Floer and Khovanov homologies of band sums

Joshua Wang

October 20, 2020
The cosmetic crossing conjecture

A nugatory crossing change:
The cosmetic crossing conjecture

A nugatory crossing change:

The cosmetic crossing conjecture: Every crossing change of an oriented knot that does not change the oriented knot type is nugatory.
The cosmetic crossing conjecture

Let K_+ and K_- be oriented knots in S^3 differing by a crossing change, and let L be the two-component link obtained by taking the oriented resolution.
The cosmetic crossing conjecture

Let K_+ and K_- be oriented knots in S^3 differing by a crossing change, and let L be the two-component link obtained by taking the oriented resolution.

K_+ can be obtained from L by band surgery along a band b.

K_- can be obtained from L by band surgery along a band b.
Let K_+ and K_- be oriented knots in S^3 differing by a crossing change, and let L be the two-component link obtained by taking the oriented resolution.

K_- can be obtained from L by band surgery along a band b.

K_+ can then be obtained by adding a full twist to the band.
Cosmetic crossing conjecture (Problem 1.58 on Kirby’s list)

If K_+ and K_- are isotopic as oriented knots, then the link L is split and the band b is trivial.
Cosmetic crossing conjecture (Problem 1.58 on Kirby’s list)

If \(K_+ \) and \(K_- \) are isotopic as oriented knots, then the link \(L \) is split and the band \(b \) is trivial.

Recall:

- \(L \) is *split* if there exists an embedded sphere which separates its components.
- \(b \) is *trivial* if there exists a splitting sphere for \(L \) which intersects \(b \) along a single arc.
The cosmetic crossing conjecture

Example: L is split and b is nontrivial.
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)
- all genus 1 knots except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)

In particular, all prime knots with crossing number ≤ 9.
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)
- all genus 1 knots except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)

In particular, all prime knots with crossing number ≤ 9.
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Toriisu 1999)
- composite knots, if the conjecture is true for prime knots (Toriisu 1999)
- fibered knots (Kalfagianni 2012)
- all genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)

In particular, all prime knots with crossing number ≤ 9.

Joshua Wang
Fl and Kh homologies of band sums
October 20, 2020 6 / 27
The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)
- all genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)

In particular, all prime knots with crossing number ≤ 9.
The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)

In particular, all prime knots with crossing number ≤ 9.
The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torusu 1999)
- composite knots, if the conjecture is true for prime knots (Torusu 1999)
- fibered knots (Kalfagianni 2012)
- all genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)

In particular, all prime knots with crossing number ≤ 9.
The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)
- all genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)
- all genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)
The cosmetic crossing conjecture

The cosmetic crossing conjecture is true for:

- the unknot (Scharlemann-Thompson 1989)
- 2-bridge knots (Torisu 1999)
- composite knots, if the conjecture is true for prime knots (Torisu 1999)
- fibered knots (Kalfagianni 2012)
- all genus 1 knots K except when K is algebraically slice and $H_1(\Sigma_2(K))$ is finite cyclic (Balm-Friedl-Kalfagianni-Powell 2012)
- Whitehead doubles of prime, non-cable knots (Balm-Kalfagianni 2016)
- knots K for which $\Sigma_2(K)$ is an L-space and each cyclic summand of $H_1(\Sigma_2(K))$ has square-free order (Lidman-Moore 2017)

In particular, all prime knots with crossing number ≤ 9.
The cosmetic crossing conjecture

Fix a two-component link L and a band b.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and $K_b + 1$ are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

• if L is nonsplit, then K_b and $K_b + 1$ are distinct for any band b.

• if L is split, then K_b and $K_b + 1$ are distinct for any nontrivial band b.
The cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.
The cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.
The cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.
The cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.

Cosmetic crossing conjecture (restated)
The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:
The cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

- if L is nonsplit, then K_b and K_{b+1} are distinct for any band b.
The cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:
- if L is non-split, then K_b and K_{b+1} are distinct for any band b.
- if L is split, then K_b and K_{b+1} are distinct for any nontrivial band b.
The generalized cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+1} be obtained by adding a full twist to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

- if L is nonsplit, then K_b and K_{b+1} are distinct for any band b.
- if L is split, then K_b and K_{b+1} are distinct for any nontrivial band b.
The generalized cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+n} be obtained by adding n full twists to the band.

