Floer and Khovanov homologies of band sums

Joshua Wang

March 9, 2021
The cosmetic crossing conjecture

A nugatory crossing change:
The cosmetic crossing conjecture

A nugatory crossing change:

The cosmetic crossing conjecture: Every crossing change of an oriented knot that does not change the oriented knot type is nugatory.
Let K_+ and K_- be oriented knots in S^3 differing by a crossing change, and let L be the two-component link obtained by taking the oriented resolution.

\begin{center}
\begin{tikzpicture}

\draw[thick,->] (0,0) -- (1,1);
\draw[thick,-] (0,0) -- (1,-1);
\draw[thick,->] (2,0) -- (3,1);
\draw[thick,-] (2,0) -- (3,-1);
\draw[thick,->] (4,0) arc (270:90:1);
\draw[thick,-] (4,0) arc (90:270:1);
\node at (1.5,0.5) {K_+};
\node at (2.5,0.5) {K_-};
\node at (2.5,-0.5) {L};
\end{tikzpicture}
\end{center}
The cosmetic crossing conjecture

Let K_+ and K_- be oriented knots in S^3 differing by a crossing change, and let L be the two-component link obtained by taking the oriented resolution.

K_- can be obtained from L by band surgery along a band b.
The cosmetic crossing conjecture

Let K_+ and K_- be oriented knots in S^3 differing by a crossing change, and let L be the two-component link obtained by taking the oriented resolution.

K_- can be obtained from L by band surgery along a band b.

K_+ can then be obtained by adding a full twist to the band.
Cosmetic crossing conjecture (Problem 1.58 on Kirby’s list)

If K_+ and K_- are isotopic as oriented knots, then the link L is split and the band b is trivial.
The cosmetic crossing conjecture

Cosmetic crossing conjecture (Problem 1.58 on Kirby’s list)
If K_+ and K_- are isotopic as oriented knots, then the link L is split and the band b is trivial.

Recall:

- L is *split* if there exists an embedded sphere which separates its components.
- b is *trivial* if there exists a splitting sphere for L which intersects b along a single arc.
The cosmetic crossing conjecture

Example: L is split and b is nontrivial.
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)
- genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)
- genus 1 knots with nontrivial Alexander polynomial (Ito 2021).

In particular, all prime knots with crossing number ≤ 9.

Joshua Wang

Fl and Kh homologies of band sums

March 9, 2021 6 / 27
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

• the unknot (Scharlemann-Thompson 1989)

• 2-bridge knots (Torisu 1999)

• composite knots, if the conjecture is true for prime knots (Torisu 1999)

• fibered knots (Kalfagianni 2012)

• genus 1 knots except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)

• Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)

• knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)

• genus 1 knots with nontrivial Alexander polynomial (Ito 2021).

In particular, all prime knots with crossing number ≤ 9.
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)
- genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)
- genus 1 knots with nontrivial Alexander polynomial (Ito 2021).

In particular, all prime knots with crossing number ≤ 9.
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Toriisu 1999)
- composite knots, if the conjecture is true for prime knots (Toriisu 1999)
- fibered knots (Kalfagianni 2012)
- genus 1 knots, except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)
- genus 1 knots with nontrivial Alexander polynomial (Ito 2021).

In particular, all prime knots with crossing number ≤ 9.
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)

...
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)
- genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)

In particular, all prime knots with crossing number ≤ 9.

Joshua Wang
Fl and Kh homologies of band sums
March 9, 2021
6 / 27
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

• the unknot (Scharlemann-Thompson 1989)
• 2-bridge knots (Torisu 1999)
• composite knots, if the conjecture is true for prime knots (Torisu 1999)
• fibered knots (Kalfagianni 2012)
• genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
• Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Toriisu 1999)
- composite knots, if the conjecture is true for prime knots (Toriisu 1999)
- fibered knots (Kalfagianni 2012)
- genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)
The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)
- genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)
- genus 1 knots with nontrivial Alexander polynomial (Ito 2021).
The cosmic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)
- genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)
- genus 1 knots with nontrivial Alexander polynomial (Ito 2021).

In particular, all prime knots with crossing number ≤ 9.
The cosmetic crossing conjecture

Fix a two-component link L and a band b.

Let K_b be the result of band surgery, and let $K_b + 1$ be obtained by adding a full twist to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and $K_b + 1$ are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

- if L is nonsplit, then K_b and $K_b + 1$ are distinct for any band b.
- if L is split, then K_b and $K_b + 1$ are distinct for any nontrivial band b.

Joshua Wang

Fl and Kh homologies of band sums

March 9, 2021
The cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.
Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.
Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.
The cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:
The cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

- if L is non-split, then K_b and K_{b+1} are distinct for any band b.
The cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

- if L is *nonsplit*, then K_b and K_{b+1} are distinct for any band b.
- if L is *split*, then K_b and K_{b+1} are distinct for any *nontrivial* band b.
The **generalized** cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

- if L is *nonsplit*, then K_b and K_{b+1} are distinct for any band b.
- if L is *split*, then K_b and K_{b+1} are distinct for any *nontrivial* band b.
The generalized cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+n} be obtained by adding n full twists to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

- if L is non-split, then K_b and K_{b+1} are distinct for any band b.
- if L is split, then K_b and K_{b+1} are distinct for any non-trivial band b.
The generalized cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+n} be obtained by adding n full twists to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

- if L is nonsplit, then K_b and K_{b+1} are distinct for any band b.
- if L is split, then K_b and K_{b+1} are distinct for any nontrivial band b.
The generalized cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+n} be obtained by adding n full twists to the band.

Generalized cosmetic crossing conjecture

The oriented knots K_{b+n} for $n \in \mathbb{Z}$ are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

- if L is nonsplit, then K_b and K_{b+1} are distinct for any band b.
- if L is split, then K_b and K_{b+1} are distinct for any nontrivial band b.
The **generalized** cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+n} be obtained by adding n full twists to the band.

The **generalized** cosmetic crossing conjecture for a two-component link L:

- if L is nonsplit, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any band b.
- if L is split, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any nontrivial band b.

Generalized cosmetic crossing conjecture

The oriented knots K_{b+n} for $n \in \mathbb{Z}$ are distinct unless L is split and b is trivial.
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links.
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If L is a split two-component link, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any nontrivial band b.
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If L is a split two-component link, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any nontrivial band b.

Let K_b be a band sum of a split link L. Let $K\#$ be the connected sum.
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If \(L \) is a split two-component link, then \(K_{b+n} \) for \(n \in \mathbb{Z} \) are distinct for any nontrivial band \(b \).

