The Image of J (Lecture 35)
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The chromatic convergence theorem implies that the homotopy groups of the p-local sphere spectrum
S(py can be recovered as the inverse limit of the tower

The bottom of this tower is easy to understand: it is the rational sphere Sq, which is homotopy equivalent
to the Eilenberg-MacLane spectrum H Q. Our goal in this lecture is to understand the next step up in the
tower, Lp(1)S. For simplicity, we will assume that p > 2.

Our first step is to describe the K (1)-local sphere. Our starting point is the following:

Lemma 1. For each n, the spectrum E(n) is K(n)-local.

Proof. Recall that E(n) is the even periodic Landweber exact spectrum associated to the Lubin-Tate ring
R =W (k)[[u1,-..,un—1]] associated to a formal group of height n over a perfect field &k of characteristic p.
Choose a cofiber sequence
X = S = Ly 15

where X is a filtered colimit of p-local finite spectra DF,, of type > n. The dual DX is given by the homo-
topy inverse limit of a pro-spectrum {F, }. Taking MU-homology, we get a pro-system of 7, MU-modules
MU, {F,}; the theory of v,,-self maps shows that this pro-system can be identified with {m. MU /(v{’, vV, ... v
Since E(n) is Landweber exact, we conclude that the pro-system E(n).{F,} is equivalent to {m. E(n)/(v}’,... v
Since R is complete with respect to its maximal ideal, we conclude that the natural map E(n) — lim E (n)Fe
is a homotopy equivalence. To prove that E(n) is K(n)-local, it therefore suffices to show that each E(n)%«
is K (n)-local. Let Y be a K(n)-acyclic spectrum; we wish to show that every map Y — E(n)fe is null-
homotopic. This map is adjoint to a map ¥ ® F,, — E(n). To show that such a map is nullhomotopic, it
suffices to show that E(n).(Y ® F,,) ~ 0. This is equivalent to the statement that K(m).(Y ® F,) ~ 0 for
m < n. If m < n, this follows from the fact that F}, has type > n; if m = n, it follows from our assumption
that Y is K (n)-acyclic. O

Let us now fix our notation a bit more precisely: choose a formal group f of height n over F,» such that
all endomorphisms of f are defined over Fp», and let E(n) be the variant of Morava E-theory associated to
this formal group. Then, in the homotopy category of spectra, E(n) is acted on by a group G which fits into
an exact sequence

0 — End(f)* — G — Gal(Fy=/F,) — 0.

In fact, the situation turns out to be even better than this: one can promote the “action of G on E(n)
up to homotopy” to a “homotopy coherent” action of G, which is continuous (with respect to the profinite
topology on ). In this context, one can extract a continuous homotopy fixed point spectrum E(n)%, which
one can prove is equivalent to Lg(y)S.

All of this requires technology beyond the scope of this course. However, when n = 1 and p is odd, there
is a lowbrow alternative. In this case, we can identify E(n) with the p-adically completed K-theory spectrum
K. The group G can be identified with the group Z,; of p-adic units, which breaks up as a product

pp—1 % (1 +pZyp)™



where the first factor is the finite group of (p — 1)st roots of unity and the second is a pro-p group. When
p > 2, the second group is actually the cyclic pro-p group: it is generated, for example, by the element
1+pel+pZ,.

Remark 2. It is easy to describe the induced action on m.K. For any complex orientable cohomology
theory F, we can identify ma £ with the dual of the Lie algebra of the associated formal group. Note that
the action of Z;; on K is induced by its action on the multiplicative formal group f (z,y) =z +y+ay. The

action of Z on T K is therefore given by differentiating the action of Z; on the formal group itself: that

is, it is given by the identity character of Z;. Since T K ~ Z,[3*] and Z, acts by ring homomorphisms,
we conclude that Z, acts by the nth power of the identity character on m2,Zy.

If n € Z;;, we will denote the corresponding map K—K by ¥™. One can show that these operations

agree with the classical Adams operations in complex K-theory (which provides another proof of Remark 2).

If p is odd, then the group Z; is topologically cyclic: it has a generator given by g = ({,p+ 1), where
¢ is any primitive (p — 1)st root of unity. Consequently, we should expect taking continuous Z; homotopy
fixed points to be easy: they should be given by the homotopy fiber of the map

'YK
Let us denote this homotopy fiber by F.
Proposition 3. The map « : S — F induces an isomorphism on K (1)-homology.

