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1. Overview

1.1. The näıve conjecture.

1.1.1. One goal of the number-theoretic Langlands theory is to attach Hecke eigenfunctions to
Galois representations. Let us be given a global field F . We ask for the following association:

Galois representation σ
valued in G

 Hecke eigenfunctions

on Ǧ(A)

where Ǧ is the Langlands dual group of G.

1.1.2. To phrase this problem in geometric language, we fix a ground field k, assumed alge-
braically closed of characteristic zero, and let X be a smooth, proper curve over k. The role of
Galois representations will be played by points of the stack LocSysG, and instead of functions
on Ǧ(A) we will study D-modules on BunǦ.

Thus the above problem translates into an association:

k-points
σ ∈ LocSysG

 Hecke eigen-D-modules
on BunǦ

Remark 1.1. Let us recall at this moment that LocSysG is defined as the mapping stack
Maps(XdR,BG), where XdR is the de Rham prestack associated to X. This object is a derived
algebraic stack, as we will study in the later parts of the semester.

1.1.3. The above problem is asymmetric, in the sense that on one hand, we are studying
k-points of a certain stack, while on the other hand we are concerned with objects of a DG
category. To make the problem more symmetric, we propose:

Attempt 1.2. Perhaps QCoh(LocSysG)
∼−→ D-Mod(BunǦ)?

Under this equivalence, what used to be the Hecke eigen-D-module associated to σ ∈ LocSysG
would now be the image of the skyscraper sheaf kσ ∈ QCoh(LocSysG). The Hecke eigenproperty
would then be a compatibility condition between this equivalence and the geometric Satake
equivalence.
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1.1.4. The Langlands duality is also supposed to be compatible with passage to Levi sub-
groups. In the geometric theory, this is the compatibility with Eisenstein series functors—for
any parabolic P ∈ ParG with Levi quotient M , the following diagram needs to commute1:

QCoh(LocSysM )

EisSpec

��

// D-Mod(BunM̌ )

Eis!

��
QCoh(LocSysG) // D-Mod(BunǦ)

1.2. Geometric Eisenstein series.

1.2.1. Consider the diagram and the following facts:

BunǦ
p←− BunP̌

q−→ BunM̌ .

(a) the morphism p is schematic;

Remark 1.3. This follows from a general fact—given a proper map Y → S of schemes,
then Sect/S(S, Y ) is representable by a scheme.

(b) the morphism q is smooth;

Remark 1.4. This follows from calculation of the relative cotangent complex. In particu-
lar, the functor q∗ on D-modules is well-defined.

(c) the partially defined functor p! on D-modules is well defined on the image of q∗

Remark 1.5 (Lin). This follows from considering Drinfeld’s compactification j : BunP̌ ↪→
BunP̌ , and showing that j!OBunP̌

is ULA with respect to q.

In particular, we may define the functor:

Eis! := p! ◦ q∗ : D-Mod(BunM̌ )→ D-Mod(BunǦ).

It admits a continuous right adjoint q∗ ◦ p!; hence Eis! preserves compact objects, by the
following:

Lemma 1.6. Suppose we have an adjunction F : C //
D : Goo of compactly generated DG

categories. Then the following are equivalent:

(a) F preserves compact objects;
(b) G is continuous. �

1.2.2. On the other hand, we have a diagram:

LocSysG
pSpec

←−−− LocSysP
qSpec

−−−→ LocSysM .

(a) the morphism pSpec is schematic and proper;

Question 1.7. Eh? How do you show this?

(b) the morphism qSpec is quasi-smooth;

Remark 1.8. Once we know what quasi-smooth means, we will see that this follows from
calculating the cotangent complex. For now, it will tell us that q∗Spec on QCoh is well-defined
and sends perfect complexes to perfect complexes.

The problem, however, is that (pSpec)∗ on QCoh does not preserve compact objects.2 This
is the familiar fact that proper pushforward of a perfect complex may not be perfect.

1Technically, it should commute up to tensoring by some (cohomologically shifted) line bundle.
2A priori, the compact objects in QCoh(Y) may not identify with the perfect complexes. However, in the

case Y = LocSysG this does happen. It’s a consequence of the QCA property of LocSysG.
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1.3. Ind-coherent sheaves.

