in CP1 centered at a critical value
zcr of φt (chosen generically so its boundary is transverse to φt) consists of
at most |φ−1

t (zcr)| ≤ 35 components, each of which has Euler characteristic
at most 1. Hence, arguing as in the classical Hurwitz formula for branched
covers, we conclude that φt has at most 180 critical points; in particular,
the points where Ct is tangent to the fibers of ft are isolated.

We conclude that φt : Ct → CP1 is a topological branched covering. After
modifying φt by a C1-small perturbation supported in a neighborhood of its
critical points, we can assume that the critical points of φt are all non-
degenerate, and that the corresponding critical values are distinct from each
other and from the critical values of ft. Using suitable cut-off functions,
this modification of φt can be extended to a C1-small perturbation of ft
supported in a neighborhood of the critical points of φt, preserving the
property of positivity of intersection; the fibers of the perturbed pencil are
no longer Jt-holomorphic, but they can still be assumed to be symplectic.
It is moreover clear that this perturbation argument can be carried out in a
manner such that the perturbations depend continuously on t ∈ [0, 1]. �

6. Comparing the canonical pencils

We now have all the necessary ingredients to compare generic pencils of
curves in the canonical linear systems on X1 and X2. In particular, Theo-
rem 1.2 follows directly from Theorem 3.2, Theorem 4.4, and Theorem 5.1.
Moreover, in order to compare the monodromy groups and prove Theorem
1.3, it is enough to prove that the conjugating element φ belongs to the
monodromy subgroups of both pencils. Namely, we have to prove:

Proposition 6.1. With the notations of Theorem 1.2, the Dehn twist φ
belongs to the subgroup G2 of Map17,16 generated by t1, . . . , t196, and it also
belongs to the subgroup G1 generated by φt1φ

−1, . . . , φt64φ
−1, t65, . . . , t196.

Therefore, G1 = G2.

It is easy to prove that φ ∈ G1. Indeed, recall that Dehn twists along
simple closed curves that intersect transversely once satisfy the relation
tatbta = tbtatb. Therefore, with the notations of Theorem 4.4, we have
τ̄ ′ = φτ̄4φ

−1 = τ̄−1
4 φτ̄4, so φ = τ̄4τ̄

′τ̄−1
4 obviously belongs to the subgroup

G1 generated by the various Dehn twists appearing in Theorem 4.4.
The argument for X2 is more subtle, since a quick inspection of the factors

in Theorem 3.2 does not suggest any obvious reason why φ should belong to
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Figure 9. The disc D0 and the tree T0

the monodromy group. We use the same notations as in §3.4; in particular,
we consider Dehn twists in Map17,16 which are obtained by lifting half-twists

or Dehn twists via the double cover π2 : Σ̃ → Σ, where Σ = CP1\{z1, . . . , z8}
and the 36 branch points of π2 are labelled as in §3.4.

Lemma 6.2. The subgroup of Map17,16 generated by the Dehn twists ζi,j
and τ̄j is the image by the lifting homomorphism of the braid group B35

consisting of all braids supported in a disc D0 ⊂ Σ which contains the 35
branch points α̃j and q̃i,j as well as arcs connecting them within the upper
half-plane, as shown on Figure 9.

Proof. Conjugating ζi,j by τ̄j−1 . . . τ̄1, we obtain the lift of a half-twist that
exchanges the branch points α̃1 and q̃i,j along an arc contained in the upper
half-plane. These 30 arcs together with the 4 arcs supporting the half-twists
which lift to τ̄1, . . . , τ̄4 form an embedded tree T0 ⊂ Σ (see Figure 9). It is
well-known that these half-twists generate the braid group B35 (for example,
further conjugations yield half-twists whose supporting arcs form a linear
chain as in Artin’s standard set of generators). �

Definition 6.3. The upper envelope of a subset S of S0 = {α, α̃j , q̃i,j , i =
1 . . . 6, j = 1 . . . 5} ∪ {zi, 1 ≤ i ≤ 8} is the simple closed curve c(S) ⊂ Σ
which bounds a disc containing the points of S as well as arcs connecting
them within the upper half-plane, but not any points of S0 \ S. We denote
by δ(S)± the two lifts of the Dehn twist along c(S).