Let \(K_b \) be a band sum of a split link \(L \). Let \(K_\# \) be the connected sum. For a knot invariant \(H \), two questions about band sums:

1. How are \(H(K_b) \) and \(H(K_{b+n}) \) related?
2. How are \(H(K_b) \) and \(H(K_\#) \) related?

In this talk: answers to these two questions for \(H = \) knot Floer homology, Khovanov homology, instanton knot homology.
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If L is a split two-component link, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any nontrivial band b.

Let K_b be a band sum of a split link L. Let $K\#$ be the connected sum. For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If \(L \) is a split two-component link, then \(K_{b+n} \) for \(n \in \mathbb{Z} \) are distinct for any nontrivial band \(b \).

Let \(K_b \) be a band sum of a split link \(L \). Let \(K_\# \) be the connected sum. For a knot invariant \(H \), two questions about band sums:

1. How are \(H(K_b) \) and \(H(K_{b+n}) \) related?
2. How are \(H(K_b) \) and \(H(K_\#) \) related?
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If L is a split two-component link, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any nontrivial band b.

Let K_b be a band sum of a split link L. Let $K_\#$ be the connected sum. For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_\#)$ related?

In this talk: answers to these two questions for $H =$ knot Floer homology, Khovanov homology, instanton knot homology.
Let K_b be a band sum of a split two-component link L.

Observation $\Delta(K_b + n) = \Delta(K_b)$ for all $n \in \mathbb{Z}$.

Proof. $\Delta(L) = 0$ when L is split so $\Delta(K_b + 1) - \Delta(K_b) = (t - 1/2 - t 1/2) \Delta(L) = 0$. \square
Let K_b be a band sum of a split two-component link L. The Alexander polynomial Δ satisfies the skein relation

$$\Delta(J_+) - \Delta(J_-) = (t^{-1/2} - t^{1/2})\Delta(J_0).$$

Observation $\Delta(K_b + n) = \Delta(K_b)$ for all $n \in \mathbb{Z}$.

Proof. $\Delta(L) = 0$ when L is split so $\Delta(K_b + 1) - \Delta(K_b) = (t^{-1/2} - t^{1/2})\Delta(L) = 0$. □
Let K_b be a band sum of a split two-component link L. The Alexander polynomial Δ satisfies the skein relation

$$\Delta(J_+) - \Delta(J_-) = (t^{-1/2} - t^{1/2})\Delta(J_0).$$

Observation

$\Delta(K_{b+n}) = \Delta(K_b)$ for all $n \in \mathbb{Z}$.
Let K_b be a band sum of a split two-component link L. The Alexander polynomial Δ satisfies the skein relation

$$\Delta(J_+) - \Delta(J_-) = (t^{-1/2} - t^{1/2})\Delta(J_0).$$

Observation

$\Delta(K_{b+n}) = \Delta(K_b)$ for all $n \in \mathbb{Z}$.

Proof.

$\Delta(L) = 0$ when L is split so $\Delta(K_{b+1}) - \Delta(K_b) = (t^{-1/2} - t^{1/2})\Delta(L) = 0$. \[\square\]
The knot Floer homology of K_b, denoted $\widehat{\text{HFK}}(K_b)$, is a vector space over $\mathbb{F} = \mathbb{Z}/2$ with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading. It categorifies $\Delta(K_b)$.

Theorem (W. 2020) $\widehat{\text{HFK}}(K_b + n)$ as bigraded vector spaces over \mathbb{F}.

The same is true for $\text{HFK}^-(K_b)$. Hedden-Watson 2018 proved the special case of this result when the split link is the unlink.

The instanton knot Floer homology of K_b, denoted $K\text{HI}(K_b)$, is a vector space over \mathbb{C} with a $\mathbb{Z} \oplus \mathbb{Z}/2$ bigrading. It also categorifies $\Delta(K_b)$.

Theorem (W. 2020) $K\text{HI}(K_b + n)$ as bigraded vector spaces over \mathbb{C}.
The knot Floer homology of K_b, denoted $\widehat{\text{HFK}}(K_b)$, is a vector space over $F = \mathbb{Z}/2$ with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading. It categorifies $\Delta(K_b)$.

Theorem (W. 2020)

$\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$ as bigraded vector spaces over F.
The knot Floer homology of K_b, denoted $\hat{\text{HFK}}(K_b)$, is a vector space over $F = \mathbb{Z}/2$ with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading. It categorifies $\Delta(K_b)$.

Theorem (W. 2020)

$\hat{\text{HFK}}(K_{b+n}) \cong \hat{\text{HFK}}(K_b)$ as bigraded vector spaces over F.

The same is true for $\text{HFK}^-(K_b)$. Hedden-Watson 2018 proved the special case of this result when the split link is the unlink.
The knot Floer homology of K_b, denoted $\widehat{\text{HFK}}(K_b)$, is a vector space over $F = \mathbb{Z}/2$ with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading. It categorifies $\Delta(K_b)$.

Theorem (W. 2020)

$\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$ as bigraded vector spaces over F.

The same is true for $\text{HFK}^-(K_b)$. Hedden-Watson 2018 proved the special case of this result when the split link is the unlink.

The instanton knot Floer homology of K_b, denoted $\text{KHI}(K_b)$, is a vector space over C with a $\mathbb{Z} \oplus \mathbb{Z}/2$ bigrading. It also categorifies $\Delta(K_b)$.
The knot Floer homology of K_b, denoted $\widehat{\text{HFK}}(K_b)$, is a vector space over $F = \mathbb{Z}/2$ with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading. It categorifies $\Delta(K_b)$.

Theorem (W. 2020)

$$\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$$ as bigraded vector spaces over F.

The same is true for $\text{HFK}^{-}(K_b)$. Hedden-Watson 2018 proved the special case of this result when the split link is the unlink.

The instanton knot Floer homology of K_b, denoted $\text{KHI}(K_b)$, is a vector space over C with a $\mathbb{Z} \oplus \mathbb{Z}/2$ bigrading. It also categorifies $\Delta(K_b)$.

Theorem (W. 2020)

$$\text{KHI}(K_{b+n}) \cong \text{KHI}(K_b)$$ as bigraded vector spaces over C.

Joshua Wang

Fl and Kh homologies of band sums

March 9, 2021 11 / 27
Alexander polynomial and knot Floer homology

There are two main ingredients to the proof.
There are two main ingredients to the proof.

1. The skein exact triangle, which categorifies the skein relation:

$$\widehat{\text{HFK}}(K_{b+1}) \rightarrow \widehat{\text{HFK}}(K_b)$$

The map $$\widehat{\text{HFK}}(K_{b+1}) \rightarrow \widehat{\text{HFK}}(K_b)$$ preserves both gradings.
There are two main ingredients to the proof.

