Unit 17: Taylor approximation

Lecture

17.1. Given a function \(f : \mathbb{R}^m \to \mathbb{R}^n \), its derivative \(df(x) \) is the Jacobian matrix. For every \(x \in \mathbb{R}^m \), we can use the matrix \(df(x) \) and a vector \(v \in \mathbb{R}^m \) to get \(D_v f(x) = df(x)v \in \mathbb{R}^n \). For fixed \(v \), this defines a map \(x \in \mathbb{R}^m \to df(x)v \in \mathbb{R}^n \), like the original \(f \). Because \(D_v \) is a map on \(\mathcal{X} = \{ \text{all functions from } \mathbb{R}^m \to \mathbb{R}^n \} \), one calls it an operator. The Taylor formula \(f(x + t) = e^{Dt} f(x) \) holds in arbitrary dimensions:

Theorem: \(f(x + tv) = e^{D_v t} f = f(x) + D_v f(x) \frac{t}{1!} + \frac{D_v^2 f(x)}{2!} t^2 + \cdots \)

17.2. Proof. It is the single variable Taylor on the line \(x + tv \). The directional derivative \(D_v f \) is there the usual derivative as \(\lim_{t \to 0} \frac{f(x + tv) - f(x)}{t} = D_v f(x) \). Technically, we need the sum to converge as well: like functions built from polynomials, \(\sin, \cos, \exp \).

17.3. The Taylor formula can be written down using successive derivatives \(df, d^2 f, d^3 f \) also, which are then called tensors. In the scalar case \(n = 1 \), the first derivative \(df(x) \) leads to the gradient \(\nabla f(x) \), the second derivative \(d^2 f(x) \) to the Hessian matrix \(H(x) \) which is a bilinear form acting on pairs of vectors. The third derivative \(d^3 f(x) \) then acts on triples of vectors etc. One can still write as in one dimension

Theorem: \(f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x-x_0)^2}{2!} + \cdots \)

if we write \(f^{(k)} = d^k f \). For a polynomial, this just means that we first write down the constant, then all linear terms then all quadratic terms, then all cubic terms etc.

17.4. Assume \(f : \mathbb{R}^m \to \mathbb{R} \) and stop the Taylor series after the first step. We get

\[L(x_0 + v) = f(x_0) + \nabla f(x_0) \cdot v . \]

It is custom to write this with \(x = x_0 + v, v = x - x_0 \) as

\[L(x) = f(x_0) + \nabla f(x_0) \cdot (x - x_0) \]

This function is called the **linearization** of \(f \). The kernel of \(L - f(x_0) \) is a linear manifold approximating the surface \(\{ x \mid f(x) - f(x_0) = 0 \} \). If \(f : \mathbb{R}^m \to \mathbb{R}^n \), then the just said can be applied to every component \(f_i \) of \(f \), with \(1 \leq i \leq n \). One can not stress enough the importance of this linearization. \(^1\)

\(^1\)Again: the linearization idea is utmost important because it brings in linear algebra.
17.5. If we stop the Taylor series after two steps, we get the function \(Q(x + v) = f(x) + df(x) \cdot v + \frac{1}{2} d^2 f(x) \cdot v^2 \). The matrix \(H(x) = d^2 f(x) \) is called the **Hessian matrix** at the point \(x \). It is also here custom to eliminate \(v \) by writing \(x = x_0 + v \).

\[
Q(x) = f(x_0) + \nabla f(x_0) \cdot (x - x_0) + (x - x_0) \cdot H(x_0)(x - x_0)/2
\]

is called the quadratic approximation of \(f \). The kernel of \(Q - f(x_0) \) is the quadratic manifold \(Q(x) - f(x_0) = x \cdot Bx + Ax = 0 \), where \(A = df \) and \(B = d^2 f/2 \). It approximates the surface \(\{ x \mid f(x) - f(x_0) = 0 \} \) even better than the linear one. If \(|x - x_0| \) is of the order \(\epsilon \), then \(|f(x) - L(x)| \) is of the order \(\epsilon^2 \) and \(|f(x) - Q(x)| \) is of the order \(\epsilon^3 \). This follows from the exact **Taylor with remainder formula**.