For example, the factors δ±i in Theorem 3.2 are the lifts of the Dehn
twists along the upper envelopes of the sets {α, α̃5, . . . , α̃1, zi}. With this
terminology, the following result is an immediate corollary of Lemma 6.2:

Lemma 6.4. If the monodromy group G2 contains δ(S)± for some set S,
then it also contains δ(S ′)± for any set S ′ which is the image of S by a
permutation of S0 fixing the elements α, z1, . . . , z8.

In particular, G2 contains δ(S)± for any 7-element set S which contains
α and exactly one zi. Our next observation is the following:

Lemma 6.5. Let c, c′ be two simple closed curves in Σ, intersecting in two
points as in Figure 10, left, so one of the regions delimited by c∪ c′ contains
a single branch point of π2. Assume that G2 contains the Dehn twists along
both lifts of c and c′. Then G2 also contains the Dehn twists along both lifts
of the loops c± obtained by “summing” c and c′ (Figure 10, right).
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Figure 10. Summing simple closed curves

Proof. Let c̃ and c̃′ be arbitrary lifts of c and c′. The loops c̃ and c̃′ intersect
only once, at a point of π−1

2 (c∩c′) which depends on the chosen lifts. Hence,
denoting by t̃ and t̃′ the corresponding Dehn twists, the conjugate of t̃′ by
t̃ is the Dehn twist along the connected sum of c̃ with c̃′. Assume that the
intersection of c̃ with c̃′ lies above p+: then t̃t̃′t̃−1 is the Dehn twist along
t̃−1(c′), which is a lift of c+ since the lift of a loop that encircles the branch
point twice is contractible. Similarly, if the intersection of c̃ and c̃′ lies above
p−, then t̃−1t̃′t̃ is the Dehn twist along a lift of c−. Considering the four
possible choices for (c̃, c̃′), we obtain both lifts of c+ and both lifts of c−. �

In particular, let S and S ′ be two subsets of S0 such that S ∩ S ′ consists
of a single element s which is not one of the zi. Assume moreover that,
with respect to the natural ordering of the elements of S0 induced by their
positions along the real axis, the following conditions are satisfied:

• s ∈ {inf(S ′), sup(S′)};
• S ∩ [inf(S′), sup(S′)] = {s}.

In this situation, if the monodromy group G2 contains δ(S)± and δ(S′)±,
then by Lemma 6.5 it also contains δ(S̄)± where S̄ = (S ∪ S′) \ {s}.

Applying this argument repeatedly to specific subsets of S0 satisfying
these conditions, and combining with Lemma 6.4, we conclude that G2 con-
tains δ(S)± whenever S satisfies one of the following conditions:

• S contains 7 elements, among which one zi, and α ∈ S;
• S contains 12 elements, among which two zi, and α 6∈ S;
• S contains 17 elements, among which three zi, and α ∈ S;
• S contains 22 elements, among which four zi, and α 6∈ S;
• S contains 27 elements, among which five zi, and α ∈ S;
• S contains 32 elements, among which six zi, and α 6∈ S;
• S contains 37 elements, among which seven zi, and α ∈ S;
• S contains 42 elements, among which eight zi, and α 6∈ S.

In particular, taking Sφ = S0\{α, α̃5} (which contains 42 elements, including
all the zi) we obtain that δ(Sφ)

± ∈ G2; however it is easy to see that
δ(Sφ)

± = φ, which completes the proof of Proposition 6.1.