1. The skein exact triangle, which categorifies the skein relation:

$$\text{\widehat{HFK}}(K_{b+1}) \longrightarrow \text{\widehat{HFK}}(K_b)$$

The map $\text{\widehat{HFK}}(K_{b+1}) \rightarrow \text{\widehat{HFK}}(K_b)$ preserves both gradings.

2. Maps on $\text{\widehat{HFK}}$ induced by ribbon concordances.
Recall:

- A *concordance* $C : J_0 \to J_1$ between knots $J_i \subset S^3$ is a properly embedded annulus $C \hookrightarrow [0, 1] \times S^3$ with $\partial C = -J_0 \times 0 \sqcup J_1 \times 1$.

Theorem (Miyazaki 1998)

There is a ribbon concordance $C : K^\# \to K^b$.

Theorem (Zemke 2019)

A ribbon concordance $C : J_0 \to J_1$ induces an injective map $\hat{\text{HFK}}(J_0) \to \hat{\text{HFK}}(J_1)$.

In fact, $\hat{\text{HFK}}(J_1) \cong \hat{\text{HFK}}(J_0) \oplus F$ for some bigraded vector space F.

Joshua Wang

Fl and Kh homologies of band sums

March 9, 2021
Ribbon concordances and knot Floer homology

Recall:

- A *concordance* $C : J_0 \to J_1$ between knots $J_i \subset S^3$ is a properly embedded annulus $C \hookrightarrow [0, 1] \times S^3$ with $\partial C = -J_0 \times 0 \amalg J_1 \times 1$.

- A concordance $C : J_0 \to J_1$ is *ribbon* if the projection to $[0, 1]$ is a Morse function on C with no index 2 critical points.

Theorem (Miyazaki 1998)
There is a ribbon concordance $C : K# \to K_b$.

Theorem (Zemke 2019)
A ribbon concordance $C : J_0 \to J_1$ induces an injective map $\hat{HFK}(J_0) \to \hat{HFK}(J_1)$.

In fact, $\hat{HFK}(J_1) \cong \hat{HFK}(J_0) \oplus F$ for some bigraded vector space F.
Ribbon concordances and knot Floer homology

Recall:

- A concordance $C: J_0 \to J_1$ between knots $J_i \subset S^3$ is a properly embedded annulus $C \hookrightarrow [0, 1] \times S^3$ with $\partial C = -J_0 \times 0 \sqcup J_1 \times 1$.
- A concordance $C: J_0 \to J_1$ is ribbon if the projection to $[0, 1]$ is a Morse function on C with no index 2 critical points.

Theorem (Miyazaki 1998)

There is a ribbon concordance $C: K_{\#} \to K_b$.
Ribbon concordances and knot Floer homology

Recall:

- A *concordance* $C : J_0 \to J_1$ between knots $J_i \subset S^3$ is a properly embedded annulus $C \hookrightarrow [0, 1] \times S^3$ with $\partial C = -J_0 \times 0 \sqcup J_1 \times 1$.

- A concordance $C : J_0 \to J_1$ is *ribbon* if the projection to $[0, 1]$ is a Morse function on C with no index 2 critical points.

Theorem (Miyazaki 1998)

*There is a ribbon concordance $C : K_\# \to K_b$.***

Theorem (Zemke 2019)

A ribbon concordance $C : J_0 \to J_1$ induces an injective map

$$\widehat{\text{HFK}}(J_0) \to \widehat{\text{HFK}}(J_1).$$
Ribbon concordances and knot Floer homology

Recall:

- A *concordance* $C : J_0 \to J_1$ between knots $J_i \subset S^3$ is a properly embedded annulus $C \hookrightarrow [0, 1] \times S^3$ with $\partial C = -J_0 \times 0 \sqcup J_1 \times 1$.

- A concordance $C : J_0 \to J_1$ is *ribbon* if the projection to $[0, 1]$ is a Morse function on C with no index 2 critical points.

Theorem (Miyazaki 1998)

There is a ribbon concordance $C : K_\# \to K_b$.

Theorem (Zemke 2019)

A ribbon concordance $C : J_0 \to J_1$ induces an injective map

$$\widehat{\text{HFK}}(J_0) \to \widehat{\text{HFK}}(J_1).$$

In fact, $\widehat{\text{HFK}}(J_1) \cong \widehat{\text{HFK}}(J_0) \oplus F$ for some bigraded vector space F.
Ribbon concordance $K_\# \rightarrow K_b$ (Miyazaki 1998)
Ribbon concordance $K_\# \to K_b$ (Miyazaki 1998)
Proof sketch of $\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$.

Choose (compatible) ribbon concordances $C' : K\# \to K_{b+1}$ and $C : K\# \to K_b$.

There are induced splittings $\widehat{\text{HFK}}(K_{b+1}) \cong \widehat{\text{HFK}}(K\#) \oplus F_{b+1}$ for some bigraded vector spaces F_b by Zemke's inclusion maps. These splittings are compatible with the skein exact triangles $\widehat{\text{HFK}}(K_{b+1}) \cong \widehat{\text{HFK}}(K\#) \oplus F_{b+1}$.
Proof sketch of $\hat{\mathit{HFK}}(K_{b+n}) \cong \hat{\mathit{HFK}}(K_b)$.

Choose (compatible) ribbon concordances $C' : K\# \to K_{b+1}$ and $C : K\# \to K_b$. There are induced splittings

$$\hat{\mathit{HFK}}(K_{b+1}) \cong \hat{\mathit{HFK}}(K\#) \oplus F_{b+1} \quad \hat{\mathit{HFK}}(K_b) \cong \hat{\mathit{HFK}}(K\#) \oplus F_b$$

for some bigraded vector spaces F_{b+1}, F_b by Zemke’s inclusion maps.
Alexander polynomial and knot Floer homology

Proof sketch of $\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$.

Choose (compatible) ribbon concordances $C' : K_\# \rightarrow K_{b+1}$ and $C : K_\# \rightarrow K_b$. There are induced splittings

$$\begin{align*}
\widehat{\text{HFK}}(K_{b+1}) &\cong \widehat{\text{HFK}}(K_\#) \oplus F_{b+1} \\
\widehat{\text{HFK}}(K_b) &\cong \widehat{\text{HFK}}(K_\#) \oplus F_{b}
\end{align*}$$

for some bigraded vector spaces F_{b+1}, F_b by Zemke’s inclusion maps. These splittings are compatible with the skein exact triangles

$$\begin{align*}
\widehat{\text{HFK}}(K_{b+1}) &\rightarrow \widehat{\text{HFK}}(K_b) \\
\& \downarrow \quad \downarrow \\
\widehat{\text{HFK}}(L) &\cong \widehat{\text{HFK}}(K_\#) & \widehat{\text{HFK}}(K_\#) &\rightarrow \widehat{\text{HFK}}(K_\#) \\
\& \downarrow \quad \downarrow \\
\widehat{\text{HFK}}(L) &\oplus \widehat{\text{HFK}}(L) & 0
\end{align*}$$
Proof sketch of $\widehat{HFK}(K_{b+n}) \cong \widehat{HFK}(K_b)$.

