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Motivations

WCF and MS

In 2004 in a joint work with Maxim Kontsevich we introduced
wall-crossing formulas (WCF) for constructing Calabi-Yau mirror duals in
SYZ approach to Mirror Symmetry. The base B of SYZ torus fibration is
divided into pieces by codim 1 walls which parametrize torus fibers
containing boundaries of pseudo-holomorphic discs. Generic points of the
walls are endowed with elements of certain pronilpotent groups. Those
group elements depend on the moduli spaces of discs. Then WCF is a
compatibility condition which says that the product of the group elements
along a generic small closed loop is id .
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Motivations

WCF and DT-invariants

Similar WCFs occur in our 2008 paper on Donaldson-Thomas invariants.
In that case B ⊂ Stab(C), where C is a 3CY category. Point b ∈ B
belongs to a wall if the corresponding central charge Zb maps a sublatice
of rank 2 in K0(C) into a straight line. Group elements assigned to generic
points of the walls are defined in terms of DT-invariants of C associated
with the stability condition b. They are virtual numbers of semistable
objects.
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Motivations

In 2008 paper arXiv: 0811.2435 we proposed that DT-invariants encode a
geometric object which is a (formal) Poisson manifold. And moreover they
can be reconstructed from this Poisson manifold.

Thus we have two stories which are similar: in both cases (DT and MS)
we would like to construct a Poisson (maybe symplectic) manifold using
WCFs. And the “input” geometry is similar: affine (or even linear)
manifold divided into pieces by real codimension 1 walls, which are
endowed with group elements or more generally, group-valued
piecewise-linear functions.
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Motivations

There are many other situations (besides of DT-theory of 3CY categories
and MS) where WCF appear. E.g.:
1) Physics:
a) N = 2, d = 4 gauge theories;
b) Supersymmetric black holes in supergravity.
2) Mathematics:
a) Complex integrable systems of Hitchin type;
b) Resurgence of WKB approximations of differential equations with small
parameter;
c) Counting of geodesics of quadratic differentials on curves;
d) Deformation theory of a wheel of projective lines in a Poisson manifold
(related to clusters);
and many others...
In a joint work with M.K. (will appear soon) we suggested that in all
examples there is an underlying mathematical structure, which we call
Wall-Crossing Structure (WCS).
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Motivations

Aim of the talk: discuss the generalities of WCS as well as
mathematical questions arising in the course of its construction in
DT-theory, complex integrable systems, Calabi-Yau 3-folds,
deformation theory of the wheel of projective lines.

Mirror Symmetry case is slightly different. If time permits, I am going to
discuss the corresponding analog of WCS.
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Generalities on WCS WCS in a vector space: nilpotent case

Set up in the nilpotent case

Γ denotes a fixed finitely-generated free abelian group, i.e. Γ ' Zk for
some k ∈ Z≥0. The associated real vector space is ΓR := Γ⊗ R. We
will denote by g a fixed Γ-graded Lie algebra over Q,

g =
⊕
γ∈Γ

gγ .

Let us assume that the set

Supp g := {γ ∈ Γ | gγ 6= 0} ⊂ Γ

is finite and is contained in an open half-space in ΓR. In particular, all
elements of Supp g are non-zero, i.e. g0 = 0. Under our assumption
the Lie algebra g is nilpotent. Let us denote by G the corresponding
nilpotent group. The exponential map exp : g→ G is a bijection of
sets.
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Generalities on WCS WCS in a vector space: nilpotent case

Walls

The finite union of hyperplanes γ⊥ ⊂ Γ∗R (“wall associated with γ”) we
will denote by Wallg. Its complement has a finite number of connected
components which are open convex domains in Γ∗R. These components are
exactly open strata in the natural stratification of Γ∗R associated with the
finite collection of hyperplanes

(
γ⊥
)
γ∈Supp g

. Notice that different

elements γ ∈ Supp(g) can give the same hyperplane,

γ⊥1 = γ⊥2 ⇐⇒ γ1 ‖ γ2.
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Generalities on WCS WCS in a vector space: nilpotent case

Definition

A (global) wall-crossing structure (I abbreviate it as (global) WCS for
short) for g is an assignment

(y1, y2)→ gy1,y2 ∈ G

for any y1, y2 ∈ Γ∗R −Wallg which is locally constant in y1, y2, satisfies the
cocycle condition

gy1,y2 · gy2,y3 = gy1,y3 ∀y2, y2, y3 ∈ Γ∗R −Wallg

and such that in the case when the straight interval connecting y1 and y2

intersects only one of hyperplanes γ⊥ then

log(gy1,y2) ∈
⊕
γ′:γ′‖γ

gγ′ .
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Generalities on WCS WCS as a sheaf

WCS as a group element

Notice that the complement Γ∗R −Wallg contains two distinguished
components U+,U− (which are different iff g 6= 0) consisting of points
y ∈ Γ∗R such that y(γ) > 0 (resp. y(γ) < 0) for all γ ∈ Supp g. Hence
with any global WCS σ = (gy1,y2) we can associate an element

g+,− := gy+,y− ∈ G , y± ∈ U±.

One can prove that the map σ 7→ g+,− provides a bijection between the
set of wall-crossing structures and G (considered as a set).
For any point y ∈ Γ∗R we have a decomposition of g (considered as a
vector space) into the direct sum of three vector spaces

g = g
(y)
− ⊕ g

(y)
0 ⊕ g

(y)
+

corresponding to components gγ such that y(γ) ∈ R is negative, zero or
positive respectively.
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Generalities on WCS WCS as a sheaf

Factorization into a product of three and the sheaf

We denote by G
(y)
− ,G

(y)
0 ,G

(y)
+ the corresponding nilpotent subgroups of

G . Then it is easy to see that the multiplication map

G
(y)
− × G

(y)
0 × G

(y)
+ → G , (g−, g0, g+) 7→ g− · g0 · g+

is a bijection. Hence any element g ∈ G can be uniquely decomposed as
the product

g = g
(y)
− g

(y)
0 g

(y)
+ .