7. Pluricanonical pencils and degree doubling

As mentioned in §2.1, comparing Horikawa surfaces requires understand-
ing not only pencils of curves in the canonical linear system, but also in the
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pluricanonical linear systems |kKXi
|, k � 1. This can be achieved by means

of a degree doubling procedure, which describes the topology of a pencil of
curves in the linear system |2kKXi

| in terms of that of a pencil in the linear
system |kKXi

|. This idea, which goes back to Donaldson [7], has been ex-
plored in greater detail in [26] and [4]. We start by giving an outline of the
relevant material in those two papers.

Consider a Lefschetz pencil f = (s0/s1) defined by two generic sections
s0, s1 of a sufficiently positive line bundle L⊗k (either holomorphic, or ap-
proximately holomorphic in the sense of Donaldson [8]). As observed in [26],
the two sections s20 and s0s1 of L⊗2k define a (highly non-generic) pencil of
reducible nodal curves {s20 − αs0s1 = 0}α∈CP

1 , obtained by adding in the
zero set of s0 to each of the curves in the original pencil. A generic pencil
can be obtained by choosing small perturbations ε0, ε1 (sections of L⊗2k)
and considering the sections s20 + ε0 and s0s1 + ε1 instead. It is then easy
to see that the generic fiber of this pencil is obtained by forming the con-
nected sum of two generic fibers of f (smoothing the intersections at the
base points), and that the critical points and vanishing cycles which occur
away from the zero set of s0 are in one-to-one correspondence with those of
f [26]. If f has fiber genus g and n base points, then the doubled pencil
has fiber genus ḡ = 2g + n − 1 and n̄ = 4n base points. Its monodromy
consists of: (1) the image of the monodromy of f under a natural embedding
Mapg,n ↪→ Mapḡ,n̄ induced by viewing the fiber of f (minus a neighborhood
of its base points) as a subset of the new fiber, and (2) contributions from
a neighborhood of the zero set of s0 [26].

The work in [4] aims to turn these considerations into an explicit formula
for the monodromy of the doubled pencil. The starting point is that complex
surfaces, and more generally symplectic 4-manifolds (see [3]), can be realized
as branched covers of CP2 by choosing three suitable sections s0, s1, s2 of
the line bundle L⊗k, and considering the map F = (s0 : s1 : s2) : X → CP2.
Choosing the sections generically in the holomorphic case, or in a specific
manner in the approximately holomorphic case, we can ensure that F is
a branched covering with generic local models, i.e. near any point of the
ramification curve R ⊂ X it is modelled on one of the two maps (x, y) 7→
(x2, y) or (x, y) 7→ (x3−xy, y); moreover the branch curve D = F (R) ⊂ CP2

can be assumed to have the following properties:

(1) the only singularities of D are ordinary double points (“nodes”) and
ordinary cusps (in the approximately holomorphic case, there may be
some double points with the anti-complex orientation);

(2) F|R : R → D is an immersion everywhere except at the cusps, and
one-to-one except at the nodes;

(3) (0 : 0 : 1) 6∈ D;
(4) D is positively transverse to the fibers of the linear projection π :

(x :y :z) 7→ (x :y) from CP2 to CP1, except at isolated nondegenerate
tangency points (distinct from the cusps and nodes);
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(5) the cusps, nodes, and tangency points lie in different fibers of π.

Then the composition f = π◦F = (s0/s1) is a Lefschetz pencil. The singular
fibers of f are the preimages by F of those fibers of π which are tangent to
D, its base points are the preimages of (0 :0 :1), and its monodromy can be
determined from the braid monodromy of D using a lifting homomorphism
as in §2.2.