Choose (compatible) ribbon concordances $C': K\# \to K_{b+1}$ and $C: K\# \to K_b$. There are induced splittings

$$\widehat{HFK}(K_{b+1}) \cong \widehat{HFK}(K\#) \oplus F_{b+1} \quad \widehat{HFK}(K_b) \cong \widehat{HFK}(K\#) \oplus F_b$$

for some bigraded vector spaces F_{b+1}, F_b by Zemke’s inclusion maps. These splittings are compatible with the skein exact triangles

$$\begin{align*}
\widehat{HFK}(K_{b+1}) \to \widehat{HFK}(K_b) \\
\downarrow \quad \downarrow \\
\widehat{HFK}(L) \quad &= \quad \widehat{HFK}(L) \\
\widehat{HFK}(K\#) \to \widehat{HFK}(K\#) \\
\downarrow \quad \downarrow \\
\widehat{HFK}(L) \quad &= \quad \widehat{HFK}(L) \\
F_{b+1} \quad \to \quad F_b \\
\oplus & \quad \downarrow \quad \downarrow \\
0 & \quad \quad \square
\end{align*}$$
Let K_b be a band sum of a split two-component link L, and let $K\#$ be the connected sum.

Observation

Let P_b satisfy $V(K_b) = V(K\#) + P_b$. Then $V(K_b + n) = V(K\#) + q^{4n}P_b$.

Proof.

Use the identity $V(L) = (q - 1 + q) V(K\#)$ and the skein relation. □

Question

Does the Jones polynomial detect the trivial band? Is P_b, 0 when b is nontrivial?
Let K_b be a band sum of a split two-component link L, and let $K\#$ be the connected sum. The Jones polynomial V satisfies the skein relation

$$q^{-2}V(J_+) - q^2V(J_-) = (q^{-1} - q)V(J_0).$$
Jones polynomial and Khovanov homology

Let K_b be a band sum of a split two-component link L, and let $K#$ be the connected sum. The Jones polynomial V satisfies the skein relation

$$q^{-2}V(J_+) - q^2V(J_-) = (q^{-1} - q)V(J_0).$$

Observation

Let P_b satisfy $V(K_b) = V(K#) + P_b$. Then $V(K_{b+n}) = V(K#) + q^{4n}P_b$.
Let K_b be a band sum of a split two-component link L, and let $K\#$ be the connected sum. The Jones polynomial V satisfies the skein relation

$$q^{-2}V(J_+) - q^2V(J_-) = (q^{-1} - q)V(J_0).$$

Observation

Let P_b satisfy $V(K_b) = V(K\#) + P_b$. Then $V(K_{b+n}) = V(K\#) + q^{4n}P_b$.

Proof.

Use the identity $V(L) = (q^{-1} + q)V(K\#)$ and the skein relation.
Let K_b be a band sum of a split two-component link L, and let $K#$ be the connected sum. The Jones polynomial V satisfies the skein relation

$$q^{-2}V(J_+) - q^2V(J_-) = (q^{-1} - q)V(J_0).$$

Observation

Let P_b satisfy $V(K_b) = V(K#) + P_b$. Then $V(K_{b+n}) = V(K#) + q^{4n}P_b$.

Proof.

Use the identity $V(L) = (q^{-1} + q)V(K#)$ and the skein relation.

Question

Does the Jones polynomial detect the trivial band? Is $P_b \neq 0$ when b is nontrivial?
The Khovanov homology of K_b, denoted $\text{Kh}(K_b)$, is a vector space over \mathbb{F} with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading (h, q). It categorifies $V(K_b)$.
The Khovanov homology of K_b, denoted $\text{Kh}(K_b)$, is a vector space over \mathbb{F} with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading (h, q). It categorifies $V(K_b)$.

A ribbon concordance $K_\# \to K_b$ induces a splitting $\text{Kh}(K_b) \cong \text{Kh}(K_\#) \oplus H_b$ (Levine-Zemke 2019). The graded Euler characteristic of H_b is P_b.

\[V(K_b + n) = V(K_\#) + q^{4n} P_b. \]
The Khovanov homology of K_b, denoted $\text{Kh}(K_b)$, is a vector space over \mathbb{F} with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading (h, q). It categorifies $V(K_b)$.

A ribbon concordance $K_\# \to K_b$ induces a splitting $\text{Kh}(K_b) \cong \text{Kh}(K_\#) \oplus H_b$ (Levine-Zemke 2019). The graded Euler characteristic of H_b is P_b.

Recall: $V(K_{b+n}) = V(K_\#) + q^{4n}P_b$.
Jones polynomial and Khovanov homology

The Khovanov homology of K_b, denoted $\text{Kh}(K_b)$, is a vector space over \mathbb{F} with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading (h, q). It categorifies $V(K_b)$.

A ribbon concordance $K_\# \to K_b$ induces a splitting $\text{Kh}(K_b) \cong \text{Kh}(K_\#) \oplus H_b$ (Levine-Zemke 2019). The graded Euler characteristic of H_b is P_b.

Recall: $V(K_{b+n}) = V(K_\#) + q^{4n}P_b$.

Theorem (W. 2020)

$$\text{Kh}(K_{b+n}) \cong \text{Kh}(K_\#) \oplus h^{2n}q^{4n}H_b$$
The Khovanov homology of K_b, denoted $\text{Kh}(K_b)$, is a vector space over \mathbb{F} with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading (h, q). It categorifies $V(K_b)$.

A ribbon concordance $K_\# \rightarrow K_b$ induces a splitting $\text{Kh}(K_b) \cong \text{Kh}(K_\#) \oplus H_b$ (Levine-Zemke 2019). The graded Euler characteristic of H_b is P_b.

Recall: $V(K_{b+n}) = V(K_\#) + q^{4n}P_b$.

Theorem (W. 2020)

$\text{Kh}(K_{b+n}) \cong \text{Kh}(K_\#) \oplus h^{2n}q^{4n}H_b$

In fact, $\text{Kh}(K_{b+m/2}) \cong \text{Kh}(K_\#) \oplus h^m q^{2m}H_b$.

