The Real Grassmannian $\text{Gr}(2, 4)$

We discuss the topology of the real Grassmannian $\text{Gr}(2, 4)$ of 2-planes in \mathbb{R}^4 and its double cover $\text{Gr}^+(2, 4)$ by the Grassmannian of oriented 2-planes. They are compact four-manifolds.

0. A Remark on Four-Manifolds

By applying the universal coefficients theorem and Poincaré duality to a general closed orientable four-manifold M, one finds that its homology and cohomology is restricted to take the following form:

$$
\begin{align*}
H_p(M, \mathbb{Z}) & \cong \mathbb{Z} \oplus T^a \oplus T^b \\
H^p(M, \mathbb{Z}) & \cong \mathbb{Z} \oplus T^a \oplus T^b \oplus T^a \oplus T^b \\
\end{align*}
$$

Here a and b are unknown integers and T is a finite abelian group. They are determined by the fundamental group and the Euler characteristic.

$$
H_1 = \pi_1 \quad \chi = 2 - 2a + b.
$$

We will compute the homology and cohomology of $\text{Gr}(2, 4)$ by finding these two invariants.

1. A Cell Decomposition

Assume for now that the Grassmannian $\text{Gr}(2, 4)$ is orientable. Any 2-plane can be represented as the row space of a 2×4 matrix, and there is always a unique row-reduced representative. This decomposes $\text{Gr}(2, 4)$ into cells according to the shape of the row-reduced matrix.

$$
\begin{align*}
0\text{-cells} & : \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\
1\text{-cells} & : \begin{pmatrix} 0 & 1 & * & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\
2\text{-cells} & : \begin{pmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{pmatrix}, \begin{pmatrix} 1 & * & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\
3\text{-cells} & : \begin{pmatrix} 1 & * & 0 & * \\ 0 & 0 & 1 & * \end{pmatrix} \\
4\text{-cells} & : \begin{pmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \end{pmatrix}
\end{align*}
$$

So the Euler characteristic is

$$
\chi = 1 - 1 + 2 - 1 + 1 = 2.
$$
Since π_1 is always generated by the 1-cells, we see that $\pi_1 = H_1$ is a cyclic group generated by the loop γ corresponding to the 1-cell in the decomposition above. We will be finished if we can establish the following claim:

Proposition. The element γ has order two.

Proof 1. The Grassmannian admits a connected double cover

$$\text{Gr}^+(2, 4) \rightarrow \text{Gr}(2, 4)$$

by the Grassmannian of oriented 2-planes. The existence of such a covering implies that π_1, and hence, γ is nontrivial.

To see that γ has order two, observe that it lies in the subspace

$$\text{Gr}(2, 3) = \{2\text{-planes contained in the hyperplane } (0, *, *, *)\} \subset \text{Gr}(2, 4)$$

The fundamental group of $\text{Gr}(2, 3) \cong \mathbb{RP}^2$ is $\mathbb{Z}/2\mathbb{Z}$, so γ^2 is nullhomotopic.

Proof 2. It is possible to circumvent the use of $\text{Gr}^+(2, 4)$ by identifying the attaching maps of the 2-cells directly. For example, the $\text{Gr}(2, 3)$ we just considered is a union of cells

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{pmatrix}.$$

Therefore, the attaching map of the 2-cell in this decomposition has degree 2. For the other 2-cell, observe that

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} 1 & * & * & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

is the subspace of 2-planes containing L. This is the same as the space of lines in \mathbb{R}^4/L, which forms another $\mathbb{RP}^2 = \text{Gr}(1, 3)$. So the attaching map of this 2-cell has degree two as well.