![Figure 1](image_url)

Figure 1. The manifolds \(f(x, y) = C, L(x, y) = C \) and \(Q(x, y) = C \) for \(C = f(x_0, y_0) \) pass through the point \((x_0, y_0) \). To the right, we see the situation for \(f(x, y, z) = C \). We see the best linear approximation and quadratic approximation. The gradient is perpendicular.

17.6. To get the **tangent plane** to a surface \(f(x) = C \) one can just look at the linear manifold \(L(x) = C \). However, there is a better method:

The tangent plane to a surface \(f(x, y, z) = C \) at \((x_0, y_0, z_0) \) is \(ax + by + cz = d \), where \([a, b, c]^T = \nabla f(x_0, y_0, z_0) \) and \(d = ax_0 + by_0 + cz_0 \).

17.7. This follows from the **fundamental theorem of gradients**:

Theorem: The gradient \(\nabla f(x_0) \) of \(f : \mathbb{R}^m \to \mathbb{R} \) is perpendicular to the surface \(S = \{ f(x) = f(x_0) = C \} \) at \(x_0 \).

Proof. Let \(r(t) \) be a curve on \(S \) with \(r(0) = x_0 \). The chain rule assures \(d/dt f(r(t)) = \nabla f(r(t)) \cdot r'(t) \). But because \(f(r(t)) = c \) is constant, this is zero assuring \(r'(t) \) being perpendicular to the gradient. As this works for any curve, we are done.

Examples

17.8. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be given as \(f(x, y) = x^3y^2 + x + y^3 \). What is the quadratic approximation at \((x_0, y_0) = (1, 1) \)? We have \(df(1, 1) = [4, 5] \) and

\[
\nabla f(1, 1) = \begin{bmatrix} f_x \\ f_y \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}, H(1, 1) = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = \begin{bmatrix} 6 & 6 \\ 6 & 8 \end{bmatrix}.
\]

2If \(f \in C^{n+1}, f(x + t) = \sum_{k=0}^{n} f^{(k)}(x) t^k / k! + \int_0^1 (t-s)^n f^{(n+1)}(x+s) ds / n! \) (prove this by induction!)
The linearization is $L(x, y) = 4(x - 1) + 5(y - 1) + 3$. The quadratic approximation is $Q(x, y) = 3 + 4(x - 1) + 5(y - 1) + 6(x - 1)^2/2 + 12(x - 1)(y - 1)/2 + 8(y - 1)^2/2$. This is the situation displayed to the left in Figure (1). For $v = [7, 2]^T$, the directional derivative $D_v f(1, 1) = \nabla f(1, 1) \cdot v = [4, 5]^T \cdot [7, 2] = 38$. The Taylor expansion given at the beginning is a finite series because f was a polynomial: $f([1, 1] + t[7, 2]) = f(1 + 7t, 1 + 2t) = 3 + 38t + 247t^2 + 1023t^3 + 1960t^4 + 1372t^5$.

17.9. For $f(x, y, z) = -x^4 + x^2 + y^2 + z^2$, the gradient and Hessian are

$$\nabla f(1, 1, 1) = \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \quad H(1, 1, 1) = \begin{bmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{bmatrix} = \begin{bmatrix} -10 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

The linearization is $L(x, y, z) = 2 - 2(x - 1) + 2(y - 1) + 2(z - 1)$. The quadratic approximation $Q(x, y, z) = 2 - 2(x - 1) + 2(y - 1) + 2(z - 1) + (-10(x - 1)^2 + 2(y - 1)^2 + 2(z - 1)^2)/2$ is the situation displayed to the right in Figure (1).

17.10. What is the tangent plane to the surface $f(x, y, z) = 1/10$ for $f(x, y, z) = 10z^2 - x^2 - y^2 + 100x^4 - 200x^6 + 100x^8 - 200x^2y^2 + 200x^4y^2 + 100y^4 = 1/10$ at the point $(x, y, z) = (0, 0, 1/10)$? The gradient is $\nabla f(0, 0, 1/10) = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$. The tangent plane equation is $2z = d$, where the constant d is obtained by plugging in the point. We end up with $2z = 2/10$. The linearization is $L(x, y, z) = 1/20 + 2(z - 1/10)$.