As observed in [4], the composition of F with a generic quadratic map
V ′

2 : CP2 → CP2 yields a map F̄ = V ′
2 ◦ F : X → CP2 determined by

three sections of L⊗2k which are quadratic expressions in s0, s1, s2; this map
is again a branched covering, ramified along R̄ = R ∪ F−1(R′) (where R′

is the ramification curve of V ′
2). The branch curve of F̄ consists of two

parts, namely V ′
2(D) on one hand, and n = degF superimposed copies of

the branch curve D′ of V ′
2 on the other hand. Near a point where F−1(R′)

intersects R, a local model for F̄ is given by the composition of two simple
branched covers such that the branch curve of the first map is in general
position with respect to the second one, (x, y) 7→ (x2 + y, y) 7→ (x2 + y, y2).
At such a point, the branch curve of F̄ is not immersed, and presents a
self-tangency (since V ′

2(D) is tangent to D′). So, F̄ is not everywhere given
by one of the generic local models, and its branch curve D̄ does not satisfy
properties (1) and (2) above: in addition to nodes and cusps, D̄ also has
self-tangencies, and while the restriction of F̄ to its ramification curve is
still an immersion outside the cusps and self-tangencies, it is not generically
one-to-one. Nonetheless, a small perturbation can be added to F̄ in order
to get a covering with generic local models, satisfing properties (1)-(5). The
main idea in [4] is that the topology of this covering (in particular the braid
monodromy of its branch curve) can be determined explicitly from that of
F , using the non-generic map F̄ as an intermediate step.

After composing with the linear projection π, we again obtain a Lefschetz
pencil f̄ , whose monodromy can be determined by lifting the half-twists in
the braid monodromy of the branch curve. This leads to an explicit degree
doubling formula for Lefschetz pencils obtained from sections of sufficiently
positive line bundles (Theorem 4 in §4.2 of [4]):

Theorem 7.1. Let f = π ◦ F be a Lefschetz pencil with fiber genus g and
n base points, determined by two sections of L⊗k, where k is assumed to be
sufficiently large. Let Φ be a factorization of the boundary twist in Mapg,n
describing the monodromy of f . Let f̄ be the Lefschetz pencil obtained by the
construction described above (so f̄ is determined by two sections of L⊗2k,
its fiber genus is ḡ = 2g + n− 1, and it has n̄ = 4n base points).

Then the monodromy of f̄ can be described by the factorization ι(Φ) ·Ug,n
in Mapḡ,n̄, where ι : Mapg,n ↪→ Mapḡ,n̄ is a natural embedding induced by
viewing the fiber of f (minus a neighborhood of its base points) as a subset
of the fiber of f̄ , and Ug,n is an explicitly determined collection of 4g−4+7n
Dehn twists in Mapḡ,n̄ that depends only on g and n (but not on f).
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It is not immediately clear that this approach applies to the canonical
pencils on the Horikawa surfaces X1 and X2. The main issue is that the
canonical pencils do not satisfy the “large k” requirement. In particular, it
is not clear that holomorphic or approximately holomorphic perturbations
with the required properties can be constructed, and it is not clear either
that a Lefschetz pencil obtained by approximately holomorphic techniques
would be topologically equivalent to a pencil of holomorphic curves. In fact,
the linear systems |KXi

| and |2KXi
| factor through CP1 ×CP1 and F6, so a

generic triple of holomorphic sections of the canonical bundle does not even
determine a map to CP2 with generic local models.

However, the features of the maps to CP2 that naturally arise in this
context are actually not an obstacle. Indeed, given a branched covering map
F : X → CP2, the critical points of π ◦ F are the points of the ramification
curve where the image of dF is not transverse to the fiber of π, i.e. the points
of R which map to the vertical tangencies of D; in particular, among the
properties listed above, only (3) and (4) really matter.

Definition 7.2. A branched covering map F : X → CP2 is tame if near any
point of the ramification curve R ⊂ X it is modelled on one of the three maps
(x, y) 7→ (x2, y), (x, y) 7→ (x3−xy, y), or (x, y) 7→ (x2 +y, y2), and moreover
the branch curve D = F (R) ⊂ CP2 satisfies the following properties:

(1’) the only singularities of D are ordinary double points, ordinary cusps,
and self-tangencies;

(2’) F|R : R→ D is an immersion away from the cusps and self-tangencies;
( 3) (0 : 0 : 1) 6∈ D;
( 4) D is positively transverse to the fibers of π : (x : y : z) 7→ (x : y), ex-

cept at isolated nondegenerate tangency points (distinct from the cusps,
nodes, and self-tangencies).