We denote by πy : G → G
(y)
0 = G

(y)
− \G/G

(y)
+ the canonical projection to

the double coset. In the above notation we have πy (g) = g
(y)
0 .

Claim: There exists a sheaf of sets on Γ∗R with the stalk over y ∈ Γ∗R given

by G
(y)
0 . It is called the sheaf of wall-crossing structures and is denoted

by WCSg.
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Generalities on WCS Pronilpotent case

Cones in the pronilpotent case

Since typically there are infinitely many walls, we need to generalize the
above story.
Let g = ⊕γ∈Γgγ be a graded Lie algebra. We do not impose any
restrictions on Supp(g).
In order to define WCS in this case we fix a convex cone C ⊂ ΓR := Γ⊗ R
such that the closure of C does not contain a line (strict cone). Yet
another equivalent condition: there exists φ ∈ Γ∗R such that the restriction
of φ to the cone C is a proper map to R≥0.
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Generalities on WCS Pronilpotent case

In this case we define a pronilpotent Lie algebra gC as an infinite product

gC :=
∏

γ∈C∩Γ−{0}

gγ

and denote by GC the corresponding pronilpotent group. The exponential
map identifies gC and GC .
Lie algebra gC is the projective limit of nilpotent Lie algebras

g
(k)
C ,φ = ⊕γ∈C∩Γ−{0},φ(γ)≤kgγ = gC/m

(k)
C ,φ,

where
m

(k)
C ,φ = ⊕γ∈C∩Γ,φ(γ)>kgγ

is the Lie ideal in gC , and φ ∈ Γ∗R is the above “cutting” function.
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Generalities on WCS Pronilpotent case

Definition of WCS in pronilpotent case

Then the sheaf of sets WCSgC is defined as the projective limit of the
sheaves WCS

g
(k)
Cφ

. One can show that for any open convex subset U ∈ Γ∗R

the set of sections WCSgC (U) admits the following description:
a) For any y1, y2 ∈ U which do not belong to (∪γ∈C∩(Γ−{0})γ

⊥) ∩ U we
are given an element gy1,y2 ∈ GC satisfying the cocycle condition.

b) The projections of these elements to G
(k)
C ,φ(U) satisfy the second

condition from the definition of WCS in the nilpotent case (see p.10).
Finally, we generalize this definition by allowing the cone C ⊂ ΓR to
depend on the point y ∈ Γ∗R.
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Generalities on WCS WCS in general

WCS on a topological space

Now we can treat WCS in a vector space as a local model and define WCS
in general. For that we need:
1) A Hausdorff locally connected topological space M (then we will speak
about WCS on M).
2) A local system of finitely-generated free abelian groups of finite rank
π : Γ→ M.
3) A local system of Γ-graded Lie algebras g = ⊕γ∈Γgγ → M over the field

Q.
4) A homomorphism of sheaves of abelian groups Y : Γ→ ContM , where
ContM is the sheaf of real-valued continuous functions on M.
Equivalently we can interpret Y locally as a continuous map from a
domain in M to Γ∗R. Then we define the pull-back sheaf
WCSg,Y := Y ∗(WCSg), where WCSg is the sheaf of sets on Γ∗R
constructed in the case of vector spaces.
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Generalities on WCS WCS in general

Definition

A (global) wall-crossing structure on M is a global section of WCSg,Y .
The support of WCS σ is a closed subset of tot(Γ⊗ R) whose fiber over
any point m ∈ M is described such as follows: it is a strict convex closed
cone Suppm,σ ⊂ Γm ⊗ R equals to the support of the germ of WCSg,m at
the point Y (m) ∈ Γ∗m ⊗ R associated with the section σ.

This definition makes obvious the functoriality of the notion of WCS with
respect to pullbacks.
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Generalities on WCS Examples of WCS

Examples of WCS

1) Let us fix a free abelian group of finite rank Γ together with a Γ-graded
Lie algebra g = ⊕γ∈Γgγ and a homomorphism of abelian groups
Z : Γ→ C (central charge). Then we take M = R/2πZ, and define on M
constant local systems with fibers Γ and g. We set Yθ(γ) = Im(e−iθZ (γ)),
where θ ∈ R. Then a WCS associated with this choice is the same as
stability data on g in the sense of our paper arXiv: 0811.2435.
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Generalities on WCS Examples of WCS

2) Assume that Γ is endowed with an integer skew-symmetric form 〈•, •〉.
Let us fix central charge Z and set g = ⊕γ∈ΓQ · eγ , where

[eγ1 , eγ2 ] = (−1)〈γ1,γ2〉〈γ1, γ2〉eγ1+γ2 .

We will call it the torus Lie algebra. Previous example can be specified to
this case. Then the WCS is the same as the collection of numbers
ΩZ (γ) ∈ Z (numerical DT-invariants) satisfying our wall-crossing formulas
from 0811.2435 (physicists call them KSWCF).

3) The quantum version of the previous example deals with the Lie algebra
g = ⊕γ∈ΓQ(q1/2) · êγ where

[êγ1 , êγ2 ] =
q〈γ1,γ2〉/2 − q−〈γ1,γ2〉/2

q1/2 − q−1/2
êγ1+γ2 .