In any case, we have determined the homology and cohomology of $\text{Gr}(2, 4)$.

$$\begin{array}{cccccc}
H_0(M, \mathbb{Z}) & Z & Z/2\mathbb{Z} & Z/2\mathbb{Z} & 0 & Z & 0 \\
H^0(M, \mathbb{Z}) & Z & 0 & Z/2\mathbb{Z} & Z/2\mathbb{Z} & Z & 0
\end{array}$$

2. A Splitting

In this section, we will obtain identifications

$$\text{Gr}^+(2, 4) \cong S^2 \times S^2 \quad \text{Gr}(2, 4) \cong S^2 \times S^2/\langle (\tau, \tau) \rangle$$

where $\tau : S^2 \rightarrow S^2$ is the antipodal map. This justifies our previous assumption that $\text{Gr}(2, 4)$ is orientable. It is also gives another way to compute the homology and cohomology of $\text{Gr}(2, 4)$, since we can read off the invariants

$$\pi_1(\text{Gr}(2, 4)) = \mathbb{Z}/2\mathbb{Z} \quad \chi(\text{Gr}(2, 4)) = \frac{1}{2} \chi(S^2)^2 = 2.$$
Recall that $\text{SU}(2)$ can be identified with the group of unit norm quaternions. In what follows, we will not need to view elements of $\text{SU}(2)$ as unitary matrices, so we may as well take this to be the definition. This allows us to define a map

$$f : \text{SU}(2) \times \text{SU}(2) \to \text{SO}(4) \quad (p, q) \mapsto p(-)q^{-1}.$$

To be precise, we use the orthonormal basis $1, i, j, k$ for \mathbb{H} to identify \mathbb{H} with \mathbb{R}^4 and hence the group of orthogonal transformations of \mathbb{H} with $\text{SO}(4)$.

Lemma 1. The map f induces an isomorphism

$$\bar{f} : \text{SU}(2) \times \text{SU}(2)/\{\pm (I, I)\} \to \text{SO}(4).$$

Proof. If (p, q) belongs to the kernel of f, then

$$x = f(p, q) \cdot x = px^{-1}$$

for all $x \in \mathbb{H}$. Taking $x = 1$ shows that $p = q$. Then this equation says that p is in the center $Z(\mathbb{H}) = \mathbb{R}$. So the kernel of f is $\pm (I, I)$.

But now \bar{f} is an injective map between Lie groups of the same dimension, so it is open. Its image is closed because $\text{SU}(2) \times \text{SU}(2)$ is compact. Therefore, \bar{f} is surjective because $\text{SO}(4)$ is connected. \hfill \square

Lemma 2. There is a homeomorphism

$$\text{SO}(4)/\text{SO}(2) \times \text{SO}(2) \to \text{Gr}^+(2, 4) \quad A \mapsto \langle Ae_1, Ae_2 \rangle,$$

where

$$\text{SO}(2) \times \text{SO}(2) \to \text{SO}(4) \quad (A, B) \mapsto \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}.$$

Now we identify the preimage of $\text{SO}(2) \times \text{SO}(2)$ in $\text{SU}(2) \times \text{SU}(2)$. We will make use of the identification

$$\text{U}(1) \cong \text{SO}(2) \quad \cos \theta + i \sin \theta \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Lemma 3. We have a cartesian square

$$\begin{array}{ccc}
\text{U}(1) \times \text{U}(1) & \longrightarrow & \text{SU}(2) \times \text{SU}(2) \\
\downarrow & & \downarrow \\
\text{SO}(2) \times \text{SO}(2) & \longrightarrow & \text{SO}(4)
\end{array}$$

The upper horizontal map is the composition $\text{U}(1) \cong \text{SO}(2) \hookrightarrow \text{SU}(2)$ on each factor, and the vertical map on the left is

$$(z, w) \mapsto (zw^{-1}, zw).$$
Proof. The commutativity of the diagram amounts to the identity

\[
\begin{pmatrix} zw & 0 \\ 0 & zw \end{pmatrix} x = zx \bar{w}.
\]

In fact, this equality holds true for any pair of complex numbers \(z \) and \(w \). To verify this, note that it suffices to consider pairs of the form \((z, 1)\) and \((1, w)\). Furthermore, the equation is bilinear over \(\mathbb{R} \), so we only need to check \((i, 1)\) and \((1, i)\).

\[
f(i, 1) : 1 \mapsto i \quad i \mapsto -1 \quad j \mapsto k \quad k \mapsto -j
\]

\[
f(1, i) : 1 \mapsto -i \quad i \mapsto 1 \quad j \mapsto k \quad k \mapsto -j
\]

The square is cartesian because the arrow on the left is surjective and \(U(1) \times U(1) \) contains the kernel of \(f \).

