
Math 253y – Homework 3 – due Thursday November 29, 2018.

Turn in: as much as you are able to complete within a reasonable amount of time.

Homework policy: if you are taking this course for a grade, you are expected to submit
your own work. You are welcome to collaborate with other students, and you are encouraged
to consult with the instructor or with the CA, or to look up references as needed, but you are
expected to write up your own arguments and cite your sources. It is ok for your answer to
follow the outline of an argument found in a textbook or on Math Overflow if you attribute
the original source; it is not ok to copy someone else’s proof verbatim without attribution.

1. The goal of this problem is to prove Gromov’s nonsqueezing theorem: if the closed ball
B(r) of radius r in (R2n, ω0) admits a symplectic embedding into the cylinder (D2×R2n−2, ω0)
(where D2 ⊂ R2 is the closed unit disc), then r ≤ 1.

a) (Gromov’s monotonicity lemma) Let C be a holomorphic curve in R2n equipped with
its standard complex structure J0, and whose boundary lies outside of the ball B(r0). Assume
that the origin lies on C and is a smooth point of C. For r ∈ (0, r0), denote by A(r) the
symplectic area of C ∩ B(r); and when C intersects the sphere S(r) = ∂B(r) transversely,
denote by L(r) the length of the curve γ(r) = C ∩ S(r). By considering the 1-form λ =
1
2

∑

xidyi − yidxi and its integral over γ(r), show that

dA

dr
≥ L(r) ≥

2A(r)

r

for almost every r, and deduce that A(r) ≥ πr2.

b) Consider M = (S2)n, equipped with a product symplectic form ωN where the first
factor has area π and the other factors have area Nπ, where N ≥ 1 is an integer. By
first considering the case of the standard product complex structure, show that for any ωN -
compatible almost complex structure J and any point p ∈ M , there exists a J-holomorphic
sphere passing through p and representing the homology class of the first factor sphere,
A = [S2 × pt] ∈ H2(M,Z). (Where did you use the assumption that N is integer?)

c) Assume (B(r), ω0) admits a symplectic embedding into (D2 × R2n−2, ω0). First show
that for ε > 0 arbitrarily small and N sufficiently large, there is a symplectic embedding
ϕ : (B(r − ε), ω0) →֒ (M,ωN). Equip M with an ωN -compatible almost-complex structure
which agrees with ϕ∗(J0) over ϕ(B(r′)) (where r′ = r−2ε), and use the result of part (b) for
p = ϕ(0) together with the monotonicity lemma of part (a) to show that r′ < 1. (Why can
we remove the smoothness assumption from the monotonicity lemma?) Deduce that r ≤ 1.

2. Let M = {(x, y, z) ∈ C3 | xy = P (z)}, where P (z) =
∏k

i=1(z − λi) is a degree k
polynomial with distinct roots, equipped with the restriction of the standard symplectic
form of C3. Fix r 6= |λi|, and let L = {(x, y, z) ∈ M | |x| = |y| and |z| = r}.

a) Show that L is a Lagrangian torus in M , and that the Maslov index of a disc with
boundary on L is equal to twice its intersection number with D = {z = 0} ⊂ M . (Hint: one
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way to proceed is to show that Ω = (xz)−1dx ∧ dz = −(yz)−1dy ∧ dz is a well-defined holo-
morphic 2-form on M \D and induces a complex trivialization of ∧2TM which is compatible
with the real subbundle ∧2TL over L.)

b) Let f be a meromorphic function on the unit disc, such that |f | = 1 everywhere on
the unit circle, with zeros and poles at a finite subset {zi, 1 ≤ i ≤ ℓ} ⊂ D2 and with order
αi ∈ Z at each zi. Show that there exists a constant θ such that

f(z) = eiθ
ℓ
∏

i=1

(

z − zi
1− z̄iz

)αi

.

