NOTES ON SINGULAR SUPPORT AND SPECTRAL GLUING

THE LANGLANDS SUPPORT GROUP

Contents

1. Overview

1

1. Overview

1.1. The naïve conjecture.

1.1.1. One goal of the number-theoretic Langlands theory is to attach Hecke eigenfunctions to Galois representations. Let us be given a global field F. We ask for the following association:

 $\begin{array}{ccc} \text{Galois representation } \sigma & \underset{\text{valued in } G}{\longrightarrow} & \begin{array}{c} \text{Hecke eigenfunctions} \\ & \text{on } \check{G}(\mathbb{A}) \end{array}$

where \check{G} is the Langlands dual group of G.

1.1.2. To phrase this problem in geometric language, we fix a ground field k, assumed algebraically closed of characteristic zero, and let X be a smooth, proper curve over k. The role of Galois representations will be played by points of the stack LocSys_G , and instead of functions on $\check{G}(\mathbb{A})$ we will study \mathcal{D} -modules on $\text{Bun}_{\check{G}}$.

Thus the above problem translates into an association:

 $\begin{array}{ccc} k\text{-points} & \underset{\sigma \in \operatorname{LocSys}_G}{\longrightarrow} & \operatorname{Hecke \ eigen-} \mathcal{D}\text{-modules} \\ \sigma \in \operatorname{LocSys}_G & \text{on } \operatorname{Bun}_{\check{G}} \end{array}$

Remark 1.1. Let us recall at this moment that LocSys_G is defined as the mapping stack $\underline{\text{Maps}}(X_{\text{dR}}, \text{B}G)$, where X_{dR} is the de Rham prestack associated to X. This object is a *derived* algebraic stack, as we will study in the later parts of the semester.

1.1.3. The above problem is asymmetric, in the sense that on one hand, we are studying k-points of a certain stack, while on the other hand we are concerned with objects of a DG category. To make the problem more symmetric, we propose:

Attempt 1.2. Perhaps $\operatorname{QCoh}(\operatorname{LocSys}_G) \xrightarrow{\sim} \mathcal{D}\text{-}\mathbf{Mod}(\operatorname{Bun}_{\check{G}})$?

Under this equivalence, what used to be the Hecke eigen- \mathcal{D} -module associated to $\sigma \in \text{LocSys}_G$ would now be the image of the skyscraper sheaf $k_{\sigma} \in \text{QCoh}(\text{LocSys}_G)$. The Hecke eigenproperty would then be a compatibility condition between this equivalence and the geometric Satake equivalence.

Date: Fall, 2018.

1.1.4. The Langlands duality is also supposed to be compatible with passage to Levi subgroups. In the geometric theory, this is the compatibility with Eisenstein series functors—for any parabolic $P \in \operatorname{Par}_G$ with Levi quotient M, the following diagram needs to commute¹:

$$\begin{array}{c} \operatorname{QCoh}(\operatorname{LocSys}_{M}) \longrightarrow \mathcal{D}\text{-}\mathbf{Mod}(\operatorname{Bun}_{\check{M}}) \\ & \bigvee_{\operatorname{Eis}^{\operatorname{Spec}}} & \bigvee_{\operatorname{Eis}^{\operatorname{Is}}} \\ \operatorname{QCoh}(\operatorname{LocSys}_{G}) \longrightarrow \mathcal{D}\text{-}\mathbf{Mod}(\operatorname{Bun}_{\check{G}}) \end{array}$$

1.2. Geometric Eisenstein series.

1.2.1. Consider the diagram and the following facts:

$$\operatorname{Bun}_{\check{G}} \xleftarrow{\mathfrak{P}} \operatorname{Bun}_{\check{P}} \xrightarrow{\mathfrak{q}} \operatorname{Bun}_{\check{M}}.$$

(a) the morphism **p** is schematic;

Remark 1.3. This follows from a general fact—given a proper map $Y \to S$ of schemes, then $\text{Sect}_{S}(S, Y)$ is representable by a scheme.

(b) the morphism q is smooth;

Remark 1.4. This follows from calculation of the relative cotangent complex. In particular, the functor q^* on D-modules is well-defined.