Here êγ =
êquantγ

q1/2−q−1/2 are the normalized generators of the quantum torus

êquantγ1 êquantγ2 = q〈γ1,γ2〉/2êquantγ1+γ2
. We will call it the quantum torus Lie

algebra. The corresponding polynomials ΩZ (q±1/2, γ) ∈ Z[q±1/2] are
called quantum DT-invariants.
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Generalities on WCS Attractor flow and initial data

Local picture for WCS: reminder

Recall that locally the WCS is described by a lattice Γ endowed with a
skew-symmetric integer form 〈•, •〉 :

∧2 Γ→ Z and Γ-graded Lie algebra
g = ⊕γ∈Γgγ . We impose the condition that if 〈γ1, γ2〉 = 0 then the
corresponding graded components commute. One has

g = gΓ0 ⊕ gΓ−Γ0

where Γ0 is the kernel of the skew-symmetric form. The corresponding Lie
subalgebra gΓ0 is central, and it has a complement, which we denoted
gΓ−Γ0 .
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Generalities on WCS Attractor flow and initial data

Attractor flow

Observe that Γ∗R is a Poisson manifold foliated by symplectic leaves parallel
to the image i(ΓR), where i : ΓR → Γ∗R is defined by the skew-symmetric
form. Then in the “global” picture of WCS we will have a Poisson
manifold B0 foliated by symplectic leaves, such that locally the picture
looks as in the case of vector spaces. We define attractor flow on the
subspace of the total space of the local system Γ⊗ R→ B0 given by the
set of pairs (b, v), v ∈ B0, v ∈ Γb ⊗ R such that Y (b)(v) = 0 (here Y is
the map from the definition of WCS). Namely, in the local model the flow
is defined such as follows:

ḃ = i(v), v̇ = 0.

It preserves symplectic leaves and it induces the attractor flow on the
subset consisting of (b, γ) where γ ∈ Γb (“integer subset”).
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Generalities on WCS Attractor flow and initial data

Tail set

By definition WCS gives rise to a piecewise constant maps a from the
above-mentioned integer subset of tot(Γ), so (b, γ) 7→ ab(γ) ∈ g

b,γ
. The

discontinuity set of the function a consists of pairs (b, γ) such that γ splits
into a sum γ = γ1 + γ2, where summands are not skew-orthogonal to each
other. The attractor flow is transversal to this discontinuity set.
Suppose now that we have a closed subset C + in tot(ΓR) such that fibers
of its projection to B0 are strict convex cones and which is preserved under
the “negative” attractor flow ḃ = −i(v), v̇ = 0.
Then we can define the tail set as the set of such pairs (b, γ) from the
interior of C + that their trajectories under the attractor flow stays in C +

for all t > 0 for which they are defined, and they do not intersect the
discontinuity sets of the function a. Typically the restriction of the local
system of Lie algebras to the tail set is a local system of rank one.
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Generalities on WCS Attractor flow and initial data

Initial data for WCS

The initial data of WCS bounded by C + is defined by the restriction of the
function a to the tail set. Then initial data gives rise to a local system of
(typically) commutative Lie algebras. In the paper we propose some
assumptions which should guarantee that there is a unique WCS with
given initial data. The algorithm of this reconstruction is presented in our
paper. Roughly, one consider attractor trees on B0 (i.e. trees with edges
being attractor flow trajectories, and tail edges come from the tail set)
with fixed root b ∈ B0 and velocity of root edge γ, and apply WCF while
moving from the set of tail vertices to b ∈ B0. In this way we reconstruct
ab(γ). The construction is universal. We will see later how it works in the
case of complex integrable systems.
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WCS from complex integrable systems

C-integrable systems

Let (X 0, ω2,0) be a complex analytic symplectic manifold of complex
dimension 2n.1 Assume we are given an holomorphic map π : X 0 → B0

such that for any b ∈ B0 the fiber π−1(b) is a complex Lagrangian
submanifold of X 0, which is in fact a torsor over an abelian variety
endowed with a covariantly constant integer polarization. We will call such
data a (polarized) complex integrable system. One can generalize this
notion to semipolarized case (fibers are semiabelian varieties with polarized
quotients). From the point of view of variations of Hodge structure the
former corresponds to VPHS, while the later to VMHS. Important class of
examples : Hitchin systems without singularities and Hitchin systems with
singularities.

1Many of the results can be generalized to the case of smooth algebraic
varieties.
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WCS from complex integrable systems

C-integrable systems with central charge

Let b ∈ B0, γ ∈ Γb := H1(π−1(b),Z). Then the map b 7→
∫
γ ω

2,0 gives
rise to a closed 1-form αγ . If there exists a global section
Z ∈ Γ(B0, Γ∨ ⊗OB0) such that dbZ (γ) = αγ then Z is called central
charge of our integrable system. If system admits a central charge then
[ω2,0] = 0.
It is expected that Hitchin integrable systems have central charge.
Seiberg-Witten integrable systems have central charge. In the case of
Hitchin integrable systems without singularities we have polarized
integrable systems. If e.g. we have regular singularities, then conjugacy
classes of the Higgs field at singular points serve as parameters. Then we
have a semipolarized integrable system with central charge. Fixing residues
we arrive to a polarized integrable system without central charge.
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WCS from complex integrable systems

Pieces of WCS in case of semipolarized systems with
central charge

i) We have B0 which is locally mapped into a vector space Γ∗b,R via the
map Y = Im(Zb) (moreover, fixing real θ we can consider
Yθ = Im(e−iθZb)).
ii) The local system of lattices Γ carries a skew-symmetric form coming
from the semipolarized structure. It can be degenerate, so we have its
kernel Γ0 ⊂ Γ with the symplectic quotient.
iii) Assume that the monodromy of Γ0 is trivial. Then we have a vector
space Hom(Γ0,C), where Γ0 is a fixed fiber. We can treat B0 as a family
of Kähler manifolds B0

Z0
where Z0 ∈ Hom(Γ0,C) (for Hitchin system with

R.S. it corresponds to fixing residues at singularities). Each B0
Z0

is the base
of polarized integrable system without central charge.
iv) Attractor flow goes along leaves B0

