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The chromatic convergence theorem implies that the homotopy groups of the p-local sphere spectrum
S(p) can be recovered as the inverse limit of the tower

· · · → π∗LE(2)S → π∗LE(1)S → π∗LE(0)S.

The bottom of this tower is easy to understand: it is the rational sphere SQ, which is homotopy equivalent
to the Eilenberg-MacLane spectrum HQ. Our goal in this lecture is to understand the next step up in the
tower, LE(1)S. For simplicity, we will assume that p > 2.

Our first step is to describe the K(1)-local sphere. Our starting point is the following:

Lemma 1. For each n, the spectrum E(n) is K(n)-local.

Proof. Recall that E(n) is the even periodic Landweber exact spectrum associated to the Lubin-Tate ring
R = W (k)[[u1, . . . , un−1]] associated to a formal group of height n over a perfect field k of characteristic p.

Choose a cofiber sequence
X → S(p) → Ltn−1S(p)

where X is a filtered colimit of p-local finite spectra DFα of type ≥ n. The dual DX is given by the homo-
topy inverse limit of a pro-spectrum {Fα}. Taking MU-homology, we get a pro-system of π∗MU-modules
MU∗{Fα}; the theory of vn-self maps shows that this pro-system can be identified with {π∗MU /(vN0 , v

N
1 , . . . , v

N
n−1}N≥0.

Since E(n) is Landweber exact, we conclude that the pro-system E(n)∗{Fα} is equivalent to {π∗E(n)/(vN0 , . . . , v
N
n−1}.

Since R is complete with respect to its maximal ideal, we conclude that the natural map E(n)→ lim←−E(n)Fα

is a homotopy equivalence. To prove that E(n) is K(n)-local, it therefore suffices to show that each E(n)Fα
is K(n)-local. Let Y be a K(n)-acyclic spectrum; we wish to show that every map Y → E(n)Fα is null-
homotopic. This map is adjoint to a map Y ⊗ Fα → E(n). To show that such a map is nullhomotopic, it
suffices to show that E(n)∗(Y ⊗ Fα) ' 0. This is equivalent to the statement that K(m)∗(Y ⊗ Fα) ' 0 for
m ≤ n. If m < n, this follows from the fact that Fα has type ≥ n; if m = n, it follows from our assumption
that Y is K(n)-acyclic.

Let us now fix our notation a bit more precisely: choose a formal group f of height n over Fpn such that
all endomorphisms of f are defined over Fpn , and let E(n) be the variant of Morava E-theory associated to
this formal group. Then, in the homotopy category of spectra, E(n) is acted on by a group G which fits into
an exact sequence

0→ End(f)× → G→ Gal(Fpn/Fp)→ 0.

In fact, the situation turns out to be even better than this: one can promote the “action of G on E(n)
up to homotopy” to a “homotopy coherent” action of G, which is continuous (with respect to the profinite
topology on G). In this context, one can extract a continuous homotopy fixed point spectrum E(n)G, which
one can prove is equivalent to LK(n)S.

All of this requires technology beyond the scope of this course. However, when n = 1 and p is odd, there
is a lowbrow alternative. In this case, we can identify E(n) with the p-adically completed K-theory spectrum
K̂. The group G can be identified with the group Z×p of p-adic units, which breaks up as a product

µp−1 × (1 + pZp)×
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where the first factor is the finite group of (p − 1)st roots of unity and the second is a pro-p group. When
p > 2, the second group is actually the cyclic pro-p group: it is generated, for example, by the element
1 + p ∈ 1 + pZp.

Remark 2. It is easy to describe the induced action on π∗K̂. For any complex orientable cohomology
theory E, we can identify π2E with the dual of the Lie algebra of the associated formal group. Note that
the action of Z×p on K̂ is induced by its action on the multiplicative formal group f(x, y) = x+ y+ xy. The
action of Z×p on π2K̂ is therefore given by differentiating the action of Z×p on the formal group itself: that
is, it is given by the identity character of Z×p . Since π∗K̂ ' Zp[β±1] and Z×p acts by ring homomorphisms,
we conclude that Z×p acts by the nth power of the identity character on π2nZp.

If n ∈ Z×p , we will denote the corresponding map K̂ → K̂ by ψn. One can show that these operations
agree with the classical Adams operations in complex K-theory (which provides another proof of Remark 2).

If p is odd, then the group Z×p is topologically cyclic: it has a generator given by g = (ζ, p + 1), where
ζ is any primitive (p− 1)st root of unity. Consequently, we should expect taking continuous Z×p homotopy
fixed points to be easy: they should be given by the homotopy fiber of the map

K̂
1−ψg→ K̂.

Let us denote this homotopy fiber by F .

Proposition 3. The map α : S → F induces an isomorphism on K(1)-homology.

Proof. Recall that K(1) can be realized as a summand of K̂/p. It will therefore suffice to show that α
induces an equivalence in K̂/p-homology. Since K̂ is Landweber exact, we have

K̂0(K̂/p) ' π0K̂ ⊗L (MP0 MP)⊗L π0K̂/p

(moreover, the homologies in all even degrees are the same by periodicity, and the homologies in odd
degrees vanish). This is the Fp-algebra which classifies isomorphisms of the multiplicative formal group with
itself: that is, the algebra A of continuous Fp-valued functions on the profinite group Z×p . In terms of this
identification, the operation ψg is given by translation by g. We observe that 1 − ψg is a surjective map
from A to itself, and its kernel is the one-dimensional Fp-vector space of constant functions on Z×p . Using
the long exact sequence

(K̂/p)∗F → (K̂/p)∗K̂
1−ψg→ (K̂/p)∗K̂,

we conclude that (K̂/p)∗F ' Fp[β±1] ' (K̂/p)∗S.