(c) the partially defined functor $\mathfrak{p}_!$ on \mathcal{D} -modules is well defined on the image of \mathfrak{q}^*

Remark 1.5 (Lin). This follows from considering Drinfeld's compactification $j : \operatorname{Bun}_{\check{P}} \hookrightarrow \overline{\operatorname{Bun}}_{\check{P}}$, and showing that $j_! \mathcal{O}_{\operatorname{Bun}_{\check{P}}}$ is ULA with respect to \mathfrak{q} .

In particular, we may define the functor:

$$\operatorname{Eis}_{!} := \mathfrak{p}_{!} \circ \mathfrak{q}^{*} : \mathcal{D}\operatorname{-}\mathbf{Mod}(\operatorname{Bun}_{\check{M}}) \to \mathcal{D}\operatorname{-}\mathbf{Mod}(\operatorname{Bun}_{\check{G}}).$$

It admits a continuous right adjoint $q_* \circ p^!$; hence Eis_! preserves compact objects, by the following:

Lemma 1.6. Suppose we have an adjunction $F : \mathfrak{C} \xrightarrow{} \mathfrak{D} : G$ of compactly generated DG categories. Then the following are equivalent:

(a) F preserves compact objects;

(b) G is continuous.

1.2.2. On the other hand, we have a diagram:

$$\operatorname{LocSys}_G \xleftarrow{\mathfrak{p}^{\operatorname{Spec}}} \operatorname{LocSys}_P \xrightarrow{\mathfrak{q}^{\operatorname{Spec}}} \operatorname{LocSys}_M.$$

(a) the morphism $\mathfrak{p}^{\text{Spec}}$ is schematic and proper;

Question 1.7. Eh? How do you show this?

(b) the morphism q^{Spec} is quasi-smooth;

Remark 1.8. Once we know what quasi-smooth means, we will see that this follows from calculating the cotangent complex. For now, it will tell us that q_{Spec}^* on QCoh is well-defined and sends perfect complexes to perfect complexes.

The problem, however, is that $(\mathfrak{p}^{\text{Spec}})_*$ on QCoh does not preserve compact objects.² This is the familiar fact that proper pushforward of a perfect complex may not be perfect.

¹Technically, it should commute up to tensoring by some (cohomologically shifted) line bundle.

²A priori, the compact objects in QCoh(ϑ) may not identify with the perfect complexes. However, in the case $\vartheta = \text{LocSys}_G$ this does happen. It's a consequence of the QCA property of LocSys_G.

1.3. Ind-coherent sheaves.

1.3.1. The raison d'être of ind-coherent sheaves is to remedy the non-preservation of compact objects under proper pushforward. Let us take a moment to review the basic theory. Suppose $S \in \mathbf{Sch}_{laft}^{aff}$ is an affine (derived) scheme locally almost of finite type, we can make sense of the full subcategory $\operatorname{Coh}(S) \hookrightarrow \operatorname{QCoh}(S)$. We let $\operatorname{IndCoh}(S)$ be the ind-completion of $\operatorname{Coh}(S)$.

Remark 1.9. Since Coh(S) is idempotent-complete, Coh(S) identifies with the full subcategory of IndCoh(S) of compact objects.

Note that ind-extending the inclusion $\operatorname{Coh}(S) \hookrightarrow \operatorname{QCoh}(S)$ gives rise to a functor Ψ_S : IndCoh $(S) \to \operatorname{QCoh}(S)$.

1.3.2. If S is eventually coconnective, then $\mathcal{O}_S \in \operatorname{QCoh}(S)$ belongs to the full subcategory $\operatorname{Coh}(S)$. Hence, so does $\operatorname{Perf}(S)$. Ind-completing the inclusion $\operatorname{Perf}(S) \hookrightarrow \operatorname{Coh}(S)$ gives rise to an embedding $\Xi : \operatorname{QCoh}(S) \hookrightarrow \operatorname{IndCoh}(S)$, and we have an adjunction:

$$\Xi_S : \operatorname{QCoh}(S) \longrightarrow \operatorname{IndCoh}(S) : \Psi_S$$

where the left adjoint is fully faithful.