1.3.1. The raison d’être of ind-coherent sheaves is to remedy the non-preservation of compact
objects under proper pushforward. Let us take a moment to review the basic theory. Suppose
S ∈ Schaff

laft is an affine (derived) scheme locally almost of finite type, we can make sense of the
full subcategory Coh(S) ↪→ QCoh(S). We let IndCoh(S) be the ind-completion of Coh(S).

Remark 1.9. Since Coh(S) is idempotent-complete, Coh(S) identifies with the full subcategory
of IndCoh(S) of compact objects.

Note that ind-extending the inclusion Coh(S) ↪→ QCoh(S) gives rise to a functor ΨS :
IndCoh(S)→ QCoh(S).

1.3.2. If S is eventually coconnective, then OS ∈ QCoh(S) belongs to the full subcategory
Coh(S). Hence, so does Perf(S). Ind-completing the inclusion Perf(S) ↪→ Coh(S) gives rise to
an embedding Ξ : QCoh(S) ↪→ IndCoh(S), and we have an adjunction:

ΞS : QCoh(S)
� � // IndCoh(S) : ΨSoo

where the left adjoint is fully faithful.

1.3.3. Given a map S → S′ in Schaff
laft, we have continuous functors f∗,IndCoh : IndCoh(S) →

IndCoh(S′) and f ! : IndCoh(S′) → IndCoh(S) together with base change for every Cartesian
diagram.

Remark 1.10 (David). The functor f ! does not preserve Coh in general. Take f : pt → S =
Spec(k[ε]/ε2). Being proper, f ! is right adjoint to f∗,IndCoh. Thus we have:

f !F
∼−→ HomIndCoh(S)(k,F).

Hence for F = k the skyscraper, f !(k) has nonzero cohomology in all degrees ≥ 0:3

· · · → 0→ 0→ k
0−→ k

0−→ · · ·

1.3.4. Suppose Y is a laft prestack. Then we set IndCoh(Y) := lim
S→Y

IndCoh(S) where S ranges

through affine schemes mapping to Y.

Remark 1.11. As the above remark shows, we may not define Coh(Y) by an analogous formula.
Instead, we have to specify Coh(Y) as the full subcategory of QCoh(Y) for which pullbacks to

S ∈ Schaff belongs to Coh(Y).

1.3.5. We may now re-define EisSpec as a functor:

EisSpec : IndCoh(LocSysM )→ IndCoh(LocSysG)

and one can check that it does preserve compact objects (which form the subcategories Coh(LocSysM ),
Coh(LocSysG)). We may now state:

Attempt 1.12. Perhaps IndCoh(LocSysG)
∼−→ D-Mod(BunǦ)?

1.4. Langlands duality for tori.

1.4.1. Unfortunately, Attempt 1.12 already fails for G = Gm. More generally, we will show
that Attempt 1.2 is actually correct for tori. Of course, the problem reduces to the case of Gm.

3Regarding k as an object of QCoh(S), we have f∗(k) being the complex

· · · → k
0−→ k

0−→ 0→ 0→ · · ·
which has nonzero cohomology in all degrees ≤ 0.
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1.4.2. Fix a point x ∈ X. Then we have a product decomposition:

BunGm

∼−→ Pic0(X)× BGm × Z.
Corresponding to the projection LocSysGm

→ BunGm
, we have:

LocSysGm

∼−→ P̃ic0(X)× T ∗ BGm
∼−→ P̃ic0(X)× (pt ×

A1
pt)× BGm

4where P̃ic0(X) is the universal vectorial extension of Pic0(X):

0→ H0(X,ωX)→ P̃ic0(X)→ Pic0(X)→ 0.

1.4.3. There is an equivalence of DG categories

D-Mod(Pic0(X))
∼−→ QCoh(P̃ic0(X))

provided by Laumon’s transformation de Fourier généralisée.

Claim 1.13. There are canonical equivalence:

(a) D-Mod(BGm)
∼−→ QCoh(pt ×

A1
pt);

(b) D-Mod(Z)
∼−→ QCoh(BGm).

Proof. (a) Consider the smooth map σ : pt → BGm. Since D-Mod(pt) = Vect is generated
by holonomic objects, the left adjoint σ! to σ! is well-defined. One checks that this adjunction
is monadic. To compute the monad σ!σ!, we use base change along the Cartesian square:

Gm //

��

pt

σ

��
pt

σ // BGm

to see that σ!σ!(k) is the compactly supported cohomology H∗c(Gm;ωGm) = H∗(Gm; kGm). This
is the algebra Sym(k[1]). Hence we have commutative squares

D-Mod(BGm)
∼ //

σ!