Since K̂ is K(1)-local, the spectrum F is also K(1)-local. It follows that:

Corollary 4. The map S → F exhibits F as the K(1)-localization of S. In other words, the K(1)-local
sphere LK(1)S is given by the homotopy fiber of the map 1− ψg : K̂ → K̂

It follows that we have a long exact sequence

πnK̂
1−ψg→ πnK̂ → πn−1LK(1)S → πn−1K̂

which we can use to compute the homotopy groups of LK(1)S. We note that ψg is the identity on π0K̂ ' Zp,
so that 1− ψg vanishes on π0 and we get isomorphisms

π0LK(1)S ' π−1LK(1)S ' Zp.

The groups πnK̂ vanish if n is odd. On π2mK̂, the map 1 − ψg is given by 1 − gm (Remark 2), and is
therefore always injective for m 6= 0. Using the long exact sequence, we see that the even homotopy groups
of LK(1)S vanish (except in degree zero), and we have an isomorphism π2m−1LK(1)S ' Zp/(1− gm).
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The cardinality of this group depends on m. If m is not divisible by p− 1, then gm − 1 is a unit modulo
p so that π2m−1LK(1)S vanishes. If m = (p − 1)m′, then gm = (gp−1)m

′
where gp−1 is a generator for

the topologically cyclic pro-p-group (1 + pZp)×. If we write m′ = pkm′′, where m′′ is prime to p, then gm

generates the cyclic subgroup (1 + pk+1Zp)×, so that 1− gm is a generator for pk+1Zp ⊆ Zp. We conclude:

Theorem 5. The homotopy groups of LK(1)S are given as follows:

πnLK(1)S '


Zp if n = 0,−1
Z/pk+1Z if n+ 1 = (p− 1)pkm,m 6≡ 0 mod p

0 otherwise.

From Theorem 5 it is easy to describe the E(1)-local sphere. Recall that we have a homotopy pullback
square

LE(1)S //

��

LK(1)S

��
LE(0)S // LE(0)LK(1)S.

The localization LE(0)S is just the Eilenberg-MacLane spectrumHQ. Theorem 5 implies that πnLE(0)LK(1)S '
Qp for n = 0, 1 and vanishes otherwise. Using the long exact sequence

· · · → πn+1LE(0)LK(1)S → πnLE(1)S → πnLK(1)S ⊕ πnLE(0)S →→ πnLE(0)LK(1)S → · · · ,

we conclude that πnLE(1)S ' πnLK(1)S unless n ∈ {0,−1,−2}. In these degrees, we have an exact sequence

0→ π0LE(1)S → Zp ⊕Q→ Qp → π−1LE(1)S → Zp → Qp → π−2LE(1)S → 0.

Collecting these facts together, we obtain:

Theorem 6. The homotopy groups of LE(1)S are given as follows:

πnLK(1)S '


Z if n = 0
Qp /Zp if n = −2
Z/pk+1Z if n+ 1 = (p− 1)pkm,m 6≡ 0 mod p

0 otherwise.

There is an evident map π∗S(p) → π∗LE(1)S, whose kernel is the second step in the chromatic filtration of
π∗S(p). This map is obviously not surjective, since π∗S(p) is concentrated in positive degrees, while π∗LE(1)S
is not. However, this turns out to be the only obstruction: the map πnS(p) → πnLE(1)S is surjective for
n ≥ 0. In other words, if n > 0, then every class in πnLE(1)S ' πnMn(S) survives the chromatic spectral
sequence. This is a result of Adams; let us briefly describe (without proof) the ideas involved.

Let O(k) denote the orthogonal group of a k-dimensional vector space. Then O(k) acts on the 1-point
compactification of Rk, fixing the point at infinity; this compactification can be identified with Sk. In
particular, given a pointed map X → O(k) for any space X, we get a map X ∧ Sk → Sk. Taking X to
be a sphere, we get a map πnO(k) → [Sn+k, Sk]. Taking the limit as k 7→ ∞, we get a homomorphism
πnO → πnS, where O denotes the infinite orthogonal group and S the sphere spectrum. This map is called
the J-homomorphism.

The relationship between the J-homomorphism and the first chromatic layer can be stated as follows:

Theorem 7. Let =(J)n denote the image of the J-homomorphism πnO → πnS → πnS(p). For n > 0,
the map S(p) → LE(1)S induces an isomorphism θ : =(J)n → πnLE(1)S. In particular, the map πnS(p) →
πnLE(1)S is surjective.
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The proof consists of two parts: proving that θ is injective and proving that θ is surjective. The surjectivity
is not far from what we have done in class: we already know that each πnLE(1)S is a cyclic group, so it
suffices to show that θ hits a generator of the group; this can be proven by an explicit calculation.

Remark 8. The description of the image of the J-homomorphism was an important precursor to the
development of the chromatic picture of homotopy theory: many of the ideas we have discussed had their
origins in attempting to explain (and generalize) the “periodic behavior” exhibited by the image of the J
homomorphism.
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