Combining these lemmata gives a chain of homeomorphisms

\[
\text{Gr}^+(2, 4) \cong \text{SO}(4)/\text{SO}(2) \times \text{SO}(2) \cong \text{SU}(2) \times \text{SU}(2)/U(1) \times U(1).
\]

Of course

\[
\text{SU}(2) \longrightarrow \text{SU}(2)/U(1) \cong \mathbb{P}^1
\]

is the Hopf fibration, so

\[
\text{Gr}^+(2, 4) \cong S^2 \times S^2.
\]

We can go further and identify explicitly the involution giving the double cover

\[
\text{Gr}^+(2, 4) \longrightarrow \text{Gr}(2, 4).
\]

Proposition. We have

\[
\text{Gr}(2, 4) \cong S^2 \times S^2/\langle (\tau, \tau) \rangle
\]

where \(\tau \) is the antipodal map on \(S^2 \).

Proof. Observe that

\[
\text{Gr}(2, 4) = (J)\backslash \text{SO}(4)/\text{SO}(2) \times \text{SO}(2) \quad J = \text{diag}(1, -1, 1, -1).
\]

The pre-image of \((J) \) in \(\text{SU}(2) \times \text{SU}(2) \) is the subgroup generated by \((j, j)\).

\[
f(j, j) : 1 \mapsto 1 \quad i \mapsto -i \quad j \mapsto j \quad k \mapsto -k
\]

So we need to identify the action of \(j \) on \(\text{SU}(2)/U(1) \) as the antipodal action.

Viewing \(\mathbb{H} = \mathbb{C} \oplus \mathbb{C} j \) as a vector space over \(\mathbb{C} \), we have an explicit formula for the Hopf fibration

\[
\text{SU}(2) \longrightarrow \mathbb{P}^1 \quad x_0 + x_1 j \longmapsto [x_0 : x_1].
\]

We compute that

\[
j(x_0 + x_1 j) = -\overline{x}_1 + \overline{x}_0 j,
\]

so multiplication by \(j \) descends to the antipodal map \([x_0 : x_1] \mapsto [-\overline{x}_1 : \overline{x}_0] \).
3. Lie Theory

The result

\[\text{SO}(4)/\text{SO}(2) \times \text{SO}(2) \cong \mathbb{P}^1 \times \mathbb{P}^1 \]

of the previous section can be obtained without calculation if we are willing to use the theory of compact Lie groups. The subgroup \(T = \text{SO}(2) \times \text{SO}(2) \) is a maximal torus of \(G = \text{SO}(4) \), and we need to identify the space \(G/T \).

Since \(\text{SU}(2) \times \text{SU}(2) \) is simply connected and has the same complexified Lie algebra as \(G \), it must be the universal cover \(\tilde{G} \) of \(G \). Since \(\tilde{T} = \text{U}(1) \times \text{U}(1) \) is a maximal torus of \(\tilde{G} \),

\[\frac{G}{T} \cong \frac{\tilde{G}}{\tilde{T}} \cong \frac{\text{SU}(2)/\text{U}(1) \times \text{SU}(2)/\text{U}(1)}{\cong \mathbb{P}^1 \times \mathbb{P}^1}. \]

We could also use the fact that \(G/T \cong G_C/B \) is the flag variety of the complexified group. In our case, we the Borel subgroups of \(\text{SO}(4, \mathbb{C}) \) are the stabilizers of flags taking the form

\[0 \subset L \subset W = W^\bot \subset L^\bot \subset \mathbb{C}^4. \]

Every line with \(L \subset L^\bot \) determines two such flags. Furthermore, two flags have the same stabilizer precisely when they start with the same line \(L \). Therefore, the flag variety \(\text{SO}(4, \mathbb{C})/B \) is the space of lines in \(\mathbb{C}^4 \) such that \(L \subset L^\bot \). This is a smooth quadric surface in \(\mathbb{P}^3 \).