If F is a tame covering, then the composition π ◦ F is still a Lefschetz
pencil, althouh its critical points need not lie in distinct fibers: for example,
whenever a fiber of π is tangent to a component of D over which F|R is not
generically one-to-one, we get a fiber of π ◦ F with multiple nodes. With
this understood, we can still consider the individual Dehn twists obtained
by lifting the half-twists in the braid monodromy of D; in the case of a
component of multiplicity µ, we obtain µ different Dehn twists along dis-
joint simple closed curves obtained by considering appropriate lifts of the
supporting arc of the half-twist.

In the holomorphic setting, mild genericity conditions ensure that the
composition of two tame coverings is still a tame covering. In particular, if
F : X → CP2 is a tame covering defined by a triple of holomorphic sections
of L⊗k and V ′

2 : CP2 → CP2 is a generic quadratic map, then V ′
2 ◦ F is still

a tame covering. Moreover, considering specifically the Horikawa surfaces
Xi (i ∈ {1, 2}), the map to CP2 defined by a generic triple of sections of the
canonical bundle KXi

is the composition of the double covering πi with a
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generic branched covering defined by three sections of O(1, 4) on CP1 ×CP1

or O(∆0 + F ) on F6; such a map is a tame covering.
Given a tame covering map F , one can always modify it by an arbitrarily

small C∞ perturbation (locally holomorphic near the vertical tangencies,
cusps, and self-tangencies) in order to obtain a symplectic branched covering
with generic local models satisfying properties (1)-(5). More precisely, the
effect of such a perturbation is to replace each self-tangency by three cusps
(replacing (x, y) 7→ (x2 + y, y2) by (x, y) 7→ (x2 + y, y2 + εx) for a small
nonzero ε), and to separate each multiple component of D into distinct
copies intersecting at nodes (see [4]). However, as far as the corresponding
Lefschetz pencil is concerned, the only effect of the perturbation is to move
the critical points of π◦F into distinct nearby fibers; so the monodromy still
consists of the same Dehn twists, independently of the chosen perturbation.

Hence, while perturbations are needed in order to study the effect of de-
gree doubling on the braid monodromy of the branch curves, which is the
method used in [4] in order to derive Theorem 7.1, they are actually irrele-
vant as far as pencils are concerned. In particular, in our setting the formula
in Theorem 7.1 can be interpreted more directly as a relation between the
monodromies of the pencils π ◦ F and π ◦ V ′

2 ◦ F (with the understanding
that, when several critical points lie in a same fiber, we still consider the
individual Dehn twists separately). In conclusion, we have:

Proposition 7.3. Let F : X → CP2 be a holomorphic map from a complex
surface to CP2, and assume that F is a tame branched covering. Let V ′

2 :
CP2 → CP2 be a map defined by three generic quadratic polynomials. Then
the maps f = π ◦ F and f̄ = π ◦ V ′

2 ◦ F are Lefschetz pencils, and their
monodromies are related by the formula in Theorem 7.1.

In particular, the monodromy of a generic pencil of curves in the linear
system |2mKXi

| on the Horikawa surface Xi (m ≥ 1, i ∈ {1, 2}) consists of
two ingredients:

• the image of the monodromy of the canonical pencil f̃i under a natu-
ral embedding of Map17,16 induced by viewing the fiber of f̃i (minus a
neighborhood of the base points) as a subset of the new fiber;

• an explicit collection of Dehn twists that depends on m but not on i.

With this understood, Theorem 1.4 becomes an easy corollary of Theorems
1.2 and 1.3.

