1. (Stereographic projection) Let
\[S^n := \{ (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} | x_1^2 + x_2^2 + \cdots + x_{n+1}^2 = 1 \} \subset \mathbb{R}^{n+1} \]
be equipped with the subset topology. That is, a set \(V \subset S^n \) is open if \(V = S^n \cap U \) for an open set \(U \subset \mathbb{R}^{n+1} \). Let \(N = (0, \ldots, 0, 1) \) be the North pole, and \(S = (0, \ldots, 0, -1) \) be the south pole. Define \(\pi_1 : S^n - \{ N \} \rightarrow \mathbb{R}^n \) (resp. \(\pi_2 : S^n - \{ S \} \rightarrow \mathbb{R}^n \)) so that \((\pi_1(p), 0)\) (resp. \((\pi_2(p), 0)\)) is the point where the line passing through \(N \) (resp. \(S \)) and \(p \) intersects the hyperplane \(\{ x_{n+1} = 0 \} \).

(a) Prove that \(\Phi := \{ (S^n - \{ N \}, \pi_1), (S^n - \{ S \}, \pi_2) \} \) is a \(C^\infty \) atlas on \(S^n \).

(b) Prove that \((S^n, \Phi)\) is a smooth submanifold on \(\mathbb{R}^{n+1} \). That is, the smooth structure defined by the \(\Phi \) coincides with the smooth structure induced on \(S^n \) as a submanifold of \(\mathbb{R}^{n+1} \).

2. Suppose \(X \) is a connected topological space. Assume that \(X \) is Hausdorff, and locally euclidean of dimension \(n \); that is, \(X \) can be covered by charts \((U_\alpha, \phi_\alpha)\) such that \(\phi_\alpha : U_\alpha \rightarrow \mathbb{R}^n \) is a homeomorphism. The following three properties are equivalent

(a) \(X \) is second countable. That is, there is a countable collection of open sets \(\{U_i\}_{i \in \mathbb{N}} \) such that, for an open set \(W \) we can write \(W = \bigcup U_{i_k} \) for some \(i_k \). For example, \(\mathbb{R}^n \) is second countable, where the \(U_i \) can be taken to be open balls centered on rational points, and with rational radii.

(b) \(X \) is paracompact.

(c) There exist compact sets \(\{K_i\}_{i \in \mathbb{N}} \) such that \(K_i \subset \text{int}(K_{i+1}) \) and \(X = \bigcup K_i \). That is, \(X \) has a compact exhaustion.

Prove that (b) and (c) are equivalent. **Here is a “hint”.** To prove \((b) \Rightarrow (c) \), cover \(X \) by open sets which are preimages, under \(\phi_\alpha \) of open balls (with compact closure). By paracompactness, you can take a locally finite refinement \(\{V_\alpha\}_{\alpha \in A} \) all of which have compact closure. Use these sets to construct \(K_i \) iteratively. To prove \((c) \Rightarrow (b) \), let \(\{V_\alpha\} \) be any open cover. Since \(X \) is Hausdorff, compact sets are closed, and so \(E_{i,j} := K_i - \text{int}(K_j) \) is compact for \(j > i \). Take a finite subcover of the \(\{V_\alpha\} \) covering \(E_{i+1,i} \), and set \(W_{\alpha,i} = V_\alpha \cap \text{int}(E_{i+2,i-1}) \).

Show that the resulting collection \(\{W_{\alpha,i}\} \) is a locally finite refinement. For fun, prove the equivalence of \((a)/(b) \) and \((c) \).
3. If M, N are connected, smooth manifolds, then the product $M \times N$ can be made into a smooth manifold using the **product manifold** structure. Given patches (U, ϕ) on M and (V, ψ) on N we use $(U \times V, \phi \times \psi)$ as a patch on $M \times N$. Show that this makes $M \times N$ into a smooth manifold. To show $M \times N$ is paracompact, use the preceding problem.

4. Let (x, y, z) be coordinates on \mathbb{R}^3. Let Y_r be the set of points in \mathbb{R}^3 at distance $r > 0$ from the circle

\[C = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1, y = 0\} \]

(a) Let $A = \{r \in (0, \infty) | Y_r \text{ is a submanifold of } \mathbb{R}^3\}$. Find A.

(b) Let S^1 be equipped with the smooth structure given by stereographic projection (see (1)), and let $S^1 \times S^1$ be equipped with the product manifold structure (see below). Prove that Y_r is diffeomorphic to $S^1 \times S^1$ for any $r \in A$.