c) Returning to the setup of part (a), show that L does not bound any holomorphic
discs of Maslov index zero, and that there are 2ℓ holomorphic discs of Maslov index 2 with
boundary on L passing through any given point of L, where ℓ = #{i | |λi| < r} ∈ {0, . . . , k}.
(Hint: consider the quantities xy and x/y). Also show that these discs are regular.

d) Show that L is monotone, and that in a suitable basis of H1(L,Z) ≃ Z2 the disc-
counting superpotential

WL =
∑

β∈H2(M,L)
µ(β)=2

nβ z
∂β ∈ Z[H1(L)], (1)

where nβ is the degree of the evaluation map ev : M0,1(L, β) → L for holomorphic discs
with one boundary marked point, is given by

WL = z1(1 + z2)
ℓ.

Note: this shows that M contains at least k + 1 different types of monotone Lagrangian
tori. In the case k = 1, M is symplectomorphic to the standard R4, and these tori are
product and Chekanov tori. In the case k = 2, M is symplectomorphic to T ∗S2, and the tori
corresponding to ℓ = 2 are known as Albers-Frauenfelder tori.

3. Let L be a monotone Lagrangian torus in a monotone symplectic manifold (M2n, ω)
(compact or convex at infinity) (i.e. the symplectic area of discs in (M,L) is positively
proportional to their Maslov index). The goal of this problem is to give a criterion for the
(non)vanishing of the Floer cohomology of L (twisted by a local coefficient system).

Fix a compatible almost-complex structure J , and assume that for every class β ∈
π2(M,L) with 0 < µ(β) ≤ n + 1 the (compactified) moduli space M0,k+1(L, β) of J-
holomorphic discs representing the class β with k + 1 boundary marked points (labelled
0, . . . , k) is regular, and that the evaluation map ev0,β : M0,k+1(L, β) → L at the 0-th
marked point is a submersion with compact (oriented) fibers (with boundary and corners).

In the de Rham model, the Lagrangian Floer cochain complex of L twisted by a rank 1
local coefficient system ξ ∈ hom(π1(L),C

∗) ≃ H1(L,C∗) is given by

CF ∗(L, ξ) := Ω∗(L,C)⊗ C[t±1]
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(Laurent polynomials in a formal variable t with deg(t) = 2, whose coefficients are complex-
valued differential forms on L), and the Floer differential is defined by

∂α = dα +
∑

β 6=0

ξ(∂β) tµ(β)/2 (ev0,β)∗(ev
∗
1,βα),

involving evaluation maps from (compactified) moduli spaces of discs with two boundary
marked points, and where the pushforward is defined by integration along the fibers.1 (The
Floer products mk can be defined similarly using compactified moduli spaces of discs with
k + 1 marked points, though this requires regularity over a greater range of Maslov indices:
mk(αk, . . . , α1) =

∑

β ξ(∂β)t
µ(β)/2(ev0,β)∗

(

ev∗1,βα1 ∧ · · · ∧ ev∗k,βαk

)

, where the sum is over all
β, except when k = 0 where we disallow β = 0.)

We will admit without proof that ∂2 = 0 (optional: check this!); more generally, the
operations mk satisfy the A∞-relations.2

Meanwhile, the disc-counting superpotential WL ∈ Z[H1(L)] defined by (1) above can be
viewed as a complex-valued function of ξ ∈ H1(L,C∗), namely

WL(ξ) =
∑

µ(β)=2

nβ ξ(∂β) ∈ C,

where nβ = deg(ev0,β : M0,1(L, β) → L) ∈ Z. (Note that m0 = tWL(ξ) ∈ CF 2(L, ξ)). We
define the logarithmic derivative

∇WL =
∂WL

∂ log ξ
=

∑

µ(β)=2

nβ ξ(∂β) [∂β] ∈ H1(L,C).

(Optional: check that this is indeed the differential of WL as a complex-valued function of
log ξ ∈ H1(L,C)).

