Pontryagin Duality
(and Fourier inversion and the Plancherel theorem, oh my!)

Siyen Daniel Li-Huerta

October 8, 2020
Let G be an abelian locally compact topological group. Let m be a Haar measure on G. For any measurable $f : G \to \mathbb{C}$ and $1 \leq p < \infty$, define the L^p-norm

$$
\|f\|_p = \left(\int_G \, dx \, |f(x)|^p \right)^{1/p} \in \mathbb{R}_{\geq 0} \cup \{\infty\}.
$$

This gives $C_c(G)$ the structure of a pre-Banach space over \mathbb{C}.

Write $L^p(G)$ for the completion of $C_c(G)$ with respect to $\|\cdot\|_p$. Then $L^p(G)$ is a Banach space over \mathbb{C}, and recall we can identify it with

$$
\{f : G \to \mathbb{C} \mid f \text{ is measurable, and } \|f\|_p < \infty\}/\sim,
$$

where $f \sim g$ if and only if $f = g$ outside a subset of measure zero, i.e. almost everywhere.

Definition

Let $f : G \to \mathbb{C}$ be in $L^1(G)$. Its **Fourier transform** is the function $\hat{f} : \hat{G} \to \mathbb{C}$ given by $\chi \mapsto \int_G \, dx \, f(x) \chi^{-1}(x)$.
Note that the triangle inequality yields

\[|\hat{f}(\chi)| = \left| \int_G \, dx \, f(x)\chi^{-1}(x) \right| \leq \int_G \, dx \, |f(x)| = \|f\|_1. \]

Example

- Let \(G = \mathbb{Z}/n\mathbb{Z} \) with the discrete topology, and let \(m \) be the counting measure. Then every function \(f : G \rightarrow \mathbb{C} \) lies in \(L^1(G) \), and \(\hat{f}(\zeta) = \sum_{k=1}^{n} f(k)\zeta^{-k} \) for any \(n \)-th root of unity \(\zeta \).

- Let \(G = \mathbb{Z} \) with the discrete topology, and let \(m \) be the counting measure. Then \(f : G \rightarrow \mathbb{C} \) lies in \(L^1(G) \) if and only if \(\sum_{k=-\infty}^{\infty} |f(k)| \) is finite, and in that case \(\hat{f}(z) = \sum_{k=-\infty}^{\infty} f(k)z^{-k} \) for any \(z \) in \(S^1 \).

- Let \(G = S^1 \), and let \(m \) be the pushforward of the Lebesgue measure via \(\varphi : [0, 1] \rightarrow S^1 \). Let \(f : G \rightarrow \mathbb{C} \) be in \(L^1(G) \). Then

\[\hat{f}(k) = \int_{S^1} \, dz \, f(z)z^{-k} = \int_{0}^{1} \, dx \, f(\varphi(x))e^{-2\pi kix}, \]

i.e. \(\hat{f}(k) \) is the \(k \)-th Fourier coefficient of the periodic function \(f \circ \varphi \).
Theorem (Plancherel)

There exists a Haar measure \hat{m} on \hat{G} such that, for all f in $L^1(G) \cap L^2(G)$, its Fourier transform \hat{f} lies in $L^2(\hat{G})$ and satisfies $\|f\|_2 = \|\hat{f}\|_2$. Furthermore, the set of all such \hat{f} is dense in $L^2(\hat{G})$.

We call \hat{m} the dual measure on \hat{G}. Note this implies that $f \mapsto \hat{f}$ extends to an isometry $L^2(G) \sim \to L^2(\hat{G})$, which we also denote using $\hat{\cdot}$.

Next, let x be in G. Consider the group homomorphism $\text{ev}_x : \hat{G} \to S^1$ given by $\chi \mapsto \chi(x)$.

Proposition

The homomorphism ev_x is continuous.

Proof.

We have to show $\text{ev}_x^{-1}(N(1)) = \{\chi \in \hat{G} \mid \chi(x) \subseteq N(1)\}$ is open. But this equals $W(\{x\}, 1, \sqrt{3})$, so it’s open.