Z0
and is given by gradient lines of

the central charge (there are some delicate issues here which we skip).
v) We have the sheaf of Lie algebras g→ B0 with fibers being torus Lie
algebras associated with Γ and the skew-symmetric pairing on it.
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WCS from complex integrable systems

Full integrable system and the discriminant

Next we are going to discuss the origin of the initial data.
Typically, a complex integrable system π : (X 0, ω2,0)→ B0 arises as an
open dense subset in the “full” complex integrable system
π : (X , ω2,0)→ B. In the latter case there can be degenerate fibers which
live over the discriminant set D := B −B0. This is a complex codimension
one analytic divisor. We will also assume that there exists an analytic
divisor D1 ⊂ D such that dim D1 ≤ dim B0 − 2, the complement
D0 := D − D1 is smooth, and such that our system together with the
central charge Z has the following local model near D0:
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WCS from complex integrable systems

A1-Singularity Assumption

1) There exist local coordinates (z1, .., zn,w1, ...,wm) near a point of D0

such that z1 is small and D0 = {z1 = 0}.
2) The map Z : B0 → C2n+m ' Γ∨ ⊗ C is a multi-valued map given in
coordinates by

(z1, ..., zn,w1, ...,wm) 7→ (z1, ..., zn, ∂1F0, ..., ∂nF0,w1, ...,wm),

where ∂i = ∂/∂zi , and F0 is given by the formula

F0 =
1

2πi

z2
1

2
log z1 + G (z1, .., zn,w1, ...,wm),

and G is a holomorphic function. The Poisson structure on C2n+m in the
standard coordinates (x1, ..., x2n+m) is given by the bivector∑

1≤i≤n ∂/∂xi ∧ ∂/∂xi+n.
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WCS from complex integrable systems

A1-Singularity Assumption-continuation

3) The function F0 (called prepotential) satisfies also a positivity condition
coming from the condition i〈dZ , dZ 〉 > 0, which is satisfied for the
restriction of dZ to symplectic leaves
Sc1,...,cm := {(z1, ..., zn,w1, ...,wm)|wi = ci}.
4) The monodromy of the local system Γ about D0 has the form
µ 7→ µ+ 〈µ, γ〉γ, where γ is such that the pairing 〈γ, •〉 ∈ Γ∨ is a
primitive covector.
We expect that the A1-singularity assumption holds in many realistic
examples, e.g. in the case of GL(r) Hitchin integrable systems with
singularities.

Yan Soibelman (based on the joint work with Maxim Kontsevich) (2008)Wall-crossing structures Miami, January 29, 2013 29 / 58



WCS from complex integrable systems

WCS in the case of semipolarized integrable systems

Let us describe a construction of the WCS. Initial data consists of
segments of trajectories of the gradient lines of the functions b 7→ |Zb(µ)|
which hit D0 (the velocity of the trajectory near D0 is determined by the
A1-singularity assumption) as well as the “tropical” DT invariant
Ω(b0, µ) = 1 associated with such a trajectory and its point b0 which is
sufficiently close to D0. Let us fix generic b ∈ B0, γ ∈ Γb. In order to
define WCS we need to assign to this pair the number Ω(b, γ) ∈ Z and a
strict convex cone C +

b ⊂ TbB0. I skip the construction of the cone. The
“tropical DT-invariant” Ω(b, γ) is defined by induction. We consider all
attractor trees (=gradient trees for |Zb′(ν)|, ν ∈ Γb′) which have b as a
root, γ as a root edge (which is straight in the affine structure given by
Yθ = Im(e−iθZ ), θ = Arg(Zb(γ))) and the tail edges hitting D0, as we
have just discussed. It is expected that the number of such trees is finite.
Then for every such tree we move from the tail vertices which belong to
D0 toward the root b applying WCF at each internal vertex P. This gives
by induction Ω(b, γ) and hence WCS on B0.
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WCS from complex integrable systems

Reminder: wall-crossing formulas

←−∏
T

Ω(P,γout)
γout =

−→∏
T

Ω(P,γin)

γ in
,

where P is a vertex of the tree and T
Ω(P,ν)
ν : eµ 7→ (1− eν)Ω(P,ν)〈µ,ν〉eµ

are symplectomorphisms of the 2-dimensional symplectic subspace in the
tangent space at P corresponding to the edges of the tree outcoming (or
incoming) from P (here eµ is the generator of the torus Lie algebra) .
Since we know by induction the numbers Ω(P, γin) for outcoming edges,
we can calculate Ω(P, γout) from the wall-crossing formula and proceed
further toward b. Finally, it gives us the desired tropical DT-invariant
Ωtrop(b, γ) := Ω(b, γ).
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WCS from non-compact Calabi-Yau 3-folds and Hitchin systems

Calabi-Yau 3-folds and Hitchin systems

In our paper with M.K. we describe a “good” class of non-compact
Calabi-Yau 3-folds such that the (properly defined) moduli space of good
CY 3-folds serves as a base B0 of a semipolarized complex integrable
system. If b ∈ B0 then the fiber of the local system of lattices Γ is
Γb = H3(Xb,Z)/tors, where Xb is the corresponding 3-fold. One can keep
in mind a subclass of examples considered around 2005 by
Diaconescu-Donagi-Pantev. They realized all A− D − E Hitchin systems
in such a way using families of ALE spaces. The fiber over b ∈ B0 is the
intermediate Jacobian of Xb. In case of the GL(r) Hitchin system on a
curve C it is the Jacobian of the corresponding (smooth) spectral curve
S → C . Then Xb is a conic bundle over the cotangent bundle T ∗C with
the spectral curve Sb being the ramification divisor.
As we have seen before, we have the corresponding WCS on B0 (in fact on
S1
θ × B0 when we vary θ = Arg(Zb(γ))) which gives rise to the collection

of “tropical” DT-invariants Ω(b, γ) = Ωtrop(b, γ) defined in terms of
attractor trees.
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WCS from non-compact Calabi-Yau 3-folds and Hitchin systems