1.3.3. Given a map $S \to S'$ in $\operatorname{Sch}_{\operatorname{laft}}^{\operatorname{aff}}$, we have *continuous* functors $f_{*,\operatorname{IndCoh}}$: IndCoh $(S) \to$ IndCoh(S') and $f^{!}$: IndCoh $(S') \to$ IndCoh(S) together with base change for every Cartesian diagram.

Remark 1.10 (David). The functor $f^!$ does not preserve Coh in general. Take $f : \text{pt} \to S = \text{Spec}(k[\epsilon]/\epsilon^2)$. Being proper, $f^!$ is right adjoint to $f_{*,\text{IndCoh}}$. Thus we have:

$$f^{!}\mathcal{F} \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{IndCoh}(S)}(k,\mathcal{F}).$$

Hence for $\mathcal{F} = k$ the skyscraper, $f^{!}(k)$ has nonzero cohomology in all degrees ≥ 0 .³

$$\cdots \rightarrow 0 \rightarrow 0 \rightarrow k \xrightarrow{0} k \xrightarrow{0} \cdots$$

1.3.4. Suppose \mathcal{Y} is a laft prestack. Then we set $\mathrm{IndCoh}(\mathcal{Y}) := \lim_{S \to \mathcal{Y}} \mathrm{IndCoh}(S)$ where S ranges through affine schemes mapping to \mathcal{Y} .

Remark 1.11. As the above remark shows, we may not define $\operatorname{Coh}(\mathcal{Y})$ by an analogous formula. Instead, we have to specify $\operatorname{Coh}(\mathcal{Y})$ as the full subcategory of $\operatorname{QCoh}(\mathcal{Y})$ for which pullbacks to $S \in \operatorname{Sch}^{\operatorname{aff}}$ belongs to $\operatorname{Coh}(\mathcal{Y})$.

1.3.5. We may now re-define Eis_{Spec} as a functor:

 $\operatorname{Eis}_{\operatorname{Spec}}$: $\operatorname{IndCoh}(\operatorname{LocSys}_M) \to \operatorname{IndCoh}(\operatorname{LocSys}_G)$

and one can check that it does preserve compact objects (which form the subcategories $Coh(LocSys_M)$, $Coh(LocSys_G)$). We may now state:

Attempt 1.12. Perhaps $\operatorname{IndCoh}(\operatorname{LocSys}_G) \xrightarrow{\sim} \mathcal{D}\text{-}\mathbf{Mod}(\operatorname{Bun}_{\check{G}})$?

1.4. Langlands duality for tori.

1.4.1. Unfortunately, Attempt 1.12 already fails for $G = \mathbb{G}_m$. More generally, we will show that Attempt 1.2 is actually correct for tori. Of course, the problem reduces to the case of \mathbb{G}_m .

³Regarding k as an object of QCoh(S), we have $f^*(k)$ being the complex

 $\cdots \to k \xrightarrow{0} k \xrightarrow{0} 0 \to 0 \to \cdots$

which has nonzero cohomology in all degrees ≤ 0 .

1.4.2. Fix a point $x \in X$. Then we have a product decomposition:

$$\operatorname{Bun}_{\mathbb{G}_m} \xrightarrow{\sim} \operatorname{Pic}^0(X) \times \operatorname{B} G_m \times \mathbb{Z}$$

Corresponding to the projection $\text{LocSys}_{\mathbb{G}_m} \to \text{Bun}_{\mathbb{G}_m}$, we have:

$$\operatorname{LocSys}_{\mathbb{G}_m} \xrightarrow{\sim} \operatorname{Pic}^0(X) \times T^* \operatorname{B} \mathbb{G}_m \xrightarrow{\sim} \operatorname{Pic}^0(X) \times (\operatorname{pt} \underset{\mathbb{A}^1}{\times} \operatorname{pt}) \times \operatorname{B} \mathbb{G}_m$$

⁴where $\widetilde{\operatorname{Pic}}^{0}(X)$ is the universal vectorial extension of $\operatorname{Pic}^{0}(X)$:

$$0 \to \operatorname{H}^{0}(X, \omega_{X}) \to \widetilde{\operatorname{Pic}}^{0}(X) \to \operatorname{Pic}^{0}(X) \to 0.$$

1.4.3. There is an equivalence of DG categories

$$\mathcal{D}$$
-Mod $(\operatorname{Pic}^0(X)) \xrightarrow{\sim} \operatorname{QCoh}(\widetilde{\operatorname{Pic}}^0(X))$

provided by Laumon's transformation de Fourier généralisée.

