 Lanford, Oscar E., III Informal remarks on the orbit structure of discrete approximations to chaotic maps. Experiment. Math. 7 (1998), no. 4, 317324. [PDF]
 Lanford, O. E., III; Ruedin, L. Statistical mechanical methods and continued fractions. Papers honouring the 60th birthday of Klaus Hepp and of Walter Hunziker, Part I (Zürich, 1995). Helv. Phys. Acta 69 (1996), no. 56, 908948. [PDF]
 Baladi, Viviane; Jiang, Yun Ping; Lanford, Oscar E., III Transfer operators acting on Zygmund functions. Trans. Amer. Math. Soc. 348 (1996), no. 4, 15991615. [PDF]
 Williams, R. F.; Karp, D.; Brown, D.; Lanford, O.; Holmes, P.; Thom, R.; Zeeman, E. C.; Peixoto, M. M.; et al.; Final panel. From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), 589605, Springer, New York, 1993.
 Lanford, Oscar E., III Computer assisted proofs. Computational methods in field theory (Schladming, 1992), 4358, Lecture Notes in Phys., 409, Springer, Berlin, 1992.
 Lanford, Oscar E., III; Robinson, Derek W. Fractional powers of generators of equicontinuous semigroups and fractional derivatives. J. Austral. Math. Soc. Ser. A 46 (1989), no. 3, 473504.
 Lanford, Oscar E., III Renormalization group methods for circle mappings. Nonlinear evolution and chaotic phenomena (Noto, 1987), 2536, NATO Adv. Sci. Inst. Ser. B Phys., 176, Plenum, New York, 1988.
 Lanford, Oscar E., III Computerassisted proofs in analysis. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 13851394, Amer. Math. Soc., Providence, RI, 1987.
 Lanford, Oscar E., III Renormalization group methods for critical circle mappings with general rotation number. VIIIth international congress on mathematical physics (Marseille, 1986), 532536, World Sci. Publishing, Singapore, 1987.
 Lanford, Oscar E., III An introduction to computers and numerical analysis. Phénomènes critiques, systèmes aléatoires, théories de jauge, Part I, II (Les Houches, 1984), 186, NorthHolland, Amsterdam, 1986.
 Lanford, Oscar E., III Lectures in Dynamical Systems, 19911992, revised in 1997, [PDF]
 Lanford, Oscar E., III Renormalization group methods for circle mappings. Statistical mechanics and field theory: mathematical aspects (Groningen, 1985), 176189, Lecture Notes in Phys., 257, Springer, Berlin, 1986.
 Lanford, O. E. Strange attractors and turbulence. Hydrodynamic instabilities and the transition to turbulence, 726, Topics Appl. Phys., 45, Springer, Berlin, 1985.
 Lanford, Oscar E., III A numerical study of the likelihood of phase locking. Phys. D 14 (1985), no. 3, 403408. [PDF]
 Lanford, Oscar E., III A shorter proof of the existence of the Feigenbaum fixed point. Comm. Math. Phys. 96 (1984), no. 4, 521538. [PDF]
 Gambaudo, JeanMarc; Lanford, Oscar, III; Tresser, Charles Dynamique symbolique des rotations. (French) [Symbolic dynamics of rotations] C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 16, 823826.
 Lanford, Oscar E., III Computerassisted proofs in analysis. Mathematical physics, VII (Boulder, Colo., 1983). Phys. A 124 (1984), no. 13, 465470. [PDF]
 Lanford, Oscar E., III Functional equations for circle homeomorphisms with golden ratio rotation number. J. Statist. Phys. 34 (1984), no. 12, 5773. [PDF]
 Lanford, Oscar E., III Introduction to the mathematical theory of dynamical systems. Chaotic behavior of deterministic systems (Les Houches, 1981), 351, NorthHolland, Amsterdam, 1983.
 Lanford, Oscar E., III A computerassisted proof of the Feigenbaum conjectures. Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 427434. [PDF]
 Oscar E., III The strange attractor theory of turbulence. Annual review of fluid mechanics, Vol. 14, pp. 347364, Annual Reviews, Palo Alto, Calif., 1982. [PDF]
 Lanford, Oscar E., III Smooth transformations of intervals. Bourbaki Seminar, Vol. 1980/81, pp. 3654, Lecture Notes in Math., 901, Springer, BerlinNew York, 1981. [PDF] at Numdam
 Collet, P.; Eckmann, J.P.; Lanford, O. E., III Universal properties of maps on an interval. Comm. Math. Phys. 76 (1980), no. 3, 211254.[PDF]
 Collet, P.; Eckmann, J.P.; Lanford, O. E. Renormalization group analysis of some highly bifurcated families. Quantum fieldsalgebras, processes (Proc. Sympos., Univ. Bielefeld, Bielefeld, 1978), pp. 125134, Springer, Vienna, 1980
 Lanford, Oscar E., III Time dependent phenomena in statistical mechanics. Mathematical problems in theoretical physics (Proc. Internat. Conf. Math. Phys., Lausanne, 1979), pp. 103118, Lecture Notes in Phys., 116, Springer, BerlinNew York, 1980.