Cosmetic crossing conjecture (restated)

The oriented knots K_b and K_{b+1} are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

- if L is nonsplit, then K_b and K_{b+1} are distinct for any band b.
- if L is split, then K_b and K_{b+1} are distinct for any nontrivial band b.
The **generalized** cosmetic crossing conjecture

Fix a two-component link \(L \) and a band \(b \). Let \(K_b \) be the result of band surgery, and let \(K_{b+n} \) be obtained by adding \(n \) full twists to the band.

Cosmetic crossing conjecture (restated)

The oriented knots \(K_b \) and \(K_{b+1} \) are distinct unless \(L \) is split and \(b \) is trivial.

The cosmetic crossing conjecture for a two-component link \(L \):

- if \(L \) is **nonsplit**, then \(K_b \) and \(K_{b+1} \) are distinct for any band \(b \).
- if \(L \) is **split**, then \(K_b \) and \(K_{b+1} \) are distinct for any **nontrivial** band \(b \).
The **generalized** cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+n} be obtained by adding n full twists to the band.

Generalized cosmetic crossing conjecture

The oriented knots K_{b+n} for $n \in \mathbb{Z}$ are distinct unless L is split and b is trivial.

The cosmetic crossing conjecture for a two-component link L:

- if L is *nonsplit*, then K_b and K_{b+1} are distinct for any band b.
- if L is *split*, then K_b and K_{b+1} are distinct for any *nontrivial* band b.
The **generalized** cosmetic crossing conjecture

Fix a two-component link L and a band b. Let K_b be the result of band surgery, and let K_{b+n} be obtained by adding n full twists to the band.

The **generalized** cosmetic crossing conjecture for a two-component link L:

- if L is *nonsplit*, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any band b.
- if L is *split*, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any *nontrivial* band b.

The **generalized** cosmetic crossing conjecture

The oriented knots K_{b+n} for $n \in \mathbb{Z}$ are distinct unless L is split and b is trivial.
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links.
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If \(L \) is a split two-component link, then \(K_{b+n} \) for \(n \in \mathbb{Z} \) are distinct for any nontrivial band \(b \).
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If L is a split two-component link, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any nontrivial band b.

Let K_b be a band sum of a split link L. Let $K\#$ be the connected sum.
Let K_b be a band sum of a split link L. Let $K_\#$ be the connected sum. For a knot invariant H, two questions about band sums:

Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If L is a split two-component link, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any nontrivial band b.

Let K_b be a band sum of a split link L. Let $K_\#$ be the connected sum. For a knot invariant H, two questions about band sums:
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If L is a split two-component link, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any nontrivial band b.

Let K_b be a band sum of a split link L. Let $K_#$ be the connected sum. For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If \(L \) is a split two-component link, then \(K_{b+n} \) for \(n \in \mathbb{Z} \) are distinct for any nontrivial band \(b \).

Let \(K_b \) be a band sum of a split link \(L \). Let \(K_\# \) be the connected sum. For a knot invariant \(H \), two questions about band sums:

1. How are \(H(K_b) \) and \(H(K_{b+n}) \) related?
2. How are \(H(K_b) \) and \(H(K_\#) \) related?
Band sums and the main topological result

Theorem (W. 2020)

The generalized cosmetic crossing conjecture is true for split links. If L is a split two-component link, then K_{b+n} for $n \in \mathbb{Z}$ are distinct for any nontrivial band b.

Let K_b be a band sum of a split link L. Let $K_{\#}$ be the connected sum. For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_{\#})$ related?

In this talk: answers to these two questions for $H = \text{knot Floer homology, Khovanov homology, instanton knot homology.}$
Let K_b be a band sum of a split two-component link L.

The Alexander polynomial Δ satisfies the skein relation

$$\Delta(J^+) - \Delta(J^-) = (t - 1/2 - t^{-1/2}) \Delta(J^0).$$

Observation

$\Delta(K_b + n) = \Delta(K_b)$ for all $n \in \mathbb{Z}$.