Claim 1.13. There are canonical equivalence:

- (a) \mathcal{D} -**Mod**(B \mathbb{G}_m) $\xrightarrow{\sim}$ QCoh(pt $\underset{\mathbb{A}^1}{\times}$ pt);
- (b) \mathcal{D} -Mod $(\mathbb{Z}) \xrightarrow{\sim} \operatorname{QCoh}(\operatorname{B} \mathbb{G}_m)$.

Proof. (a) Consider the smooth map σ : pt $\rightarrow B \mathbb{G}_m$. Since \mathcal{D} -Mod(pt) = Vect is generated by holonomic objects, the left adjoint σ_1 to σ' is well-defined. One checks that this adjunction is monadic. To compute the monad $\sigma^{!}\sigma_{!}$, we use base change along the Cartesian square:

to see that $\sigma^! \sigma_!(k)$ is the compactly supported cohomology $\mathrm{H}^*_c(\mathbb{G}_m; \omega_{\mathbb{G}_m}) = \mathrm{H}^*(\mathbb{G}_m; k_{\mathbb{G}_m})$. This is the algebra Sym(k[1]). Hence we have commutative squares

$$D\text{-}\mathbf{Mod}(\mathbb{B}\mathbb{G}_m) \xrightarrow{} QCoh(\operatorname{pt} \times \operatorname{pt})$$

$$\sigma_! \left| \hspace{-0.5ex} \right|_{\sigma^!} \qquad \pi^* \left| \hspace{-0.5ex} \right|_{\pi^*} \\
\operatorname{Vect} \xrightarrow{} \operatorname{Vect} \qquad \operatorname{Vect} \qquad \operatorname{Vect}$$

where $\pi : \operatorname{pt}_{\mathbb{A}^1} \operatorname{pt} \to \operatorname{pt}$ is the projection.

(b) Both sides identifies with \mathbb{Z} -graded vector spaces.

Remark 1.14 (David). The DG categories $QCoh(pt \underset{A^1}{\times} pt)$ and $IndCoh(pt \underset{A^1}{\times} pt)$ are not equivalence even as plain DG categories. The reason is that the Hom-space between any two compact objects in QCoh(pt $\underset{\mathbb{A}^1}{\times}$ pt) lives in **Vect**^c; however, Hom_{IndCoh(pt $\underset{\mathbb{A}^1}{\times}$ pt)(k, k) has unbounded co-} homologies.

Remark 1.15. Under the equivalence (a), the \mathcal{D} -modules $\omega_{B\mathbb{G}_m}$ passes to the skyscraper sheaf. Thus, under the Langlands duality, $\omega_{\operatorname{Bun}_{\mathbb{G}_m}}$ passes to the skyscraper at triv $\in \operatorname{LocSys}_{\mathbb{G}_m}$, as one would expect.

1.5. Singular support.

4

⁴More generally, $T^* \to G \xrightarrow{\sim} (\operatorname{pt} \times \operatorname{pt})/G$.

1.5.1. We now return to the theory of ind-coherent sheaves, and see how it plays out for the derived scheme $S = \text{pt} \times \text{pt}$, where V is a vector space. The first observation is that we have an equivalence of DG categories:

$$\operatorname{IndCoh}(S) \xrightarrow{\sim} \operatorname{Sym}(V[-2])$$
-Mod.