Hence we get a map $\text{ev} : G \to \hat{G}$, which we see is a group homomorphism.
Theorem (Pontryagin duality)

The map ev is an isomorphism of topological groups.

Example

- Let $G = \mathbb{Z}/n\mathbb{Z}$ with the discrete topology. Recall we identified $\hat{G} \sim \{\zeta \in \mathbb{C} \mid \zeta^n = 1\}$ via $\chi \mapsto \chi(1)$. By choosing a primitive n-th root of unity, we see that $\mathbb{Z}/n\mathbb{Z} \sim \hat{G}$ under this identification via $k \mapsto (\zeta \mapsto \zeta^k)$. As $\chi(1)^k = \chi(k)$, this shows ev is an isomorphism of groups. Since \hat{G} is discrete, it’s a homeomorphism.

- Let $G = \mathbb{Z}$ with the discrete topology. Similarly, we have $\hat{G} \sim S^1$ via $\chi \mapsto \chi(1)$. Recalling also that $\mathbb{Z} \sim \hat{G}$ via $k \mapsto (z \mapsto z^k)$, the observation $\chi(1)^k = \chi(k)$ shows that ev is an isomorphism of topological groups here too.

We use ev to identify \hat{G} with G. Thus m yields a Haar measure on \hat{G}.

Theorem (Fourier inversion)

Let \(f \) be in \(L^2(G) \). Then \(f(x) = \hat{f}(x^{-1}) \) almost everywhere on \(G \).

Example

Let \(G = S^1 \) with the usual measure \(m \), and let \(f \) be in \(L^2(G) \). Since \(\hat{m} \) is a Haar measure on \(\hat{G} = \mathbb{Z} \), it equals \(c \) times the counting measure for some \(c > 0 \). Taking \(f = 1 \) in the Fourier inversion formula yields

\[
1 = c \sum_{k=-\infty}^{\infty} \hat{f}(k)(z^{-1})^{-k} = c,
\]

since \(\hat{f} \) equals the indicator function on 0. Thus \(\hat{m} \) equals the counting measure. For general \(f \) in \(L^2(G) \), Fourier inversion then becomes

\[
f(\varphi(x)) = f(z) = \sum_{k=-\infty}^{\infty} \hat{f}(k)(z^{-1})^{-k} = \sum_{k=-\infty}^{\infty} \hat{f}(k)e^{2\pi ki x},
\]

where we set \(z = \varphi(x) \). This is precisely the Fourier expansion of \(f \circ \varphi \).
Next, let’s discuss Pontryagin duality relates to closed subgroups.

Proposition

Let \(H \) be a closed subgroup of \(G \).

1. \(H \) is an abelian locally compact topological group.
2. \(G/H \) is an abelian locally compact topological group.

Proof.

1. Now \(H \) is immediately an abelian Hausdorff topological group. For any open subset \(U \) of \(G \) with compact closure, \(W = U \cap H \) is open in \(H \), and \(\text{cl}_H W = \text{cl}_G U \cap H \) is a closed subset of \(\text{cl}_G U \), thus compact.

2. Since \(H \) is closed, we see \(G/H \) is an abelian Hausdorff topological group. Let \(U \) be a neighborhood of \(1 \) in \(G \) with compact closure. Because the quotient map \(\pi : G \to G/H \) is open, we see \(\pi(U) \) is a neighborhood of \(1 \) in \(G/H \). Now \(\pi(\overline{U}) \) is compact and hence closed, as \(G/H \) is Hausdorff. Thus \(\overline{\pi(U)} \subseteq \pi(\overline{U}) \) is also compact.

Note that we can identify \(\hat{G}/H \) with \(\{ \chi \in \hat{G} \mid \chi(H) = 1 \} \) as groups.
Proposition

This identifies \(\hat{G}/H \) as a closed subgroup of \(\hat{G} \), and we have a short exact sequence of topological groups \(1 \to \hat{G}/H \to \hat{G} \to \hat{H} \to 1 \), where \(\hat{G} \to \hat{H} \) is given by restriction.