DT-invariants for non-compact CY 3-folds

On the other hand, under some conditions which I don’t have time to
discuss now, one can speak about Fukaya categories F(Xb) endowed with
a stability condition depending on b ∈ B0. The central charge is
Zb(γ) =

∫
γ Ω3,0

Xb
. The semistable objects are (properly defined) SLAGs on

Xb. Such category come with a t-structure generated by spherical stable
objects, and hence correspond to quivers with potentials. Thus we can
speak about “categorical” DT-invariants Ωcat(b, γ) (virtual number of
SLAGs). This story can be interpreted as a special case of WCS described
in our Example 2 (stability data on the torus Lie algebra). Varying the
point b we arrive to the WCS on B0 (or on the product of B0 with S1). It
is natural to expect that the WCS described in terms of Hitchin integrable
system is isomorphic to the one described in terms of the Fukaya
categories. In particular, we arrive to the following conjecture about
DT-invariants:
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WCS from non-compact Calabi-Yau 3-folds and Hitchin systems

Conjecture

After the natural embedding of the (universal covering) of the base B0 of
Hitchin integrable system into the space of stability conditions on the
Fukaya category of the corresponding non-compact Calabi-Yau 3-fold, we
have

Ωcat(b, γ) = Ωtrop(b, γ).

Last year I explained here how this conjecture can be justified in case when
the Fukaya category is generated by spherical objects with homology
classes given by the velocities of the attractor flow trajectories hitting D0

(collapsing spherical generators).
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WCS from compact Calabi-Yau 3-folds

Compact CY 3-folds

If X is a compact Calabi-Yau 3-fold then we have a complex integrable
system with central charge, but it is neither polarized nor semipolarized.
The base B0 = LX := L ⊂ H3(X ,C) is the moduli space of deformations
of the pair (complex structure on X , holomorphic volume form). The
central charge is the same as in the non-compact case: it is given by
periods of the holomorphic volume form Ω3,0

X . Then we can speak about

attractor flow (same as the gradient flow of the function Fγ(b) = |Zb(γ)|2
vol(X )2 ).

Moreover, because of the compactness of X it is easy to describe a family
of strict convex cones such that the velocities of the attractor trajectories
belong to the cones. Hence everything looks similar to what we did before
except of the one new feature: there exist local minima of the function
Fγ(b) inside of the moduli space of deformations MX ' L/C∗ . They are
called attractor points.
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WCS from compact Calabi-Yau 3-folds

Walls

Let us fix γ ∈ Γ. Then the corresponding wall is

Lγ = {(τ,Ω3,0
τ ) ∈ L|〈Im([Ω3,0

τ ]), γ〉 = 0, 〈Re([Ω3,0
τ ]), γ〉 > 0}.

As in the non-compact case, the function Im(Z ) endows L with an integral
affine structure. The attractor flow is given by straight lines in this affine
structure. The volume function is concave along attractor flow trajectories.
The γ-attractor points is described by a point Ω3,0 ∈ L such that
Im([Ω3,0]) = γ. Hence there are countably many attractor points, which
we did not have in the case of complex integrable systems (in particular
those which correspond to “good” non-compact CY 3-folds).
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WCS from compact Calabi-Yau 3-folds

Dynamics of gradient trajectories on MX and WCS

The function Fγ descends to a multivalued function on the universal
covering of the moduli space of complex structure MX . Attractor flow on
L projects into the gradient line of this function. Then the gradient
trajectory can either hit an (projection of) attractor point or hit the
boundary of the natural completion of MX (and reaches this boundary in
finite time). The boundary points are so-called conifold points. They
correspond to the discriminant D = B − B0 in our discussion of complex
integrable systems (there is also a possibility that the trajectory hits the
hypersurface Fγ = 0 but we are not going to discuss it here). Hence there
is an interesting dynamics of the gradient trajectories of Fγ on MX related
to these possibilities. From the point of view of WCS all that means that
the initial data for WCS are described by the tropical DT-invariants Ωtrop

which are equal to 1 at the smooth locus D0 ⊂ D (conifold points) and
are arbitrary integers at all attractor points. Thus we have a countably
many new parameters (values of DT-invariants at attractor points).
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Mirror Symmetry for complex integrable systems

Family of mirror duals in polarized case

Now we return to the WCS for complex integrable systems and review it
from the point of view of Mirror Symmetry.
Suppose we have a polarized integrable system π : (X , ω2,0)→ B endowed
with a holomorphic Lagrangian section s : B → X . Let us fix ζ ∈ C∗ and
take ωζ = Re(ζ−1ω2,0) as the real symplectic form on X . As the B-field
we take Bζ = Im(ζ−1ω2,0) + Bcan, where Bcan ∈ H2(X ,Z/2Z) is some
“canonical” B-field which takes care about some ± signs in the formulas.
Then (under some assumptions) we can construct mirror dual family
X∨ζ , ζ ∈ C∗ to the family of wrapped Fukaya categories using our approach
from 2004 (SYZ dualization combined with WCF). Each X∨ζ is a
holomorphic symplectic manifold.
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Mirror Symmetry for complex integrable systems

Semipolarized case

Let us ignore the parameter ζ for some time.
Suppose that we have a semipolarized system with central charge Z . Then
the skew-symmetric form on the homology of fibers has kernel Γ0. We
assume that this local system has trivial monodromy.
Then we have a holomorphic family of complex integrable systems
(XZ0 , ω

2,0
XZ0

)→ BZ0 parametrized by Z0 ∈ Hom(Γ0,C).