We shall see that under this equivalence, the full subcategory $\Xi_S : \operatorname{QCoh}(S) \hookrightarrow \operatorname{IndCoh}(S)$ passes to $\operatorname{Sym}(V[-2])$ - $\operatorname{Mod}_{\{0\}}$, the subcategory of modules $\mathcal{M} \in \operatorname{Sym}(V[-2])$ - Mod such that $\bigoplus_{i \in \mathbb{Z}} \operatorname{H}^i(\mathcal{M})$ is set-theoretically supported on $\{0\} \subset V^*$ (as acted on by the graded algebra $\operatorname{Sym}(V)$.) In other words, every element in V acts locally nilpotently on $\bigoplus_{i \in \mathbb{Z}} \operatorname{H}^i(\mathcal{M})$.

1.5.2. The above observation shows that for every conical Zariski closed subset $\mathcal{N} \subset V^*$, we may define $\mathrm{IndCoh}_{\mathcal{N}}(S)$ as a full subcategory of $\mathrm{IndCoh}(S)$ corresponding to $\mathrm{Sym}(V[-2])$ - $\mathrm{Mod}_{\mathcal{N}}$ -modules \mathcal{M} such that $\bigoplus_{i \in \mathbb{Z}} \mathrm{H}^i(\mathcal{M})$ is set-theoretically supported on \mathcal{N} . Thus we have:

$$\operatorname{IndCoh}(S) \xrightarrow{\sim} \operatorname{Sym}(V[-2]) \operatorname{-Mod}_{\mathcal{N}}$$
$$\int_{\operatorname{IndCoh}_{\mathcal{N}}} (S) \xrightarrow{\sim} \operatorname{Sym}(V[-2]) \operatorname{-Mod}_{\mathcal{N}}$$

And $\operatorname{IndCoh}_{\{0\}}(S) = \operatorname{QCoh}(S)$.

1.5.3. The notion of singular support can be generalized to a large class of (derived) algebraic stacks. We call an algebraic stack \mathcal{Y} quasi-smooth if $T_{\mathcal{Y}}^*$ is perfect of Tor-amplitude ≥ -1 . In this case, $T_{\mathcal{Y}}$ is perfect of Tor-amplitude ≤ 1 .

Remark 1.16. We shall see that a quasi-smooth scheme is just one which locally is presented by "n generators and m relations," although the word "relation" has to be interpreted in the derived sense.

1.5.4. Suppose \mathcal{Y} is a quasi-smooth algebraic stack. We set $\operatorname{Sing}(\mathcal{Y})$ to be a fiber bundle over \mathcal{Y}^{cl} whose fiber at $S \to \mathcal{Y}^{cl}$ is $\operatorname{Spec}_S \operatorname{Sym}(\operatorname{H}^1(T_{\mathcal{Y}}|_S))$.

Remark 1.17. For $\mathcal{Y} = \operatorname{pt}_{V} \operatorname{pt}_{V}$, we obtain $\mathcal{Y}^{cl} = V^*$.

Then for any conical Zariski closed subset $\mathcal{N} \subset \operatorname{Sing}(\mathcal{Y})$, we shall be able to define a DG category $\operatorname{IndCoh}_{\mathcal{N}}(\mathcal{Y})$, sitting inside $\operatorname{IndCoh}(\mathcal{Y})$.

1.5.5. We will prove:

Lemma 1.18. The stack $LocSys_G$ is quasi-smooth.

Furthermore, the classical stack $\operatorname{Sing}(\operatorname{LocSys}_G)$ is the moduli spaces of triples $(\mathcal{P}_G, \nabla, A)$ where $(\mathcal{P}_G, \nabla) \in \operatorname{LocSys}_G$ and A is a *flat* global section of the coadjoint bundle $\mathfrak{g}_{\mathcal{P}_G}^*$. Fixing a G-invariant identification $\mathfrak{g} \xrightarrow{\sim} \mathfrak{g}^*$, we may regard the cone of nilpotent elements $\operatorname{Nilp} \subset \mathfrak{g}$ as a subset of \mathfrak{g}^* . We write

$$\mathcal{N}$$
 ilp \subset Sing(LocSys_G)

for the conical Zariski closed subset where A belongs to $\operatorname{Nilp}_{\mathcal{P}_G} \subset \mathfrak{g}_{\mathcal{P}_G}^*$.