Proof.

$\Delta(L) = 0$ when L is split, so

$$\Delta(K_b + 1) - \Delta(K_b) = (t - 1/2 - t^{-1/2}) \Delta(L) = 0.$$

\square
Let K_b be a band sum of a split two-component link L. The Alexander polynomial Δ satisfies the skein relation

$$\Delta(J_+) - \Delta(J_-) = (t^{-1/2} - t^{1/2})\Delta(J_0).$$

![Diagram]

Observation $\Delta(K_b + n) = \Delta(K_b)$ for all $n \in \mathbb{Z}$.

Proof. $\Delta(L) = 0$ when L is split so $\Delta(K_b + 1) - \Delta(K_b) = (t^{-1/2} - t^{1/2})\Delta(L) = 0$. \square
Let K_b be a band sum of a split two-component link L. The Alexander polynomial Δ satisfies the skein relation

$$\Delta(J_+) - \Delta(J_-) = (t^{-1/2} - t^{1/2})\Delta(J_0).$$

Observation

$$\Delta(K_{b+n}) = \Delta(K_b) \text{ for all } n \in \mathbb{Z}.$$
Let K_b be a band sum of a split two-component link L. The Alexander polynomial Δ satisfies the skein relation

$$\Delta(J_+) - \Delta(J_-) = (t^{-1/2} - t^{1/2})\Delta(J_0).$$

Observation

$$\Delta(K_{b+n}) = \Delta(K_b) \text{ for all } n \in \mathbb{Z}.$$

Proof.

$$\Delta(L) = 0 \text{ when } L \text{ is split so } \Delta(K_{b+1}) - \Delta(K_b) = (t^{-1/2} - t^{1/2})\Delta(L) = 0.$$
The knot Floer homology of K_b, denoted $\widehat{\text{HFK}}(K_b)$, is a vector space over $F = \mathbb{Z}/2$ with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading. It categorifies $\Delta(K_b)$.

Theorem (W. 2020) $\widehat{\text{HFK}}(K_b + n) \cong \widehat{\text{HFK}}(K_b)$ as bigraded vector spaces over F. The same is true for $\text{HFK}^{-}(K_b)$. Hedden-Watson 2018 proved the special case of this result when the split link is the unlink.

The instanton knot Floer homology of K_b, denoted $\text{KHI}(K_b)$, is a vector space over C with a $\mathbb{Z} \oplus \mathbb{Z}/2$ bigrading. It also categorifies $\Delta(K_b)$.

Theorem (W. 2020) $\text{KHI}(K_b + n) \cong \text{KHI}(K_b)$ as bigraded vector spaces over C.

Joshua Wang
Fl and Kh homologies of band sums
October 20, 2020 11 / 27
The knot Floer homology of K_b, denoted $\widehat{\text{HFK}}(K_b)$, is a vector space over $F = \mathbb{Z}/2$ with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading. It categorifies $\Delta(K_b)$.

Theorem (W. 2020)

$\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$ as bigraded vector spaces over F.

The instanton knot Floer homology of K_b, denoted $\text{KHI}(K_b)$, is a vector space over \mathbb{C} with a $\mathbb{Z} \oplus \mathbb{Z}/2$ bigrading. It also categorifies $\Delta(K_b)$.

Theorem (W. 2020)

$\text{KHI}(K_{b+n}) \cong \text{KHI}(K_b)$ as bigraded vector spaces over \mathbb{C}.

The knot Floer homology of K_b, denoted $\widehat{\text{HFK}}(K_b)$, is a vector space over $F = \mathbb{Z}/2$ with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading. It categorifies $\Delta(K_b)$.

Theorem (W. 2020)

$\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$ as bigraded vector spaces over F.

The same is true for $\text{HFK}^-(K_b)$. Hedden-Watson 2018 proved the special case of this result when the split link is the unlink.
The knot Floer homology of K_b, denoted $\widehat{\text{HFK}}(K_b)$, is a vector space over $\mathbf{F} = \mathbf{Z}/2$ with a $\mathbf{Z} \oplus \mathbf{Z}$ bigrading. It categorifies $\Delta(K_b)$.