Using the same approach as in the polarized case we obtain a holomorphic
family of complex symplectic manifolds of mirror duals
X∨Z0

:= (XZ0 ,Re(ω2,0
XZ0

))∨ parametrized by Hom(Γ0,C). The total space of

this family will be denoted by X∨.
In our paper we offer some plausible arguments in favor of the conjecture
that it is a pull-back via the map exp : Hom(Γ0,C)→ Hom(Γ0,C∗) of the
algebraic family of smooth complex symplectic varieties
X∨,alg → Hom(Γ0,C∗).
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Mirror Symmetry for complex integrable systems

Family over C∗

So far we have been discussing semipolarized integrable systems with fixed
holomorphic symplectic form. Let us consider the C∗-family of
holomorphic symplectic forms ω2,0

ζ = ω2,0/ζ on X . Then the

corresponding mirror dual Poisson varieties X∨,algζ , ζ ∈ C∗ form a local
system of quasi-affine algebraic varieties over C∗.
Taking the fiber X∨,alg1 := X∨,algζ=1 we obtain a Poisson variety endowed with

a Poisson automorphism T : X∨,alg1 → X∨,alg1 , which is equal to id on the
algebra of central functions (the latter is isomorphic to O(Hom(Γ0,C∗))).
Similar automorphisms appear in the theory of cluster algebras (Coxeter
automorphisms).
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Mirror Symmetry for complex integrable systems

WCS from the point of view of Mirror Symmetry

In the case of semipolarized integrable systems with central charge and
holomorphic Lagrangian section we have Kähler metrics on the bases of
the corresponding polarized integrable systems. The edges of the gradient
trees of the function |Zb(γ)| are straight segments in the dual Z-affine
structure. In terms of the central charge, the dual affine structure for the
symplectic form Re(ω2,0/ζ), |ζ| = 1 is given by Yθ := Im(e−iθZ ) with
fixed restriction of Yθ to Γ0, where ζ = e iθ ∈ C∗.
The SYZ approach to Mirror Symmetry gives rise to an inductive
procedure of constructing walls and changes of coordinates, starting with
certain data assigned to generic points of the discriminant B − B0.
Namely, for a point b ∈ B0 which is sufficiently close to a generic point of
the discriminant, one counts limiting pseudo-holomorphic discs whose
projection to the base is a short gradient segment connecting the point b
with a point of B − B0. This inductive procedure is a priori different from
the one with attractor trees.
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Mirror Symmetry for complex integrable systems

MS gives an alternative point of view on WCS

Nevertheless one can prove by induction (moving along the oriented
gradient tree from the discriminant to a given point) that the walls and
the changes of coordinates in Mirror Symmetry story coincide with those
in the attractor trees story. This can be thought of as an alternative
approach to the construction of WCS. For example, the initial data for
which Ω(γ) = 1 for A1-singularities correspond to the count of
pseudo-holomorphic discs in the standard A1-singularity model
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Mirror Symmetry for complex integrable systems

Family of mirror duals

Let us consider polarized case for simplicity.
Suppose we are given a complex integrable system π : (X , ω2,0)→ B
endowed with a holomorphic Lagrangian section s : B → X . We will
assume that the fibers of π are abelian varieties, but do not assume that
they are polarized. Let Γ→ B0 be the corresponding local system of
lattices over the complement to the discriminant. Suppose we are given a
class β ∈ H1(B0, Γ∨ ⊗ (R/2πZ)) which comes from the class
βX ∈ H2(X ,R/2πZ) which vanishes on s(B) and on fibers of π. Let us
consider the holomorphic family of the Fukaya categories
F(X ,Re(ω2,0/ζ),B = Im(ω2,0/ζ) + βX ). Then mirror duals X∨ζ , ζ ∈ C∗

form a holomorphic family of algebraic varieties over C (which are
symplectic and also expected to be defined over Z in the polarized case).
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Mirror Symmetry for complex integrable systems

Dual integrable systems

Definition

Dual integrable system is a complex integrable system Y → B such that
its restriction to B0 is obtained by:
a) taking dual abelian varieties to fibers of π;
b) replacing a) by the torsor corresponding to β.

Notice that there is a holomorphic Lagrangian section B0 → Y of the dual
integrable system. Let us assume that it extends to the section B → Y .

Conjecture

The above family X∨ζ of mirror duals extends to ζ = 0 holomorphically in
such a way that the fiber at ζ = 0 is isomorphic to the dual integrable
system.

There is a similar story (and an analogous conjecture) in the semipolarized
case.
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Mirror Symmetry for complex integrable systems

Skeleta and Hitchin systems

Two conjectures below are formulated for simplicity in the polarized case.
There are versions of them in the case of semipolarized integrable systems
with central charge and holomorphic Lagrangian section. In the second
conjecture we use the notion of skeleton of a log Calabi-Yau. This notion
is similar to the notion of the skeleton of maximally degenerate CY
introduced in our 2004 paper. It is a ZPL-space, which can be defined in
terms of the CW complexes associated with divisors of s.n.c.
compactifications on which the holomorphic volume form has poles of
order 1. In the case of e.g. SL(2) Hitchin system such a compactification
is related to the Stokes phenomenon for the corresponding ζ-connection.
We conjecture that in general the Betti realization of the Hitchin
integrable system is isomorphic to the mirror dual X∨ζ , ζ ∈ C∗ of the
(ζ-rescaled) Dolbeault realization. These spaces are expected to be log
CYs with some nice properties (which I don’t have time to discuss).
Moreover, the corresponding skeleta should be isomorphic to the bases of
those Hitchin integrable systems.
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Mirror Symmetry for complex integrable systems

Conjectures about extension at ζ = 0

Conjecture

Let us fix a point b ∈ B0 in the base of a complex integrable system
π : X 0 → B0 with abelian fibres endowed with a complex Lagrangian
section B0 → X 0. Let us fix a point e iθ ∈ S1 such that the pair (e iθ, b)
does not belong to the wall in M = S1 × B0. Then the constant family of
complex symplectic manifolds X∨

te iθ
over an open ray lθ = R>0e iθ can be

extended to a C∞ family over the closed ray R≥0e iθ in such a way that
the fiber at t = 0 is a real integrable system over Skθ. Here Skθ is the
skeleton of (X 0)∨

e iθ
.