17.11. P.S. The following remark should maybe be skipped as many objects have not been properly introduced. The exterior derivative d for example will appear in the form of grad, curl, div later on and $d^2 = 0$ in the form curl grad f = 0. The quite deep remark illustrates how important the topic of Taylor series is if it is taken seriously.

The derivative d acts on anti-symmetric tensors (forms), where $d^2 = 0$. A vector field X then defines a Lie derivative $L_X = d + i_X d = (d + i_X)^2 = D^X_d$ with interior product i_X. For scalar functions and the constant field $X(x) = v$, one gets the directional derivative $D_v = i_X d$. The projection i_X in a specific direction can be replaced with the transpose d^T of d. Rather than transport along X, the signal now radiates everywhere. The operator $d + i_X$ becomes then the Dirac operator $\mathcal{D} = d + d^*$ and its square is the Laplacian $\mathcal{L} = (d + d^*)^2 = dd^* + d^*d$. The wave equation $\partial_t^2 \psi = -\mathcal{L} \psi$ can be written as $(\partial_t^2 + \mathcal{L}) = (\partial_t - iD)(\partial_t + iD)f = 0$ which has the solution $ae^{itD} + be^{-itD}$. Using the Euler formula $e^{itD} = \cos(Dt) + i \sin(Dt)$ one gets the explicit solutions $f(t) = f(0) \cos(Dt) + iD^{-1} f(0) \sin(Dt)$ of the wave equation. It gets more exciting: by packing the initial position and velocity into a complex wave $\psi(0, x) = f(0, x) + iD^{-1} f(0, x)$, we have $\psi(t, x) = e^{itD} \psi(0, x)$. The wave equation is solved by a Taylor formula, which solves a Schrödinger equation for D and the classical Taylor formula is the Schrödinger equation for D_X. This works in any framework featuring a derivative d, like finite graphs, where Taylor resembles a Feynman path integral, a sort of Taylor expansion used by physicists to compute complicated particle processes.

The Taylor formula shows that the directional derivative D_v generates translation by $-v$. In physics, the operator $P = -ih D_v$ is called the momentum operator associated to the vector v. The Schrödinger equation $ih \partial_t \psi = Pf$ has then the solution $f(x - vt)$ which means that the solution at time t is the initial condition translated by tv. This generalizes to the Lie derivative L_X given by Cartan’s magic formula as $L_X = D^X_d$ acting on forms defined by a vector field X. For the analog $L = D^2$, the motion is not channeled in a determined direction X (this is a photon) but spreads (this is a wave) in all direction leading to the wave equation. We have just seen both the “photon picture” L_X as well as the “wave picture” D of light. And whether it is particle or wave, it is all just Taylor.
Problem 17.1: Evaluate without technology the cube root of 1002 using quadratic approximation. Especially look how close you are to the real value.

Problem 17.2: Compute without a computer the square root of 102 using quadratic approximation. Also here, look how close you get to the actual value.

Problem 17.3: Given \(g(x, y) = (6y^2 - 5)^2(x^2 + y^2 - 1)^2 \), define the surface \(S \) by \(f(x, y, z) = g(x, y) + g(y, z) + g(z, x) = 3 \). The following equation could be derived with the chain rule. You can take this for granted:

\[
\nabla f(1, -1, 1) = \begin{bmatrix} g_x(1, -1) + g_y(1, 1) \\ g_x(-1, 1) + g_y(1, -1) \\ g_x(1, 1) + g_y(-1, 1) \end{bmatrix}.
\]

Using this, find the tangent plane to \(S \) at \((1, -1, 1)\).

Problem 17.4: a) Find the tangent plane to the surface \(f(x, y, z) = \sqrt{xyz} = 60 \) at \((x, y, z) = (100, 36, 1) \). b) Estimate \(\sqrt{100 \cdot 36.1 \cdot 0.999} \) using linear approximation (compute \(L(x, y, z) \) rather than \(f(x, y, z) \)).

Problem 17.5: a) At which of the points \(P, Q, R, S, T, \ldots, Y \) does \(\nabla f(x) \) have maximal length? b) At which of the points is \(f_x > 0 \) and \(f_y = 0 \)?

Figure 2.

Oliver Knill, knill@math.harvard.edu, Math 22a, Harvard College, Fall 2018