Theorem (W. 2020)

$\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$ as bigraded vector spaces over \mathbf{F}.

The same is true for $\text{HFK}^-(K_b)$. Hedden-Watson 2018 proved the special case of this result when the split link is the unlink.

The instanton knot Floer homology of K_b, denoted $\text{KHI}(K_b)$, is a vector space over \mathbf{C} with a $\mathbf{Z} \oplus \mathbf{Z}/2$ bigrading. It also categorifies $\Delta(K_b)$.
The knot Floer homology of K_b, denoted $\widehat{\text{HFK}}(K_b)$, is a vector space over $\mathbb{F} = \mathbb{Z}/2$ with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading. It categorifies $\Delta(K_b)$.

Theorem (W. 2020)

$$\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$$ as bigraded vector spaces over \mathbb{F}.

The same is true for $\text{HFK}^-(K_b)$. Hedden-Watson 2018 proved the special case of this result when the split link is the unlink.

The instanton knot Floer homology of K_b, denoted $\text{KHI}(K_b)$, is a vector space over \mathbb{C} with a $\mathbb{Z} \oplus \mathbb{Z}/2$ bigrading. It also categorifies $\Delta(K_b)$.

Theorem (W. 2020)

$$\text{KHI}(K_{b+n}) \cong \text{KHI}(K_b)$$ as bigraded vector spaces over \mathbb{C}.
Alexander polynomial and knot Floer homology

There are two main ingredients to the proof.
There are two main ingredients to the proof.

1. The skein exact triangle, which categorifies the skein relation:

\[\widehat{\text{HFK}}(K_{b+1}) \rightarrow \widehat{\text{HFK}}(K_b) \rightarrow \widehat{\text{HFK}}(L) \]

The map \(\widehat{\text{HFK}}(K_{b+1}) \rightarrow \widehat{\text{HFK}}(K_b) \) preserves both gradings.
Alexander polynomial and knot Floer homology

There are two main ingredients to the proof.

1. The skein exact triangle, which categorifies the skein relation:

\[\widehat{\text{HFK}}(K_{b+1}) \rightarrow \widehat{\text{HFK}}(K_b) \]

The map \(\widehat{\text{HFK}}(K_{b+1}) \rightarrow \widehat{\text{HFK}}(K_b) \) preserves both gradings.

2. Maps on \(\widehat{\text{HFK}} \) induced by ribbon concordances.
Ribbon concordances and knot Floer homology

Recall:

- A *concordance* $C : J_0 \to J_1$ between knots $J_i \subset S^3$ is a properly embedded annulus $C \hookrightarrow [0, 1] \times S^3$ with $\partial C = -J_0 \times 0 \sqcup J_1 \times 1$.

Theorem (Miyazaki 1998)

There is a ribbon concordance $C : K_# \to K_{\text{b}}$.

Theorem (Zemke 2019)

A ribbon concordance $C : J_0 \to J_1$ induces an injective map $\hat{HFK}(J_0) \to \hat{HFK}(J_1)$.

In fact, $\hat{HFK}(J_1) \cong \hat{HFK}(J_0) \oplus F$ for some bigraded vector space F.

Joshua Wang

Fl and Kh homologies of band sums

October 20, 2020
Ribbon concordances and knot Floer homology

Recall:

- A concordance $C : J_0 \to J_1$ between knots $J_i \subset S^3$ is a properly embedded annulus $C \hookrightarrow [0, 1] \times S^3$ with $\partial C = -J_0 \times 0 \sqcup J_1 \times 1$.
- A concordance $C : J_0 \to J_1$ is ribbon if the projection to $[0, 1]$ is a Morse function on C with no index 2 critical points.
Ribbon concordances and knot Floer homology

Recall:

- A concordance $C : J_0 \to J_1$ between knots $J_i \subset S^3$ is a properly embedded annulus $C \hookrightarrow [0, 1] \times S^3$ with $\partial C = -J_0 \times 0 \sqcup J_1 \times 1$.