Conjecture

For any e iθ ∈ S1 the corresponding Skθ is ZPL-manifold isomorphic to B
which is endowed with the affine structure derived from the symplectic
form Re(e−iθω2,0) on X 0.
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Analog of WCS in Mirror Symmetry

MS story: volume preserving transformations

In the case of SYZ picture of Mirror Symmetry the construction of mirror
dual involves transformations which locally preserve the volume form rather
than a Poisson structure. In this case g is the Lie algebra of divergence free
vector fields on Hom(Γ,C∗) and there is no distinguished skew-symmetric
form on Γ. The lattice Γ is Γb, the first homology group of a fiber of a real
integrable system at a given point b ∈ B0. Differently from the case of
symplectomorphisms when the dimension of the graded component is
equal to 1, we now have dim gγ = n − 1, where n = rk Γ for γ 6= 0.
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Analog of WCS in Mirror Symmetry

Explicit formulas for the Lie bracket

Explicitly, the Lie algebra of vector fields on the algebraic torus
Hom(Γ,C∗) is spanned by elements xγ∂µ where γ ∈ Γ, µ ∈ Γ∨ satisfying
the linear relations

xγ∂µ1 + xγ∂µ2 = xγ∂µ1+µ2 .

Derivation ∂µ is a constant vector field in logarithmic coordinates. The
commutator rule is given by

[xγ1∂µ1 , x
γ2∂µ2 ] = xγ1+γ2

(
(µ1, γ2)∂µ2 − (µ2, γ1)∂µ1

)
.

The subalgebra g of divergence-free vector fields is spanned by elements
xγ∂µ with (µ, γ) = 0. It is obviously graded by lattice Γ. Similarly to the
symplectic (and also Poisson) case, the graded complement to g0 is a Lie
subalgebra g′ = ⊕γ 6=0gγ in g (notice that an analogous property does not
hold for the Lie algebra of all vector fields).
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Analog of WCS in Mirror Symmetry

Pair of lattices

One can generalize the above considerations to the following situation.
Suppose we are given two lattices Γ1, Γ2 and an integer pairing between
them (•, •) : Γ2 ⊗ Γ1 → Z. We do not assume that the pairing is
non-degenerate. We denote by Γ1,0 ⊂ Γ1 and Γ2,0 ⊂ Γ2 the corresponding
kernels.
Then we consider the Lie algebra g := gΓ1,Γ2,(•,•) spanned by elements
xγ∂µ where γ ∈ Γ1 and µ ∈ Γ2 such that (µ, γ) = 0, satisfying the same
relations as above. It contains the Lie subalgebra

g′ := ⊕γ∈Γ1−Γ1,0gγ .

The previous special case corresponds to Γ1 = Γ, Γ2 = Γ∨. In general, g
can be thought as the Lie algebra of divergence-free vector fields on a
torus, preserving a collection of coordinates and commuting with a
subtorus action.
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Analog of WCS in Mirror Symmetry

Analog of WCS in a vector space-1

Now we are ready to describe the analog of a WCS for Lie algebra g′.
The main difference with the previous is that now walls are hyperplanes in
Γ∗2,R := Γ∨2 ⊗ R (and not in the dual space to the grading lattice Γ1). We

define a wall as a hyperplane in Γ∗2,R given by µ⊥, where µ ∈ Γ2 − Γ2,0

(one may assume that µ is primitive). With any wall H ⊂ Γ∗2,R we
associate a graded Lie subalgebra

gH :=
⊕
γ∈Γ1

gH,γ ⊂ g′

spanned by xγ∂µ such that (µ, γ) = 0 and γ ∈ Γ1− Γ1,0. As in the Poisson
case, this Lie algebra is abelian. It is convenient to associate with any γ as
above a nonzero constant vector field on the hyperplane H equal to
ι(γ) := (•, γ) ∈ Γ∨2 ⊂ Γ∗2,R. In SYZ picture the trajectories of this vector
field are (possible) parts of tropical trees corresponding to analytic discs
with the boundary on a small Lagrangian torus, the fiber of SYZ fibration.
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Analog of WCS in Mirror Symmetry

Analog of WCS in a vector space-2

Also with any Q-vector subspace V ⊂ Γ∗2,R which is the intersection of two
walls we associate a graded Lie algebra gV (which is a not a subalgebra of
g′) such as follows. As a Γ1-graded vector space gV will be equal to the
direct sum ⊕H⊃V gH over all walls containing V . The Lie bracket on gV is
defined as follows. Let (xγ∂µ)H where γ ∈ Γ1 − Γ1,0, µ ∈ Γ2 − Γ2,0 denotes
the element xγ∂µ ∈ gH considered as an element of gH ⊂ gV , where
H = µ⊥ is a wall containing V . Then we define the Lie bracket by the
formula:

[(xγ1∂µ1)H1 , (xγ2∂µ2)H2 ] = (xγ3∂µ3)H3 ,

in case if Hi = µ⊥i , i = 1, 2, 3, γ3 = γ1 + γ2, µ3 = (µ1, γ2)µ2 − (µ2, γ1)µ1

and µ3 /∈ Γ2,0. Otherwise. i.e. if µ3 ∈ Γ2,0 (and as one can easily see
µ3 = 0) we define the commutator to be equal to zero.
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Analog of WCS in Mirror Symmetry