Joshua Wang FL and Kh homologies of band sums March 9, 2021 17 / 27
Proof sketch of $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_{\#}) \oplus h^{2n}q^{4n}H_b$.

There are unoriented skein exact triangles

$$
\begin{align*}
\text{Kh}(K_b) & \rightarrow \text{Kh}(K_{b+1/2}) \rightarrow \text{Kh}(K_{b+1}) \\
\text{Kh}(L) & \leftarrow \text{Kh}(L) \\
\text{Kh}(L) & \leftarrow \text{Kh}(L)
\end{align*}
$$
Proof sketch of $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_{#}) \oplus h^{2n}q^{4n}H_b$.

There are unoriented skein exact triangles

$$
\begin{array}{c}
\text{Kh}(K_b) & \text{Kh}(K_{b+1/2}) & \text{Kh}(K_{b+1}) \\
\downarrow & \downarrow & \downarrow \\
\text{Kh}(L) & \text{Kh}(L) & \\
\end{array}
$$

compatible with ribbon concordance splittings (Levine-Zemke 2019)

$$
\begin{array}{c}
\text{Kh}(K_{#}) & \text{Kh}(K_{#}) & \text{Kh}(K_{#}) \\
\downarrow & \downarrow & \downarrow \\
\text{Kh}(L) & \text{Kh}(L) & \\
\end{array}
\oplus
\begin{array}{c}
H_b & H_{b+1/2} & H_{b+1} \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & \\
\end{array}
$$
Proof sketch of $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_\#) \oplus h^{2n}q^{4n}H_b$.

There are unoriented skein exact triangles

\[
\begin{array}{ccc}
\text{Kh}(K_b) & \rightarrow & \text{Kh}(K_{b+1/2}) & \rightarrow & \text{Kh}(K_{b+1}) \\
\downarrow & & \downarrow & & \downarrow \\
\text{Kh}(L) & \rightarrow & \text{Kh}(L) & \rightarrow & \text{Kh}(L)
\end{array}
\]

compatible with ribbon concordance splittings (Levine-Zemke 2019)

\[
\begin{array}{cccc}
\text{Kh}(K_\#) & \rightarrow & \text{Kh}(K_\#) & \rightarrow & \text{Kh}(K_\#) \\
\downarrow & & \downarrow & & \downarrow \\
\text{Kh}(L) & \rightarrow & \text{Kh}(L) & \rightarrow & \text{Kh}(L)
\end{array} \oplus
\begin{array}{ccc}
H_b & \rightarrow & H_{b+1/2} & \rightarrow & H_{b+1} \\
\downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & 0 & \rightarrow & 0
\end{array}
\]

The isomorphisms $H_b \rightarrow H_{b+1/2} \rightarrow H_{b+1}$ each shift bigradings by $(1, 2)$.

□
Jones polynomial and Khovanov homology

To show the groups $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_{\#}) \oplus h^{2n}q^{4n}H_b$ for $n \in \mathbb{Z}$ are distinct, it suffices to show that $H_b \neq 0$ whenever b is nontrivial.
To show the groups $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_{\#}) \oplus h^{2n} q^{4n} H_b$ for $n \in \mathbb{Z}$ are distinct, it suffices to show that $H_b \neq 0$ whenever b is nontrivial.

Theorem (W. 2020)

$\dim \text{Kh}(K_b) = \dim \text{Kh}(K_{\#})$ if and only if b is trivial.

In other words, $H_b = 0$ if and only if b is trivial.
Jones polynomial and Khovanov homology

To show the groups \(\text{Kh}(K_{b+n}) \cong \text{Kh}(K_{\#}) \oplus h^{2n}q^{4n}H_b \) for \(n \in \mathbb{Z} \) are distinct, it suffices to show that \(H_b \neq 0 \) whenever \(b \) is nontrivial.

Theorem (W. 2020)

\[
\dim \text{Kh}(K_{b}) = \dim \text{Kh}(K_{\#}) \text{ if and only if } b \text{ is trivial.}
\]

In other words, \(H_b = 0 \) if and only if \(b \) is trivial.

Corollary (W. 2020)

The generalized cosmetic crossing conjecture is true for split links.
Jones polynomial and Khovanov homology

To show the groups \(\text{Kh}(K_{b+n}) \cong \text{Kh}(K\#) \oplus h^{2n}q^{4n}H_b \) for \(n \in \mathbb{Z} \) are distinct, it suffices to show that \(H_b \neq 0 \) whenever \(b \) is nontrivial.

Theorem (W. 2020)

\[
\dim \text{Kh}(K_b) = \dim \text{Kh}(K\#) \text{ if and only if } b \text{ is trivial.}
\]

In other words, \(H_b = 0 \) if and only if \(b \) is trivial.

Corollary (W. 2020)

The generalized cosmetic crossing conjecture is true for split links.

Hedden-Watson 2018 showed that the Khovanov homology groups of \(K_{b+n} \) for \(n \in \mathbb{Z} \) are distinct in the case where the split link is the unlink.
Jones polynomial and Khovanov homology

To show the groups $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_\#) \oplus h^{2n}q^{4n}H_b$ for $n \in \mathbb{Z}$ are distinct, it suffices to show that $H_b \neq 0$ whenever b is nontrivial.

Theorem (W. 2020)

$$\dim \text{Kh}(K_b) = \dim \text{Kh}(K_\#) \text{ if and only if } b \text{ is trivial.}$$

In other words, $H_b = 0$ if and only if b is trivial.

Corollary (W. 2020)

The generalized cosmetic crossing conjecture is true for split links.

Hedden-Watson 2018 showed that the Khovanov homology groups of K_{b+n} for $n \in \mathbb{Z}$ are distinct in the case where the split link is the unlink.

Corollary (Miyazaki 2020)

If K_b is isotopic to $K_\#$, then b is trivial.
Proposition

Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $\text{I}^{\#}$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{Kh}(K^b) = \dim \text{Kh}(K^\#)$. Let $C: K^\# \to K^b$ be a ribbon concordance. Then C induces a map of spectral sequences $\text{Kh} \Rightarrow H$ which is an isomorphism on the E_2-page. It is therefore an isomorphism on the E_∞-page, so $\dim H(K^b) = \dim H(K^\#)$. Thus b is trivial. □
Proposition

Let H be a knot invariant taking the form of a vector space over F with a functorial spectral sequence $Kh \Rightarrow H$.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^#$, etc. (Baldwin-Hedden-Lobb 2019).
Proposition

Let H be a knot invariant taking the form of a vector space over F with a functorial spectral sequence $Kh \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim Kh$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).
Proposition

Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{Kh}(K_b) = \dim \text{Kh}(K^\#)$.
Proposition

Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{Kh}(K_b) = \dim \text{Kh}(K^\#)$. Let $C: K^\# \to K_b$ be a ribbon concordance.
Proposition

Let H be a knot invariant taking the form of a vector space over F with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{Kh}(K_b) = \dim \text{Kh}(K^\#)$. Let $C : K^\# \rightarrow K_b$ be a ribbon concordance. Then C induces a map of spectral sequences $\text{Kh} \Rightarrow H$ which is an isomorphism on the E_2-page.
Jones polynomial and Khovanov homology

Proposition

Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{Kh}(K_b) = \dim \text{Kh}(K^\#)$. Let $C : \ K^\# \to K_b$ be a ribbon concordance. Then C induces a map of spectral sequences $\text{Kh} \Rightarrow H$ which is an isomorphism on the E_2-page. It is therefore an isomorphism on the E_∞-page, so $\dim H(K_b) = \dim H(K^\#)$.
Proposition

Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{Kh}(K_b) = \dim \text{Kh}(K^\#)$. Let $C : K^\# \to K_b$ be a ribbon concordance. Then C induces a map of spectral sequences $\text{Kh} \Rightarrow H$ which is an isomorphism on the E_2-page. It is therefore an isomorphism on the E_∞-page, so $\dim H(K_b) = \dim H(K^\#)$. Thus b is trivial.
There is a functorial spectral sequence $\text{Kh} \Rightarrow \text{I}^\#$.

Theorem (W. 2020)

Singular instanton homology detects the trivial band:

$$\dim \text{I}^\#(K_b) = \dim \text{I}^\#(K#)$$

if and only if b is trivial.

The proof involves showing that $\dim K\text{HI}$ detects the trivial band.

Dowlin 2018 constructed a spectral sequence from Khovanov homology to knot Floer homology.

Theorem (W. 2020)

Knot Floer homology detects the trivial band:

$$\dim \hat{HFK}(K_b) = \dim \hat{HFK}(K#)$$

if and only if b is trivial.

Functoriality of Dowlin's spectral sequence has not been established.
There is a functorial spectral sequence $Kh \Rightarrow I^\#$.

Theorem (W. 2020)
Singular instanton homology detects the trivial band:
$\dim I^\#(Kb) = \dim I^\#(K\#)$ if and only if b is trivial.
The proof involves showing that $\dim KHI$ detects the trivial band.
Dowlin 2018 constructed a spectral sequence from Khovanov homology to knot Floer homology.

Theorem (W. 2020)
Knot Floer homology detects the trivial band:
$\dim \hat{HFK}(Kb) = \dim \hat{HFK}(K\#)$ if and only if b is trivial.

Functoriality of Dowlin's spectral sequence has not been established.
There is a functorial spectral sequence $KH \Rightarrow I^\#$.

Theorem (W. 2020)

Singulat instanton homology detects the trivial band: $\dim I^\#(K_b) = \dim I^\#(K\#)$ if and only if b is trivial.

Functoriality of Dowlin's spectral sequence has not been established.
There is a functorial spectral sequence $\text{Kh} \Rightarrow \text{I}^\#$.

Theorem (W. 2020)

Singular instanton homology detects the trivial band: $\dim \text{I}^\#(K_b) = \dim \text{I}^\#(K^\#)$ if and only if b is trivial.

The proof involves showing that $\dim \text{KHI}$ detects the trivial band.
There is a functorial spectral sequence $\text{Kh} \Rightarrow I^\#$.

Theorem (W. 2020)

Singular instanton homology detects the trivial band: $\dim I^\#(K_b) = \dim I^\#(K^\#)$ if and only if b is trivial.

The proof involves showing that $\dim \text{KHI}$ detects the trivial band.

Dowlin 2018 constructed a spectral sequence from Khovanov homology to knot Floer homology.
There is a functorial spectral sequence \(\text{Kh} \Rightarrow \text{I}^\# \).

Theorem (W. 2020)

Singular instanton homology detects the trivial band: \(\dim \text{I}^\#(K_b) = \dim \text{I}^\#(K^\#) \) if and only if \(b \) is trivial.

The proof involves showing that \(\dim \text{KHI} \) detects the trivial band.

Dowlin 2018 constructed a spectral sequence from Khovanov homology to knot Floer homology.

Theorem (W. 2020)

Knot Floer homology detects the trivial band: \(\dim \widehat{\text{HFK}}(K_b) = \dim \widehat{\text{HFK}}(K^\#) \) if and only if \(b \) is trivial.
There is a functorial spectral sequence $\text{Kh} \Rightarrow I^\#$.

Theorem (W. 2020)

Singular instanton homology detects the trivial band: $\dim I^\#(K_b) = \dim I^\#(K^\#)$ if and only if b is trivial.

The proof involves showing that $\dim \text{KHI}$ detects the trivial band.

Dowlin 2018 constructed a spectral sequence from Khovanov homology to knot Floer homology.

Theorem (W. 2020)

Knot Floer homology detects the trivial band: $\dim \widehat{\text{HFK}}(K_b) = \dim \widehat{\text{HFK}}(K^\#)$ if and only if b is trivial.

Functoriality of Dowlin’s spectral sequence has not been established.
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K\#) \text{ when } b \text{ is nontrivial} \]
$\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K\#)$ when b is nontrivial

A diagram for $K_b \cup C$ has basepoints w_K, z_K, w_C, z_C.
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K\#) \text{ when } b \text{ is nontrivial} \]

A diagram for \(K_b \cup C \) has basepoints \(w_K, z_K, w_C, z_C \). Let \(\text{CFL}^-(K_b \cup C, \sigma) \) over \(\mathbb{F}[U] \) count discs blocked by \(w_K, z_K, w_C \) and record intersection with \(z_C \) in \(U \).
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K_\#) \text{ when } b \text{ is nontrivial} \]

A diagram for \(K_b \cup C \) has basepoints \(w_K, z_K, w_C, z_C \). Let \(\text{CFL}^-(K_b \cup C, \sigma) \) over \(\mathbb{F}[U] \) count discs blocked by \(w_K, z_K, w_C \) and record intersection with \(z_C \) in \(U \).

Claim: \(\text{rank } \text{HFL}^-(K_b \cup C, \sigma) = 2 \cdot \dim \widehat{\text{HFK}}(K_b) \).
$\dim \widehat{HFK}(K_b) > \dim \widehat{HFK}(K\#)$ when b is nontrivial

A diagram for $K_b \cup C$ has basepoints w_K, z_K, w_C, z_C. Let $\text{CFL}^-(K_b \cup C, \sigma)$ over $F[U]$ count discs blocked by w_K, z_K, w_C and record intersection with z_C in U.