- A concordance $C : J_0 \to J_1$ is ribbon if the projection to $[0, 1]$ is a Morse function on C with no index 2 critical points.

Theorem (Miyazaki 1998)

There is a ribbon concordance $C : K_\# \to K_b$.
Ribbon concordances and knot Floer homology

Recall:

- A *concordance* \(C : J_0 \to J_1 \) between knots \(J_i \subset S^3 \) is a properly embedded annulus \(C \hookrightarrow [0, 1] \times S^3 \) with \(\partial C = -J_0 \times 0 \sqcup J_1 \times 1 \).
- A concordance \(C : J_0 \to J_1 \) is *ribbon* if the projection to \([0, 1]\) is a Morse function on \(C \) with no index 2 critical points.

Theorem (Miyazaki 1998)

There is a ribbon concordance \(C : K_\# \to K_b \).

Theorem (Zemke 2019)

A ribbon concordance \(C : J_0 \to J_1 \) induces an injective map

\[
\widehat{\text{HFK}}(J_0) \to \widehat{\text{HFK}}(J_1).
\]
Ribbon concordances and knot Floer homology

Recall:

• A concordance $C : J_0 \rightarrow J_1$ between knots $J_i \subset S^3$ is a properly embedded annulus $C \hookrightarrow [0, 1] \times S^3$ with $\partial C = -J_0 \times 0 \sqcup J_1 \times 1$.

• A concordance $C : J_0 \rightarrow J_1$ is ribbon if the projection to $[0, 1]$ is a Morse function on C with no index 2 critical points.

Theorem (Miyazaki 1998)

There is a ribbon concordance $C : K_\# \rightarrow K_b$.

Theorem (Zemke 2019)

A ribbon concordance $C : J_0 \rightarrow J_1$ induces an injective map

$$\widehat{HFK}(J_0) \rightarrow \widehat{HFK}(J_1).$$

In fact, $\widehat{HFK}(J_1) \cong \widehat{HFK}(J_0) \oplus F$ for some bigraded vector space F.
Ribbon concordance $K_\# \to K_b$ (Miyazaki 1998)
Ribbon concordance $K_\# \rightarrow K_b$ (Miyazaki 1998)
Ribbon concordance $K_\# \rightarrow K_b$ (Miyazaki 1998)
Ribbon concordance $K_\# \to K_b$ (Miyazaki 1998)
Ribbon concordance $K_\# \rightarrow K_b$ (Miyazaki 1998)
Ribbon concordance $K_\# \rightarrow K_b$ (Miyazaki 1998)
Ribbon concordance $K_\# \rightarrow K_b$ (Miyazaki 1998)
Proof sketch of $\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$.

Choose (compatible) ribbon concordances $C' : K\# \to K_{b+1}$ and $C : K\# \to K_b$.
Proof sketch of $\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$.

Choose (compatible) ribbon concordances $C' : K\# \to K_{b+1}$ and $C : K\# \to K_b$. There are induced splittings

$$\widehat{\text{HFK}}(K_{b+1}) \cong \widehat{\text{HFK}}(K\#) \oplus F_{b+1} \quad \widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K\#) \oplus F_b$$

for some bigraded vector spaces F_{b+1}, F_b by Zemke’s inclusion maps.
Proof sketch of $\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$.

Choose (compatible) ribbon concordances $C' : K# \to K_{b+1}$ and $C : K# \to K_b$. There are induced splittings

$$\widehat{\text{HFK}}(K_{b+1}) \cong \widehat{\text{HFK}}(K#) \oplus F_{b+1} \quad \text{and} \quad \widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K#) \oplus F_b$$

for some bigraded vector spaces F_{b+1}, F_b by Zemke’s inclusion maps. These splittings are compatible with the skein exact triangles

$$\begin{align*}
\widehat{\text{HFK}}(K_{b+1}) & \to \widehat{\text{HFK}}(K_b) & \widehat{\text{HFK}}(K#) & \to \widehat{\text{HFK}}(K#) & F_{b+1} & \to F_b \\
\Downarrow & & \Downarrow & & \Downarrow & \\
\text{HFK}(L) & & \text{HFK}(L) & & 0 & \\
\end{align*}$$
Proof sketch of $\widehat{\text{HFK}}(K_{b+n}) \cong \widehat{\text{HFK}}(K_b)$.