8. Matching paths and Lagrangian spheres in Xi

Lefschetz pencils can be used to understand Lagrangian spheres in a sym-
plectic manifold via matching paths, an idea due to Donaldson and Seidel
(see [7] and Section 9b of [22]). In the four-dimensional case, the definition
is quite simple:

Definition 8.1. Let f : X4 \ B → S2 be a symplectic Lefschetz pencil. An
embedded arc γ : [0, 1] → S2 with γ−1(critf) = {0, 1} is a matching path
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for f if the vanishing cycles associated to the arcs γ([0, 1
2
]) and γ([1

2
, 1]) are

isotopic to each other inside f−1(γ(1
2
)) \B.

For example, if a same Dehn twist is repeated twice in the monodromy
factorization associated to f , then the “simplest” arc that joins the two
corresponding critical values by passing through the chosen base point is a
matching path. More generally, matching paths arise whenever an arbitrary
sequence of Hurwitz moves leads to a factorization in which a same Dehn
twist is repeated twice.

A matching path gives rise to an embedded Lagrangian sphere in X (up
to isotopy), obtained by joining together the two thimbles formed by parallel
transport of the vanishing cycles along the arcs γ([0, 1

2
]) and γ([1

2
, 1]); see

Section 9b of [22]. Conversely, as observed by Donaldson, any Lagrangian
sphere can be obtained (up to isotopy) from a matching path in a Lefschetz
pencil of sufficiently high degree (see [5] for a proof).

Matching paths can be viewed as specific elements (“figure 8 loops”) in
the kernel of the monodromy morphism ψ : π1(D \ crit(f)) → Mapg,n asso-
ciated to the Lefschetz pencil, or as specific pairs (γ+, γ−) of conjugates of
generators of π1(D \ crit(f)) for which the monodromies coincide.

In the case of the canonical pencil f̃2 on X2, whose monodromy has been
described in Theorem 3.2, there are obvious matching paths arising from the
repeated factors τ̄i, and slightly less obvious matching paths arising from the
fact that the conjugate of τ̄i by τ̄i+1 equals the conjugate of τ̄i+1 by τ̄−1

i .
The Lagrangian spheres arising from these matching paths are well un-

derstood, and correspond to the algebraic vanishing cycles mentioned in
Remark 2.12, spanning the orthogonal complement to Λ2 = π∗2H

2(F6) in
the second homology group of X2. While it is generally expected that X2

contains no “exotic” Lagrangian spheres (representing homology classes that
are not orthogonal to Λ2), the calculations in Section 6 give an indication

of how one might start looking for unexpected matching paths in f̃2.
For example, since the Dehn twist φ belongs to the subgroup generated

by the ζi,j , δ
±
i , and τ̄i, one could try to use the observation that ζi,j coin-

cides with the conjugate of ξi,j by (τ̄1τ̄2τ̄3τ̄4φ)6 as a starting point to build
a matching path. Various other tricks of a similar nature come to mind (all
using the Dehn twist φ to build unexpected relations among monodromy
factors). However, our first naive attempts in this direction have all led
to paths that are only immersed rather than embedded, and hence to im-
mersed (rather than embedded) Lagrangian spheres. The existence of such
immersed spheres is not very surprising if one remembers that Gromov’s
h-principle applies to Lagrangian immersions. In fact, the difference be-
tween immersed and embedded objects is a recurring theme in 4-manifold
topology, and it is interesting to see it appear in this situation.

Similar considerations come up when investigating matching paths in the
canonical pencil f̃1 on X1. In both cases, this suggests the following direc-
tions for further study:
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Question 8.2.

• Can one refine the naive approach discussed above in order to exhibit
embedded “exotic” matching paths and Lagrangian spheres in Xi?

• If not, what is a good way to algebraize the distinction between “embed-
ded” and “immersed” relations among Dehn twists in a mapping class
group factorization?
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