Claim: $\text{rank } \text{HFL}^-(K_b \cup C, \sigma) = 2 \cdot \dim \widehat{HFK}(K_b)$.
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K#) \text{ when } b \text{ is nontrivial} \]

Goal: \(\text{rank } \text{HFL}^{-}(K_b \cup C, \sigma) > \text{rank } \text{HFL}^{-}(K# \cup C, \sigma) \) when \(b \) is nontrivial.
\[
\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K\#) \text{ when } b \text{ is nontrivial}
\]

Goal: \(\text{rank } \text{HFL}^{-}(K_b \cup C, \sigma) > \text{rank } \text{HFL}^{-}(K\# \cup C, \sigma) \text{ when } b \text{ is nontrivial.} \)

A ribbon concordance \(K\# \cup C \to K_b \cup C \) gives an inclusion

\[
\text{HFL}^{-}(K\# \cup C, \sigma) \hookrightarrow \text{HFL}^{-}(K_b \cup C, \sigma)
\]

onto an \(\mathbb{F}[U] \)-module summand.
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K_\#) \text{ when } b \text{ is nontrivial} \]

Goal: rank \(\text{HFL}^{-}(K_b \cup C, \sigma) \) > rank \(\text{HFL}^{-}(K_\# \cup C, \sigma) \) when \(b \) is nontrivial.

A ribbon concordance \(K_\# \cup C \to K_b \cup C \) gives an inclusion

\[\text{HFL}^{-}(K_\# \cup C, \sigma) \hookrightarrow \text{HFL}^{-}(K_b \cup C, \sigma) \]

onto an \(\mathbb{F}[U] \)-module summand. The generators of the infinite \(U \)-towers in \(\text{HFL}^{-}(K_\# \cup C, \sigma) \) all lie in the same Alexander grading.
\(\dim \hat{\text{HFK}}(K_b) > \dim \hat{\text{HFK}}(K_{\#}) \) when \(b \) is nontrivial

Goal: \(\text{rank } \text{HFL}^{-}(K_b \cup C, \sigma) > \text{rank } \text{HFL}^{-}(K_{\#} \cup C, \sigma) \) when \(b \) is nontrivial.

A ribbon concordance \(K_{\#} \cup C \to K_b \cup C \) gives an inclusion

\[
\text{HFL}^{-}(K_{\#} \cup C, \sigma) \hookrightarrow \text{HFL}^{-}(K_b \cup C, \sigma)
\]

onto an \(\mathbb{F}[U] \)-module summand. The generators of the infinite \(U \)-towers in \(\text{HFL}^{-}(K_{\#} \cup C, \sigma) \) all lie in the same Alexander grading. It suffices to find two infinite \(U \)-towers in \(\text{HFL}^{-}(K_b \cup C, \sigma) \) whose generators differ in grading.
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K_{\#}) \text{ when } b \text{ is nontrivial} \]

Goal: rank \(\text{HFL}^-(K_b \cup C, \sigma) > \text{rank} \; \text{HFL}^-(K_{\#} \cup C, \sigma) \) when \(b \) is nontrivial.

A ribbon concordance \(K_{\#} \cup C \to K_b \cup C \) gives an inclusion

\[\text{HFL}^-(K_{\#} \cup C, \sigma) \hookrightarrow \text{HFL}^-(K_b \cup C, \sigma) \]

onto an \(F[U] \)-module summand. The generators of the infinite \(U \)-towers in \(\text{HFL}^-(K_{\#} \cup C, \sigma) \) all lie in the same Alexander grading. It suffices to find two infinite \(U \)-towers in \(\text{HFL}^-(K_b \cup C, \sigma) \) whose generators differ in grading.

Sutured manifold decompositions along surfaces \(S_i \) disjoint from \(\partial N(C) \):

\[S^3(K_b \cup C) \xrightarrow{S_1} (M_1, \gamma_1) \xrightarrow{S_2} \cdots \xrightarrow{S_n} S^3(\text{Hopf link}) \]

\[\text{HFL}^-(K_b \cup C, \sigma) \leftrightarrow \text{SFH}^-(M_1, \gamma_1, \sigma) \leftrightarrow \cdots \leftrightarrow \text{HFL}^-(\text{Hopf link}, \sigma) \]
\[\dim \text{KHI}(K_b) > \dim \text{KHI}(K\#) \text{ when } b \text{ is nontrivial} \]

Theory needed to adapt this argument to instanton Floer homology:
\(\dim \text{KHI}(K_b) > \dim \text{KHI}(K_\#) \) when \(b \) is nontrivial

Theory needed to adapt this argument to instanton Floer homology:

- Definitions of \(\text{KHI}^-(K_b \cup C, \sigma) \) and \(\text{SHI}^-(M, \gamma, \sigma) \) building on Etnyre–Vela-Vick–Zarev, Baldwin–Sivek, Li, Ghosh–Li
dim KHI$(K_b) > \dim KHI(K\#)$ when b is nontrivial

Theory needed to adapt this argument to instanton Floer homology:

- Definitions of $\text{KHI}^-(K_b \cup C, \sigma)$ and $\text{SHI}^-(M, \gamma, \sigma)$ building on Etnyre–Vela-Vick–Zarev, Baldwin–Sivek, Li, Ghosh–Li
 - $\mathbf{C}[U]$-module structure and gradings
dim $\text{KHI}(K_b) > \dim \text{KHI}(K_\#)$ when b is nontrivial

Theory needed to adapt this argument to instanton Floer homology:

- Definitions of $\text{KHI}^-(K_b \cup C, \sigma)$ and $\text{SHI}^-(M, \gamma, \sigma)$ building on Etnyre–Vela-Vick–Zarev, Baldwin–Sivek, Li, Ghosh–Li
 - $\mathbb{C}[U]$-module structure and gradings
 - rank $\text{KHI}^-(K_b \cup C, \sigma)$ equals $2 \dim \text{KHI}(K_b)$.
dim $KHI(K_b) > \dim KHI(K\#)$ when b is nontrivial

Theory needed to adapt this argument to instanton Floer homology:

- Definitions of $KHI^-(K_b \cup C, \sigma)$ and $SHI^-(M, \gamma, \sigma)$ building on Etnyre–Vela-Vick–Zarev, Baldwin–Sivek, Li, Ghosh–Li
 - $C[U]$-module structure and gradings
 - rank $KHI^-(K_b \cup C, \sigma)$ equals $2 \dim KHI(K_b)$.