Choose (compatible) ribbon concordances $C' : K\# \to K_{b+1}$ and $C : K\# \to K_b$. There are induced splittings

$$\widehat{\text{HFK}}(K_{b+1}) \cong \widehat{\text{HFK}}(K\#) \oplus F_{b+1} \quad \quad \widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K\#) \oplus F_b$$

for some bigraded vector spaces F_{b+1}, F_b by Zemke’s inclusion maps. These splittings are compatible with the skein exact triangles

$$\begin{align*}
\widehat{\text{HFK}}(K_{b+1}) &\to \widehat{\text{HFK}}(K_b) \\
\text{HFK}(L) &\to \text{HFK}(L)
\end{align*}$$

$$\begin{align*}
\widehat{\text{HFK}}(K\#) &\to \widehat{\text{HFK}}(K\#) \\
\text{HFK}(L) &\to 0
\end{align*}$$

for some bigraded vector spaces F_{b+1}, F_b by Zemke’s inclusion maps. These splittings are compatible with the skein exact triangles
Jones polynomial and Khovanov homology

Let K_b be a band sum of a split two-component link L, and let $K#$ be the connected sum.

Observation

Let P_b satisfy $V(K_b) = V(K#) + P_b$. Then $V(K_b + n) = V(K#) + q^{4n} P_b$.

Proof.

Use the identity $V(L) = (q - 1 + q) V(K#)$ and the skein relation. □

Question

Does the Jones polynomial detect the trivial band? Is P_b, 0 when b is nontrivial?
Let K_b be a band sum of a split two-component link L, and let $K#$ be the connected sum. The Jones polynomial V satisfies the skein relation

$$q^{-2}V(J_+) - q^2V(J_-) = (q^{-1} - q)V(J_0).$$
Let K_b be a band sum of a split two-component link L, and let $K_#$ be the connected sum. The Jones polynomial V satisfies the skein relation

$$q^{-2}V(J_+) - q^2V(J_-) = (q^{-1} - q)V(J_0).$$

Observation

Let P_b satisfy $V(K_b) = V(K#) + P_b$. Then $V(K_{b+n}) = V(K#) + q^{4n}P_b$.

Proof. Use the identity $V(L) = (q^{-1} - q)V(K#)$ and the skein relation. □
Let K_b be a band sum of a split two-component link L, and let $K#$ be the connected sum. The Jones polynomial V satisfies the skein relation

$$q^{-2}V(J_+) - q^2V(J_-) = (q^{-1} - q)V(J_0).$$

Observation

Let P_b satisfy $V(K_b) = V(K#) + P_b$. Then $V(K_{b+n}) = V(K#) + q^{4n}P_b$.

Proof.

Use the identity $V(L) = (q^{-1} + q)V(K#)$ and the skein relation.

Joshua Wang

FL and Kh homologies of band sums

October 20, 2020
Let K_b be a band sum of a split two-component link L, and let $K#$ be the connected sum. The Jones polynomial V satisfies the skein relation

$$q^{-2}V(J_+) - q^2V(J_-) = (q^{-1} - q)V(J_0).$$

Observation

Let P_b satisfy $V(K_b) = V(K#) + P_b$. Then $V(K_{b+n}) = V(K#) + q^{4n}P_b$.

Proof.

Use the identity $V(L) = (q^{-1} + q)V(K#)$ and the skein relation.

Question

Does the Jones polynomial detect the trivial band? Is $P_b \neq 0$ when b is nontrivial?
The Khovanov homology of K_b, denoted $\text{Kh}(K_b)$, is a vector space over \mathbb{F} with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading (h, q). It categorifies $V(K_b)$.
The Khovanov homology of K_b, denoted $\text{Kh}(K_b)$, is a vector space over F with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading (h, q). It categorifies $V(K_b)$.