Example

Let \(G = F \) be a local field, and let \(\psi : G \to S^1 \) be a nontrivial continuous homomorphism. For any \(a \) in \(G \), the homomorphism \(\psi_a : G \to S^1 \) given by \(x \mapsto \psi(ax) \) is continuous, since multiplication by \(a \) is continuous. I claim this yields an isomorphism \(\psi : G \to \hat{G} \) of topological groups.

It is injective because if \(\psi(ax) = 1 \) for all \(x \) in \(G \), the nontriviality of \(\psi \) implies that \(a = 0 \). Next, consider the closed subgroup \(H = \overline{\psi(G)} \) of \(\hat{G} \). We can identify \(\hat{G}/H \) with the group \(\{ \chi \in \hat{G} \mid \chi(H) = 1 \} \). This group is trivial, since \(H \supseteq \overline{\psi(G)} \), and if \(\psi(ax) = 1 \) for all \(a \) in \(G \), then \(x = 0 \) as before. Thus the proposition shows \(\hat{G} \sim \hat{H} \), and Pontryagin duality gives \(H = \hat{G} \).
Example (continued)

If we could show \(\psi \) is a homeomorphism onto its image, we’d be done, because \(\psi(G) \) would be locally compact and hence closed. For continuity, let \(a \) be in \(G \), and consider the neighborhood \(W(B_c(0, r), 1, \sqrt{3})\psi_a \) of \(\psi_a \). As \(\psi \) is continuous, we see \(\psi(VB_c(0, r)) \) lies in \(N(1) \) for a small enough neighborhood \(V \) of \(1 \). Thus \(\psi(V) \) lies in \(W(B_c(0, r), 1, \sqrt{3}) \), implying that \(\psi \) sends \(V + a \) to \(W(B_c(0, r), 1, \sqrt{3})\psi_a \).

For openness, let \(x_0 \neq 0 \) in \(G \) satisfy \(\psi(x_0) \neq 1 \), and consider the neighborhood \(B_o(a, \epsilon) \) of \(a \). Any \(\psi_b \) in \(W(B_c(0, |x_0|/\epsilon), 1, |\psi(x_0) - 1|) \) must not have \(x_0 \) in \(bB_c(0, |x_0|/\epsilon) \). Therefore \(|x_0| > |b|(|x_0|/\epsilon) \) and hence \(\epsilon > |b| \), implying that \(\psi^{-1} \) sends \(W(B_c(0, |x_0|/\epsilon), 1, |\psi(x_0) - 1|) \) to \(B_o(a, \epsilon) \).

Our flexibility in choosing \(\psi \) for this isomorphism is convenient for making calculations.
Example

Let $G = \mathbb{R}$, and let m be the Lebesgue measure on G. Choose $\psi = \varphi$, and let f be in $L^1(G)$. Under the above identification, the Fourier transform of f is given by

$$\hat{f}(a) = \int_{\mathbb{R}} dx \, f(x)\psi_a(x)^{-1} = \int_{-\infty}^{\infty} dx \, f(x)e^{-2\pi ai x},$$

i.e. it’s the usual Fourier transform. Since \hat{m} is a Haar measure on $\hat{G} \cong G$, it equals c times m for some $c > 0$. Taking $f(x) = e^{-\pi x^2}$ in the above yields $\hat{f}(a) = e^{-\pi a^2}$. Thus $c = 1$, i.e. the Lebesgue measure on \mathbb{R} is self-dual with respect to this choice of ψ.

Suppose now that f lies in $L^1(G) \cap L^2(G)$. Fourier inversion then becomes

$$f(x) = \int_{\mathbb{R}} da \, \hat{f}(a)\psi_a(-x)^{-1} = \int_{-\infty}^{\infty} da \, \hat{f}(a)e^{2\pi ai x},$$

i.e. it’s the classic Fourier inversion formula.