Analog of WCS in a vector space-3

The we consider the pronilpotent case by choosing a strict convex cone
C ⊂ Γ1 ⊗ R, and working with gC :=

∏
γ∈Γ∩C−Γ1,0

gγ . Then for a given
functional φ : Γ1 → Z which is nonnegative and proper on the closure of
C , we consider finite-dimensional nilpotent quotients

g
(k)
C ,φ = ⊕γ∈Γ1−Γ1,0|φ(γ)≤kgC ,γ = gC/m

(k)
C ,φ

where m
(k)
C ,φ :=

∏
γ∈Γ1−Γ1,0:φ(γ)>k gC ,γ is an ideal in gC .

Similarly we define the Lie algebras g
(k)
H,C ,φ. and g

(k)
V ,C ,φ.

Let us fix finitely many walls Hi , i ∈ I . We define the set

WCSk({Hi}i∈I ,C , φ) of wall-crossing structures for g
(k)
C ,φ which are

supported on the union ∪i∈IHi in the following way. First we observe that
the walls Hi , i ∈ I give rise to the natural stratification of Γ∗2,R. Then an
element of WCSk({Hi}i∈I ,C , φ) is a map which associates an element gτ

of the group exp(g
(k)
Hi ,C ,φ

), i ∈ I , where τ ⊂ Hi is a co-oriented stratum of
codimension one in Γ∗2,R (notice that τ is an open subset of Hi ).
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Analog of WCS in Mirror Symmetry

Analog of WCS in a vector space-4

The only condition on this map says that for any generic closed loop
f : R/Z→ Γ∗2,R surrounding a codimension two stratum
ρ ⊂ V , codimRV = 2, the product of images of the corresponding

elements exp(gτti ) in exp(g
(k)
V ,C ,φ) over the finite sequence of intersection

points f (ti ) of the loop with walls Hi is equal to the identity.
Now we take the inductive limit of the sets WCSk({Hi}i∈I ,C , φ) over all
finite collections {Hi}i∈I of walls and after that we take the projective
limit over k. The resulting set WCSg,C is our analog of WCS relevant to
the Mirror Symmetry.
There is an analog of the initial data for WCS in this framework. I skip
this discussion.
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Analog of WCS in Mirror Symmetry

Analog of WCS associated with SYZ approach to MS-1

I summarize main points.
1) In 2000 we proposed two main approaches to MS: via Gromov-Hausdorff
collapse and via non-archimedean geometry. In the first one we have a
maximally degenerate family Xt , t → 0 of complex CY manifolds.
Conjecturally (true for abelian varieties, checked by Gross-Wilson for K3)
Xt converges in GH sense to the base B of a real integrable system, which
carries on a dense open subset B0 ⊂ B a Z-affine structure and a
Riemannian metric which satisfies real Monge-Ampère equation. For any
point b ∈ B0 we can define the lattice Γ1,b := H2(Xt , π

−1
t (b),Z) (the

latter stabilizes as t → 0 along a ray). This family of lattice gives rise to a
local system Γ1 → B0. It can be extended to a local system on S1

t × B0.
We conjectured (and assume here) that codim(B − B0) ≥ 2. Moreover we
assume that the affine structure has Ak singularity.
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Analog of WCS in Mirror Symmetry

Analog of WCS associated with SYZ approach to MS-2

There is a natural projection p : Γ1 → TZ, where TZ := TZ
B0 ⊂ TB0 is the

locally covariant lattice which defines the Z-affine structure on B0.
Denoting Γ1,0 = Ker(p) we obtain an exact sequence of lattices

0→ Γ1,0 → Γ1 → TZ.

One can derive a similar geometry from non-archimedean approach as well.
In what follows we will assume that the local system Γ1,0 is trivial (this
condition is automatically satisfied in most of examples).
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Analog of WCS in Mirror Symmetry

Analog of WCS associated with SYZ approach to MS-3

Then everything looks very similar to the case of complex integrable
systems, but there are some important issues which are handled differently.
In particular, there is a notion of non-negative (1, 1)-currents on B. It can
be thought of as a limit of Kähler metrics on Xt or spelled entirely in
non-archimedean terms (work of Boucksom-Favre-Jonson). Using this
notion we formulate conditions which are sufficient for the existence of
cones Cb, b ∈ B0 where the velocities of the gradient trajectories live (the
latter correspond to attractor trajectories and come from limits of of
pseudo-holomorphic discs). Furthermore considering non-negative currents
which are GH-limits of ample effective divisors St ⊂ Xt we can ensure the
finiteness of the number of gradient trees on B with the fixed generic root
b ∈ B0 and fixed direction γ of the root edge. Such currents (“tropical
effective divisors”) are related to “slabs” in the Gross-Siebert story (which
produces in the “toric” framework a WCS in the above sense).
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Analog of WCS in Mirror Symmetry

Having a WCS in this sense we use the same machinery as in the case of
complex integrable systems and obtain a CY manifold over a
non-archimedean field C((t)).
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Summary

Summary

We have discussed the notion of WCS in the framework of DT-theory,
complex integral system with central charge and MS. Most of what I have
said is based on non-trivial geometric assumptions, which we can check in
some special cases (or present plausible arguments in favor of them like
e.g. existence of the well-defined count of SLAGs on our non-compact CY
3-folds). Besides of the obvious open problems of proving those
assumptions, there are some other interesting questions, e.g. the
relationship with quantized complex integrable systems (e.g. with work of
Nekrasov-Shatashvili) or the relationship with cluster varieties. And many
others...
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