1.5.6. Finally, we may state the current form of geometric Langlands duality:

Attempt 1.19. IndCoh_{Nilp}(LocSys_G) $\xrightarrow{\sim} \mathcal{D}$ -Mod(Bun_Ğ).

This conjecture passes the Eisenstein series test, and specializes to the correct equivalence for G = T a torus.

Remark 1.20 (David). In the number-theoretic setting, the spectral side should be a *G*-valued representation of $\operatorname{Gal}(\bar{F}/F) \times \operatorname{SL}_2$ rather than just $\operatorname{Gal}(\bar{F}/F)$. Notice that the additional SL_2 -factor contributes a nilpotent element $e \in \mathfrak{sl}_2 \to \mathfrak{g}$ which commutes with the $\operatorname{Gal}(\bar{F}/F)$ -action. This is exactly what one may interpret geometrically as a flat, nilpotent global section of $\mathfrak{g}_{\mathcal{P}_G}$.

Remark 1.21. For $G = \operatorname{GL}_n$, Arthur has argued that the trivial function over $G(\mathbb{A})$ should correspond to the representation triv $\boxtimes \mathbb{C}^n$ of $\operatorname{Gal}(\bar{F}/F) \times \operatorname{SL}_2$. Geometrically, this means that the image of $\omega_{\operatorname{Bun}_n}$ under Langlands duality should be some kind of sheaf supported at triv \in LocSys_n, but it should not be quasi-coherent as long as $n \geq 2$.

1.6. Main theorems (A) and (B).

1.6.1. We can now formulate a theorem to the effect that $IndCoh_{\mathcal{N}}(LocSys_G)$ is "large enough" to contain all the Eisenstein series. We fix a Borel $B \subset G$, and let Par_G denote the (discrete) set of standard parabolics of G (including P = G).

Theorem 1.22 (A). As $P \in Par_G$, the images of the functors:

 $\operatorname{Eis}_{\operatorname{Spec}} : \operatorname{QCoh}(\operatorname{Loc}\operatorname{Sys}_M) \to \operatorname{Ind}\operatorname{Coh}_{\mathcal{N}}(\operatorname{Loc}\operatorname{Sys}_G)$

collectively generate the target category.

We will deduce this theorem from carefully studying the interaction between Eis_{Spec} and singular support.

1.6.2. We will now formulate another theorem to the effect that $\operatorname{IndCoh}_{\mathcal{N}}(\operatorname{LocSys}_{G})$ is "small enough" to be embedded in the extended Whittaker categories⁵ for \check{G} .

1.6.3. Suppose $f: \mathcal{Z} \to \mathcal{Y}$ is a map of prestacks. We set

$$\mathrm{IndCoh}(\mathcal{Z})_{\mathrm{conn}\,/\mathcal{Y}} := \mathrm{IndCoh}(\mathcal{Z}_{\mathrm{dR}} \underset{\mathcal{Y}_{\mathrm{dR}}}{\times} \mathcal{Y}).$$

Remark 1.23. One may interpret $IndCoh(\mathcal{Z})_{conn/\mathcal{Y}}$ as the DG category of ind-coherent sheaves on \mathcal{Z} with a connection along fibers of f.

When \mathcal{Z} is quasi-smooth, we define $\operatorname{QCoh}(\mathcal{Z})_{\operatorname{conn}/\mathcal{Y}}$ by the Cartesian diagram:

$$\begin{array}{ccc} \operatorname{QCoh}(\mathcal{Z})_{\operatorname{conn}}/\mathcal{Y} & \longrightarrow \operatorname{IndCoh}(\mathcal{Z})_{\operatorname{conn}}/\mathcal{Y} \\ & & & \downarrow \\ & & & \downarrow \\ & & & \downarrow \\ \operatorname{QCoh}(\mathcal{Z}) & \xrightarrow{\Xi_{\mathcal{Z}}} & \operatorname{IndCoh}(\mathcal{Z}). \end{array}$$

Then the functor $\Psi_{\mathcal{Z}}$ induces a functor $\widetilde{\Psi}_{\mathcal{Z}}$: IndCoh $(\mathcal{Z})_{\text{conn}/\mathcal{Y}} \to \text{QCoh}(\mathcal{Z})_{\text{conn}/\mathcal{Y}}$.