��

QCoh(pt ×
A1

pt)

π∗

��
Vect

σ!

OO

∼ // Vect

π∗
OO

where π : pt ×
A1

pt→ pt is the projection.

(b) Both sides identifies with Z-graded vector spaces. �

Remark 1.14 (David). The DG categories QCoh(pt×
A1

pt) and IndCoh(pt×
A1

pt) are not equiva-

lence even as plain DG categories. The reason is that the Hom-space between any two compact
objects in QCoh(pt ×

A1
pt) lives in Vectc; however, HomIndCoh(pt×

A1
pt)(k, k) has unbounded co-

homologies.

Remark 1.15. Under the equivalence (a), the D-modules ωBGm
passes to the skyscraper sheaf.

Thus, under the Langlands duality, ωBunGm
passes to the skyscraper at triv ∈ LocSysGm

, as
one would expect.

1.5. Singular support.

4More generally, T ∗ BG
∼−→ (pt ×

g∗
pt)/G.
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1.5.1. We now return to the theory of ind-coherent sheaves, and see how it plays out for the
derived scheme S = pt ×

V
pt, where V is a vector space. The first observation is that we have

an equivalence of DG categories:

IndCoh(S)
∼−→ Sym(V [−2])-Mod.

We shall see that under this equivalence, the full subcategory ΞS : QCoh(S) ↪→ IndCoh(S)
passes to Sym(V [−2])-Mod{0}, the subcategory of modules M ∈ Sym(V [−2])-Mod such that⊕

i∈Z Hi(M) is set-theoretically supported on {0} ⊂ V ∗ (as acted on by the graded algebra

Sym(V ).) In other words, every element in V acts locally nilpotently on
⊕

i∈Z Hi(M).

1.5.2. The above observation shows that for every conical Zariski closed subset N ⊂ V ∗, we
may define IndCohN(S) as a full subcategory of IndCoh(S) corresponding to Sym(V [−2])-ModN—
modules M such that

⊕
i∈Z Hi(M) is set-theoretically supported on N. Thus we have:

IndCoh(S)
∼ // Sym(V [−2])-Mod

IndCohN(S)
?�

OO

∼ // Sym(V [−2])-ModN

?�

OO

And IndCoh{0}(S) = QCoh(S).

1.5.3. The notion of singular support can be generalized to a large class of (derived) algebraic
stacks. We call an algebraic stack Y quasi-smooth if T ∗Y is perfect of Tor-amplitude ≥ −1. In
this case, TY is perfect of Tor-amplitude ≤ 1.

Remark 1.16. We shall see that a quasi-smooth scheme is just one which locally is presented
by “n generators and m relations,” although the word “relation” has to be interpreted in the
derived sense.

1.5.4. Suppose Y is a quasi-smooth algebraic stack. We set Sing(Y) to be a fiber bundle over
Ycl whose fiber at S → Ycl is SpecSSym(H1(TY

∣∣
S

)).

Remark 1.17. For Y = pt×
V

pt, we obtain Ycl = V ∗.

Then for any conical Zariski closed subset N ⊂ Sing(Y), we shall be able to define a DG
category IndCohN(Y), sitting inside IndCoh(Y).

1.5.5. We will prove:

Lemma 1.18. The stack LocSysG is quasi-smooth.

Furthermore, the classical stack Sing(LocSysG) is the moduli spaces of triples (PG,∇, A)
where (PG,∇) ∈ LocSysG and A is a flat global section of the coadjoint bundle g∗PG

. Fixing a

G-invariant identification g
∼−→ g∗, we may regard the cone of nilpotent elements Nilp ⊂ g as a

subset of g∗. We write

N ilp ⊂ Sing(LocSysG)

for the conical Zariski closed subset where A belongs to NilpPG
⊂ g∗PG

.
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1.5.6. Finally, we may state the current form of geometric Langlands duality:

Attempt 1.19. IndCohN ilp(LocSysG)
∼−→ D-Mod(BunǦ).

This conjecture passes the Eisenstein series test, and specializes to the correct equivalence
for G = T a torus.