(a) Let α ∈ Ωk(L,C) be a closed k-form. Show that ∂α = tβ + O(t2), where β is a
closed (k − 1)-form, and [β] ∈ Hk−1(L,C) is obtained by interior product of [α] ∈ Hk(L,C)
with ∇WL ∈ H1(L,C). (Namely: let V = H1(L,C), since L ≃ T n, using cup-product we
have a canonical isomorphism Hk(L,C) ≃ ∧kH1(L,C) = ∧kV ∗, and the interior product
V ⊗ ∧kV ∗ → ∧k−1V ∗.) (Hint: for µ(β) = 2, what are the fibers of ev0,β?)

1Given a submersion p : X → Y with compact fibers of dimension d, a k-form α on X , given a point
y ∈ Y and vectors v1, . . . , vk−d ∈ TyY , by definition

(p∗α)y(v1, . . . , vk−d) =
∫

p−1(y) ιv#

k−d

. . . ι
v
#
1
α,

where v
#
i is any vector field along p−1(y) such that dp(v#i ) = vi everywhere. Stokes’ theorem implies that

d(f∗α) = f∗(dα) + (−1)deg f∗α(f|∂X)∗(α|∂X).
2This is basically a verification involving Stokes’ theorem, properties of pushforward by the evaluation

map, and the structure of the boundary strata of M0,k+1(L, β). See e.g. Proposition 2.5 in Solomon-
Tukachinsky’s preprint arXiv:1608.01304 (case l = 0 since we have no interior marked points).
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(b) Show that if ∇WL 6= 0 then every ∂-closed element of CF ∗(L, ξ) is ∂-exact, i.e.
HF ∗(L, ξ) = H∗(CF ∗(L, ξ), ∂) = 0. Hint: first show that the leading order term (with the
lowest power of t) of an element of Ker(∂) is closed, and that its cohomology class lies in the
image of interior product with ∇WL.

(c) Show that, when dimM = 2n ≤ 4, if ∇WL = 0 then HF ∗(L, ξ) ≃ H∗(L,C)⊗C[t±1].
(This in fact remains true in higher dimensions, using more sophisticated arguments.)

Corollary: if the Laurent polynomial WL (viewed as a function on H1(L,C∗) ≃ (C∗)n)
has a critical point, then L cannot be displaced from itself by a Hamiltonian isotopy (by
invariance of Floer homology).

Optional: use this to show that the Albers-Frauenfelder monotone torus in T ∗S2 (see
Problem 2) is non-displaceable. (The same holds for all the tori of Problem 2 with k ≥ ℓ ≥ 2.
What about the remaining cases ℓ = 0 and ℓ = 1 ?)

4. Let L be the equator in S2 equipped with its standard symplectic form. Calculate
the Floer cohomology HF ∗(L, L) and its product structure, using any reasonable approach.
Feel free to make any reasonable assumptions about orientations of moduli spaces. Is the
Floer cohomology isomorphic as a ring to the classical cohomology?

Possible approaches include, but are not limited to:

• using invariance under Hamiltonian isotopies (since L is monotone), we can consider
three different copies L0, L1, L2 of the equator, pairwise intersecting transversely in two
points. Look for holomorphic bigons and triangles with corners at given intersection
points to calculate the Floer differential on CF ∗(Li, Lj) and the Floer product on
CF ∗(L1, L2)⊗ CF ∗(L0, L1).
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• use the de Rham model of HF ∗(L) described in Problem 3. (with the trivial local
system ξ = 1).

• learn about the “pearly trees” model of Lagrangian Floer cohomology, for example see
Biran and Cornea’s paper “Lagrangian quantum homology” (arXiv:0808.3989), and
apply it to a Morse function on S1 with two critical points.

Optional: try more than one way and compare the calculations.

3Consistent signs can be determined using a rule due to Seidel [Section 13 of “Fukaya categories and
Picard-Lefschetz theory”]: fix orientations of the Lagrangians Li. Then the sign of a polygon can be taken
to be (−1)r, where r is the number of corners at which the corresponding Floer generator in CF ∗(Li, Lj) has
odd degree and the positive orientation of the boundary of the polygon disagrees with the chosen orientation
of Lj.
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