Proof. Recall that K (1) can be realized as a summand of K /p. Tt will therefore suffice to show that «
induces an equivalence in K /p-homology. Since K is Landweber exact, we have

[?o(f?/p) >~ Wol? XL (MPO MP) XL Tl'o[?/p

(moreover, the homologies in all even degrees are the same by periodicity, and the homologies in odd
degrees vanish). This is the Fj-algebra which classifies isomorphisms of the multiplicative formal group with
itself: that is, the algebra A of continuous Fj-valued functions on the profinite group Z,. In terms of this
identification, the operation 9 is given by translation by g. We observe that 1 — 9 is a surjective map
from A to itself, and its kernel is the one-dimensional F-vector space of constant functions on Z;. Using
the long exact sequence

(K/p)oF — (K/p). K — (K/p).K,
we conclude that (K /p).F ~ F,[3%] ~ (K /p).S. O
Since K is K (1)-local, the spectrum F is also K (1)-local. It follows that:

Corollary 4. The map S — F exhibits F as the K(1)-localization of S. In other words, the K(1)-local
sphere Ly (1)S is given by the homotopy fiber of the map 1 —¢9: K — K

It follows that we have a long exact sequence

~ —ah9 ~ o~
T K 1y Tl — Ty 1 Lg1)S — mp1 K

which we can use to compute the homotopy groups of L (1)S. We note that 19 is the identity on WOIA( ~Zp,
so that 1 — 9 vanishes on 7y and we get isomorphisms

7T0LK(1)S ~ 7T_1LK(1)S =~ Zp.

The groups T, K vanish if n is odd. On 7r2mf(, the map 1 — 49 is given by 1 — ¢™ (Remark 2), and is
therefore always injective for m # 0. Using the long exact sequence, we see that the even homotopy groups
of L 1)S vanish (except in degree zero), and we have an isomorphism o, 1L 1)S ~ Zp/(1 — g™).



The cardinality of this group depends on m. If m is not divisible by p — 1, then g™ — 1 is a unit modulo
p so that mop_1Lg(1)S vanishes. If m = (p — 1)m/, then g™ = (g~ 1)™" where gP~1 is a generator for
the topologically cyclic pro-p-group (1 + pZ,)*. If we write m’ = p*m”, where m” is prime to p, then g™
generates the cyclic subgroup (1 + pkHZp)X, so that 1 — g™ is a generator for pkHZp C Z,. We conclude:

Theorem 5. The homotopy groups of Ly 1)S are given as follows:

Z, ifn=0,-1
TLgyS ~ Z/p*Z  ifn+1=(p—1)pfm,m#0 mod p
0 otherwise.

From Theorem 5 it is easy to describe the E(1)-local sphere. Recall that we have a homotopy pullback
square
LE(l)S B — LK(l)S

LE(O)S E— LE(O)LK(l)S-

The localization Lg(g)S is just the Eilenberg-MacLane spectrum H Q. Theorem 5 implies that m, L o) Lk (1)S =~
Q,, for n = 0,1 and vanishes otherwise. Using the long exact sequence

« = Tnt1Lpo) Lr)S = mlpq)S — mnlk)S © mlp)S —>— mlpo)LrwS — -,
we conclude that 7, Lg1)S ~ 7, Lg(1)S unless n € {0, —1, —2}. In these degrees, we have an exact sequence
0—=moLlp1)S =2, ®Q— Q, > m_1Lp)S = Zp — Q, > m—2Lpu)S — 0.
Collecting these facts together, we obtain:

Theorem 6. The homotopy groups of Lg1)S are given as follows:

Z ifn=0

Q, /Z, ifn=-2

Z/p"Z ifn+1=(p—1)p"m,m#0 modp
0 otherwise.

WnLK(l)S ~

There is an evident map 7..5(,) — T« Lp(1)S, whose kernel is the second step in the chromatic filtration of
74S(p). This map is obviously not surjective, since 7.5, is concentrated in positive degrees, while 7. Lpg(1)S
is not. However, this turns out to be the only obstruction: the map m,S(,) — mnLp@)S is surjective for
n > 0. In other words, if n > 0, then every class in m,Lg1)S ~ 7, M,(S) survives the chromatic spectral
sequence. This is a result of Adams; let us briefly describe (without proof) the ideas involved.

Let O(k) denote the orthogonal group of a k-dimensional vector space. Then O(k) acts on the 1-point
compactification of R¥, fixing the point at infinity; this compactification can be identified with S*. In
particular, given a pointed map X — O(k) for any space X, we get a map X A S¥ — S*. Taking X to
be a sphere, we get a map m,0(k) — [S"t* S*]. Taking the limit as k +— oo, we get a homomorphism
7,0 — m,5, where O denotes the infinite orthogonal group and S the sphere spectrum. This map is called
the J-homomorphism.

The relationship between the J-homomorphism and the first chromatic layer can be stated as follows:

Theorem 7. Let S(J), denote the image of the J-homomorphism m,O — 7,5 — TSy Formn > 0,
the map S,y — Lpn)S induces an isomorphism 0 : (J), — m,Lpn)S. In particular, the map 7,5y —
mnLpn)S is surjective.



The proof consists of two parts: proving that 6 is injective and proving that € is surjective. The surjectivity
is not far from what we have done in class: we already know that each m,Lg1)S is a cyclic group, so it
suffices to show that 6 hits a generator of the group; this can be proven by an explicit calculation.

Remark 8. The description of the image of the J-homomorphism was an important precursor to the
development of the chromatic picture of homotopy theory: many of the ideas we have discussed had their
origins in attempting to explain (and generalize) the “periodic behavior” exhibited by the image of the J
homomorphism.