Remark 1.20 (David). In the number-theoretic setting, the spectral side should be a G-valued
representation of Gal(F̄ /F )× SL2 rather than just Gal(F̄ /F ). Notice that the additional SL2-
factor contributes a nilpotent element e ∈ sl2 → g which commutes with the Gal(F̄ /F )-action.
This is exactly what one may interpret geometrically as a flat, nilpotent global section of gPG

.

Remark 1.21. For G = GLn, Arthur has argued that the trivial function over G(A) should
correspond to the representation triv�Cn of Gal(F̄ /F )× SL2. Geometrically, this means that
the image of ωBunn under Langlands duality should be some kind of sheaf supported at triv ∈
LocSysn, but it should not be quasi-coherent as long as n ≥ 2.

1.6. Main theorems (A) and (B).

1.6.1. We can now formulate a theorem to the effect that IndCohN(LocSysG) is “large enough”
to contain all the Eisenstein series. We fix a Borel B ⊂ G, and let ParG denote the (discrete)
set of standard parabolics of G (including P = G).

Theorem 1.22 (A). As P ∈ ParG, the images of the functors:

EisSpec : QCoh(LocSysM )→ IndCohN(LocSysG)

collectively generate the target category.

We will deduce this theorem from carefully studying the interaction between EisSpec and
singular support.

1.6.2. We will now formulate another theorem to the effect that IndCohN(LocSysG) is “small
enough” to be embedded in the extended Whittaker categories5 for Ǧ.

1.6.3. Suppose f : Z→ Y is a map of prestacks. We set

IndCoh(Z)conn /Y := IndCoh(ZdR ×
YdR

Y).

Remark 1.23. One may interpret IndCoh(Z)conn /Y as the DG category of ind-coherent sheaves
on Z with a connection along fibers of f .

When Z is quasi-smooth, we define QCoh(Z)conn /Y by the Cartesian diagram:

QCoh(Z)conn /Y
� � //

��

IndCoh(Z)conn /Y

��
QCoh(Z)

� � ΞZ // IndCoh(Z).

Then the functor ΨZ induces a functor Ψ̃Z : IndCoh(Z)conn /Y → QCoh(Z)conn /Y.

5But we won’t be concerned with what these categories are, inasmuch as they receive fully faithful functors
from QCoh(LocSysP )conn /LocSysG

.



NOTES ON SINGULAR SUPPORT AND SPECTRAL GLUING 7

1.6.4. As P ∈ ParG varies, we obtain a functor

IndCoh(LocSysG)→ lim
P∈ParG

IndCoh(LocSysP )conn /LocSysG

We would like to apply Ψ̃LocSysP to each term in the limit, but these functors only lax-commute
with pullbacks on IndCoh(LocSysP )conn /LocSysG

.

Remark 1.24. We recall the formation of lax-limits of DG categories. Suppose Ci is a family
of DG categories indexed by i ∈ I. Equivalently, we have a co-Cartesian fibration C→ I whose
fiber at i ∈ I is Ci. Then lax- lim

i∈I
(Ci) is the category of all sections of C→ I. We have:

lim
i∈I

(Ci) ↪→ lax- lim
i∈I

(Ci)

consisting of co-Cartesian sections.

The above procedure defines a functor

IndCoh(LocSysG)→ lim
P∈ParG

IndCoh(LocSysP )conn /LocSysG

Ψ̃LocSysG−−−−−−→ lax- lim
P∈ParG

QCoh(LocSysP )conn /LocSysG
.

Theorem 1.25 (B). This composition is fully faithful on IndCohN(LocSysG).

This is what we call the “spectral gluing” theorem. You may know that attached to Ǧ and P̌
are certain “degenerate” Whittaker categories Whit(Ǧ; P̌ ), and there are fully faithful functors
QCoh(LocSysP )conn /LocSysG

↪→Whit(Ǧ; P̌ ). Together, we obtain an embedding:

lax- lim
P∈ParG

QCoh(LocSysP )conn /LocSysG
↪→ lax- lim

P̌∈ParǦ

Whit(Ǧ; P̌ ). (1.1)

On the other hand, we conjecture that D-Mod(BunǦ) embeds fully faithfully in the right hand
side. Hence, in order to define the Langlands transform IndCohN(LocSysG)→ D-Mod(BunǦ),
we may pass through (1.1) and compare the images of IndCohN(LocSysG) and D-Mod(BunǦ)

inside lax- lim
P̌∈ParǦ

Whit(Ǧ; P̌ ). This is why Theorem (B) is important for us.
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