 Lanford, Oscar E., III Remarks on the accumulation of perioddoubling bifurcations. Mathematical problems in theoretical physics (Proc. Internat. Conf. Math. Phys., Lausanne, 1979), pp. 340342, Lecture Notes in Phys., 116, Springer, BerlinNew York, 1980. [PDF]
 van Beijeren, H.; Lanford, O. E., III; Lebowitz, J. L.; Spohn, H. Equilibrium time correlation functions in the lowdensity limit. J. Statist. Phys. 22 (1980), no. 2, 237257. [PDF]
 Lanford, Oscar E., III An introduction to the Lorenz system. Papers from the Duke Turbulence Conference (Duke Univ., Durham, N.C., 1976), Paper No. 4, i+21 pp. Duke Univ. Math. Ser., Vol. III, Duke Univ., Durham, N.C., 1977.
 Lanford, Oscar E., III Computer pictures of the Lorenz attractor. Turbulence Seminar (Univ. Calif., Berkeley, Calif., 1976/1977), pp. 113116. Lecture Notes in Math., Vol. 615, Springer, Berlin, 1977.
 Lanford, Oscar E., III; Lebowitz, Joel L.; Lieb, Elliott H. Time evolution of infinite anharmonic systems. J. Statist. Phys. 16 (1977), no. 6, 453461. [PDF]
 Lanford, Oscar E., III A derivation of the Boltzmann equation from classical mechanics. Probability (Proc. Sympos. Pure Math., Vol. XXXI, Univ. Illinois, Urbana, Ill., 1976), pp. 8789. Amer. Math. Soc., Providence, R. I., 1977.
 Lanford, Oscar E., III On a derivation of the Boltzmann equation. International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), pp. 117137. Asterisque, No. 40, Soc. Math. France, Paris, 1976.
 Lanford, Oscar E., III Time evolution of large classical systems. Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), pp. 1111. Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975.
 Lanford, Oscar E., III; Lebowitz, Joel L. Time evolution and ergodic properties of harmonic systems. Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), pp. 144177. Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975.
 Lanford, Oscar E., III Time evolution of infinite classical systems. Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, pp. 377381. Canad. Math. Congress, Montreal, Que., 1975. [PDF]
 Goldstein, Sheldon; Lanford, Oscar E., III; Lebowitz, Joel L. Ergodic properties of simple model system with collisions. J. Mathematical Phys. 14 (1973), 12281230. [PDF]
 Lanford, Oscar E., III Selected Topics in Functional Analysis, University de Grenoble Summer School, Statistical Mechanics and Quantum field theory, Ed. C. De Witt and R. Stora, Gordon, Breach Science Publishers, 1971 [PDF]
 P. Colella and O. E. Lanford III, Appendix: Sample field behavior for the free Markov random field [PDF]
 Lanford, Oscar E., III Timeevolution of infinite classical systems. Mathematical aspects of statistical mechanics (Proc. Sympos. Appl. Math., New York, 1971), pp. 6575. SIAMAMS Proceedings, Vol. V, Amer. Math. Soc., Providence, R. I., 1972.
 Lanford, O. E., III.; Robinson, Derek W. Approach to equilibrium of free quantum systems. Comm. Math. Phys. 24 1972 193210. [PDF].
 Lanford, O. E., III. The KMS states of a quantum spin system. 1970 Systèmes à un Nombre Infini de Degrés de Liberté (Actes du Colloque, GifsurYvette, 1969) pp. 146154 Éditions Centre Nat. Recherche Sci., Paris
 Gallavotti, G.; Lanford, O. E., III; Lebowitz, Joel L. Thermodynamic limit of timedependent correlation functions for onedimensional systems. J. Mathematical Phys. 11 1970 28982905. [PDF]
 Bowen, R.; Lanford, O. E., III. Zeta functions of restrictions of the shift transformation. 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) pp. 4349 Amer. Math. Soc., Providence, R.I.
[PDF]
 Lanford, O. E., III; Robinson, Derek W. Mean Entropy of States in QuantumStatistical Mechanics, J. Math. Phys, 9, No 8, July 1968, page 11201125 [PDF]
 Lanford, O.E, III and Robinson D.W. Statistical mechanics of quantum spin systems III, 1968, Cern Library [PDF]
 Lanford, O. E., III; Ruelle, D. Observables at infinity and states with short range correlations in statistical mechanics. Comm. Math. Phys. 13 1969 194215. [PDF].
 Jaffe, Arthur M.; Lanford, Oscar E., III.; Wightman, Arthur S. A general class of cutoff model field theories. Comm. Math. Phys. 15 1969 4768. [PDF]
 Lanford, O. E., III The classical mechanics of onedimensional systems of infinitely many particles. II. Kinetic theory. Comm. Math. Phys. 11 1968/1969 257292. [PDF]
 Lanford, Oscar E., III.; Robinson, Derek W. Statistical mechanics of quantum spin systems. III. Comm. Math. Phys. 9 1968 327338. [PDF].
 Lanford, O. E., III. The classical mechanics of onedimensional systems of infinitely many particles. I. An existence theorem. Comm. Math. Phys. 9 1968 176191. [PDF]
 Lanford, O.; Ruelle, D. Integral representations of invariant states on B# algebras. J. Mathematical Phys. 8 1967 14601463. [PDF]
 Lanford, Oscar E., III A note on a paper of Ginsburg. Duke Math. J. 30 1963 113116. [PDF]
 Green, T. A.; Lanford, O. E., III. Rigorous derivation of the phase shift formula for the Hilbert space scattering operator of a single particle. J. Mathematical Phys. 1 1960 139148. [PDF]