- Behavior of $SHI^-(M, \gamma, \sigma)$ under suitable surface decompositions
dim \(\text{KHI}(K_b) > \dim \text{KHI}(K_\#) \) when \(b \) is nontrivial

Theory needed to adapt this argument to instanton Floer homology:

- Definitions of \(\text{KHI}^-(K_b \cup C, \sigma) \) and \(\text{SHI}^-(M, \gamma, \sigma) \) building on Etnyre–Vela-Vick–Zarev, Baldwin–Sivek, Li, Ghosh–Li
 - \(\mathbb{C}[U] \)-module structure and gradings
 - \(\text{rank} \ \text{KHI}^-(K_b \cup C, \sigma) = 2 \dim \text{KHI}(K_b) \).
- Behavior of \(\text{SHI}^-(M, \gamma, \sigma) \) under suitable surface decompositions
- Behavior of \(\text{KHI}^-(K_b \cup C, \sigma) \) under ribbon concordance
For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_{#})$ related?
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_\#)$ related?

Some answers:
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K\#)$ related?

Some answers:

1. \[\hat{\text{HFK}}(K_b) \cong \hat{\text{HFK}}(K_{b+n}). \]
For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K\#)$ related?

Some answers:

1. $\widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K_{b+n})$.

 $\widehat{\text{KHI}}(K_b) \cong \widehat{\text{KHI}}(K_{b+n})$.

2. $\text{dim} \widehat{\text{HFK}}(K_b) > \text{dim} \widehat{\text{HFK}}(K\#)$ if b is nontrivial.

 $\text{dim} \text{KHI}(K_b) > \text{dim} \text{KHI}(K\#)$ if b is nontrivial.

 $\text{dim} \text{Kh}(K_b) > \text{dim} \text{Kh}(K\#)$ if b is nontrivial.
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K\#)$ related?

Some answers:

1. - $\widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K_{b+n})$.
 - $\text{KHI}(K_b) \cong \text{KHI}(K_{b+n})$.
 - $\text{Kh}(K_b) \not\cong \text{Kh}(K_{b+n})$ if b is nontrivial.
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_\#)$ related?

Some answers:

1. - $\widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K_{b+n})$.
 - $\text{KHI}(K_b) \cong \text{KHI}(K_{b+n})$.
 - $\text{Kh}(K_b) \neq \text{Kh}(K_{b+n})$ if b is nontrivial.

2. - $\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K_\#)$ if b is nontrivial.
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_{\#})$ related?

Some answers:

1. - $\widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K_{b+n})$.
 - $\text{KHI}(K_b) \cong \text{KHI}(K_{b+n})$.
 - $\text{Kh}(K_b) \neq \text{Kh}(K_{b+n})$ if b is nontrivial.
2. - $\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K_{\#})$ if b is nontrivial.
 - $\dim \text{KHI}(K_b) > \dim \text{KHI}(K_{\#})$ if b is nontrivial.
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K\#)$ related?

Some answers:

1. $\widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K_{b+n})$.
 - $\text{KHI}(K_b) \cong \text{KHI}(K_{b+n})$.
 - $\text{Kh}(K_b) \not\cong \text{Kh}(K_{b+n})$ if b is nontrivial.

2. $\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K\#)$ if b is nontrivial.
 - $\dim \text{KHI}(K_b) > \dim \text{KHI}(K\#)$ if b is nontrivial.
 - $\dim \text{Kh}(K_b) > \dim \text{Kh}(K\#)$ if b is nontrivial.
Nonsplit links?

If the generalized cosmetic crossing conjecture is false for L, then the polynomial invariants of L look like those of a split link.

- The Alexander polynomial of L vanishes.
- The Jones polynomial of L is divisible by $q - 1$.
- The HOMFLYPT polynomial of L is divisible by $\frac{\ell - 1}{m}$.

Potential proof strategy: show that a categorified invariant of L looks like that of a split link, then prove that the categorified invariant detects splitness.

Theorem (Lipshitz-Sarkar 2019)
The module structure on $\text{Kh}(L)$ detects if L is split.

Theorem (W. 2020)
The module structure on $\hat{\text{HFL}}(L)$ detects if L is split.
If the generalized cosmetic crossing conjecture is false for L, then the polynomial invariants of L look like those of a split link.

- the Alexander polynomial of L vanishes

Potential proof strategy: show that a categorified invariant of L looks like that of a split link, then prove that the categorified invariant detects splitness.

Theorem (Lipshitz-Sarkar 2019)

The module structure on $\mathit{Kh}(L)$ detects if L is split.

Theorem (W. 2020)

The module structure on $\hat{\mathit{HFL}}(L)$ detects if L is split.
Nonsplit links?

If the generalized cosmetic crossing conjecture is false for L, then the polynomial invariants of L look like those of a split link.

- the Alexander polynomial of L vanishes
- the Jones polynomial of L is divisible by $q^{-1} + q$
Nonsplit links?

If the generalized cosmetic crossing conjecture is false for L, then the polynomial invariants of L look like those of a split link.

- the Alexander polynomial of L vanishes
- the Jones polynomial of L is divisible by $q^{-1} + q$
- the HOMFLYPT polynomial of L is divisible by $(\ell^{-1} + \ell)/m$
Nonsplit links?

If the generalized cosmetic crossing conjecture is false for L, then the polynomial invariants of L look like those of a split link.

- the Alexander polynomial of L vanishes
- the Jones polynomial of L is divisible by $q^{-1} + q$
- the HOMFLYPT polynomial of L is divisible by $(\ell^{-1} + \ell)/m$

Potential proof strategy: show that a categorified invariant of L looks like that of a split link, then prove that the categorified invariant detects splitness.
Nonsplit links?

If the generalized cosmetic crossing conjecture is false for L, then the polynomial invariants of L look like those of a split link.

- the Alexander polynomial of L vanishes
- the Jones polynomial of L is divisible by $q^{-1} + q$
- the HOMFLYPT polynomial of L is divisible by $(\ell^{-1} + \ell)/m$

Potential proof strategy: show that a categorified invariant of L looks like that of a split link, then prove that the categorified invariant detects splitness.

Theorem (Lipshitz-Sarkar 2019)

The module structure on $\text{Kh}(L)$ detects if L is split.
If the generalized cosmetic crossing conjecture is false for L, then the polynomial invariants of L look like those of a split link.

- the Alexander polynomial of L vanishes
- the Jones polynomial of L is divisible by $q^{-1} + q$
- the HOMFLYPT polynomial of L is divisible by $(\ell^{-1} + \ell)/m$

Potential proof strategy: show that a categorified invariant of L looks like that of a split link, then prove that the categorified invariant detects splitness.

Theorem (Lipshitz-Sarkar 2019)

The module structure on $\text{Kh}(L)$ detects if L is split.

Theorem (W. 2020)

The module structure on $\widehat{\text{HFL}}(L)$ detects if L is split.
Thanks for listening!