⁵But we won't be concerned with what these categories are, inasmuch as they receive fully faithful functors from $\text{QCoh}(\text{LocSys}_P)_{\text{conn /LocSys}_G}$.

1.6.4. As $P \in \operatorname{Par}_G$ varies, we obtain a functor

$$\mathrm{IndCoh}(\mathrm{LocSys}_G) \to \lim_{P \in \mathrm{Par}_G} \mathrm{IndCoh}(\mathrm{LocSys}_P)_{\mathrm{conn}/\mathrm{LocSys}_G}$$

We would like to apply $\widetilde{\Psi}_{\operatorname{LocSys}_P}$ to each term in the limit, but these functors only lax-commute with pullbacks on $IndCoh(LocSys_P)_{conn/LocSys_G}$

Remark 1.24. We recall the formation of lax-limits of DG categories. Suppose \mathcal{C}_i is a family of DG categories indexed by $i \in I$. Equivalently, we have a co-Cartesian fibration $\mathcal{C} \to I$ whose fiber at $i \in I$ is \mathfrak{C}_i . Then $\underset{i \in I}{\operatorname{lax-lim}}(\mathfrak{C}_i)$ is the category of all sections of $\mathfrak{C} \to I$. We have:

$$\lim_{i \in I} (\mathcal{C}_i) \hookrightarrow \underset{i \in I}{\operatorname{lax-lim}} (\mathcal{C}_i)$$

consisting of *co-Cartesian* sections.

The above procedure defines a functor

$$\begin{aligned} \mathrm{IndCoh}(\mathrm{LocSys}_G) &\to \lim_{P \in \mathrm{Par}_G} \mathrm{IndCoh}(\mathrm{LocSys}_P)_{\mathrm{conn}\,/\mathrm{LocSys}_G} \\ & \xrightarrow{\tilde{\Psi}_{\mathrm{LocSys}_G}} \lim_{P \in \mathrm{Par}_G} \mathrm{QCoh}(\mathrm{LocSys}_P)_{\mathrm{conn}\,/\mathrm{LocSys}_G} \end{aligned}$$

Theorem 1.25 (B). This composition is fully faithful on $IndCoh_{\mathcal{N}}(LocSys_G)$.

This is what we call the "spectral gluing" theorem. You may know that attached to \check{G} and \check{P} are certain "degenerate" Whittaker categories $\operatorname{Whit}(\hat{G}; \hat{P})$, and there are fully faithful functors $\operatorname{QCoh}(\operatorname{LocSys}_P)_{\operatorname{conn}/\operatorname{LocSys}_G} \hookrightarrow \operatorname{Whit}(G; P)$. Together, we obtain an embedding:

$$\underset{P \in \operatorname{Par}_{G}}{\operatorname{lax-lim}} \operatorname{QCoh}(\operatorname{LocSys}_{P})_{\operatorname{conn}/\operatorname{LocSys}_{G}} \hookrightarrow \underset{\check{P} \in \operatorname{Par}_{\check{G}}}{\operatorname{lax-lim}} \operatorname{Whit}(\check{G};\check{P}).$$
(1.1)

On the other hand, we conjecture that \mathcal{D} -**Mod**(Bun_{\check{G}}) embeds fully faithfully in the right hand side. Hence, in order to define the Langlands transform $\operatorname{IndCoh}_{\mathcal{N}}(\operatorname{LocSys}_G) \to \mathcal{D}\text{-}\mathbf{Mod}(\operatorname{Bun}_{\check{G}}),$ we may pass through (1.1) and compare the images of $\mathrm{IndCoh}_{\mathcal{N}}(\mathrm{LocSys}_G)$ and $\mathcal{D}\text{-}\mathbf{Mod}(\mathrm{Bun}_{\check{G}})$ inside lax-lim Whit($\check{G}; \check{P}$). This is why Theorem (B) is important for us. $\check{P} \in \operatorname{Par}_{\check{G}}$