A ribbon concordance $K_# \to K_b$ induces a splitting $\text{Kh}(K_b) \cong \text{Kh}(K#) \oplus H_b$ (Levine-Zemke 2019). The graded Euler characteristic of H_b is P_b.

Recall: $V(K_b + n) = V(K#) + q^{4n} P_b$.

Theorem (W. 2020) $\text{Kh}(K_b + m/2) = \text{Kh}(K#) \oplus h^m q^{2m} H_b$.

In fact, $\text{Kh}(K_b + m/2) = \text{Kh}(K#) \oplus h^m q^{2m} H_b$.

Joshua Wang
Fl and Kh homologies of band sums
October 20, 2020 17 / 27
The Khovanov homology of K_b, denoted $\text{Kh}(K_b)$, is a vector space over \mathbb{F} with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading (h, q). It categorifies $V(K_b)$.

A ribbon concordance $K_\# \to K_b$ induces a splitting $\text{Kh}(K_b) \cong \text{Kh}(K_\#) \oplus H_b$ (Levine-Zemke 2019). The graded Euler characteristic of H_b is P_b.

Recall: $V(K_{b+n}) = V(K_\#) + q^{4n}P_b$.
The Khovanov homology of K_b, denoted $\text{Kh}(K_b)$, is a vector space over \mathbb{F} with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading (h, q). It categorifies $V(K_b)$.

A ribbon concordance $K_\# \rightarrow K_b$ induces a splitting $\text{Kh}(K_b) \cong \text{Kh}(K_\#) \oplus H_b$ (Levine-Zemke 2019). The graded Euler characteristic of H_b is P_b.

Recall: $V(K_{b+n}) = V(K_\#) + q^{4n}P_b$.

Theorem (W. 2020)

$\text{Kh}(K_{b+n}) \cong \text{Kh}(K_\#) \oplus h^{2n}q^{4n}H_b$
The Khovanov homology of K_b, denoted $\text{Kh}(K_b)$, is a vector space over \mathbf{F} with a $\mathbb{Z} \oplus \mathbb{Z}$ bigrading (h, q). It categorifies $V(K_b)$.

A ribbon concordance $K_\# \rightarrow K_b$ induces a splitting $\text{Kh}(K_b) \cong \text{Kh}(K_\#) \oplus H_b$ (Levine-Zemke 2019). The graded Euler characteristic of H_b is P_b.

Recall: $V(K_{b+n}) = V(K_\#) + q^{4n}P_b$.

Theorem (W. 2020)

$$\text{Kh}(K_{b+n}) \cong \text{Kh}(K_\#) \oplus h^{2n}q^{4n}H_b$$

In fact, $\text{Kh}(K_{b+m/2}) \cong \text{Kh}(K_\#) \oplus h^{m}q^{2m}H_b$.
Proof sketch of $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_{\#}) \oplus h^{2n}q^{4n}H_b$.

There are unoriented skein exact triangles

$$\begin{align*}
\text{Kh}(K_b) &\longrightarrow \text{Kh}(K_{b+1/2}) \longrightarrow \text{Kh}(K_{b+1}) \\
\text{Kh}(L) &\quad \quad \text{Kh}(L)
\end{align*}$$
Jones polynomial and Khovanov homology

Proof sketch of $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_{\#}) \oplus h^{2n} q^{4n} H_b$.

There are unoriented skein exact triangles

\[
\text{Kh}(K_b) \rightarrow \text{Kh}(K_{b+1/2}) \rightarrow \text{Kh}(K_{b+1}) \\
\text{Kh}(L) \leftarrow \text{Kh}(L) \leftarrow \text{Kh}(L)
\]

compatible with ribbon concordance splittings (Levine-Zemke 2019)

\[
\text{Kh}(K_{\#}) \rightarrow \text{Kh}(K_{\#}) \rightarrow \text{Kh}(K_{\#}) \\
\text{Kh}(L) \leftarrow \text{Kh}(L) \leftarrow \text{Kh}(L)
\]

\[
\text{Kh}(K_{\#}) \rightarrow \text{Kh}(K_{\#}) \rightarrow \text{Kh}(K_{\#}) \\
\text{Kh}(L) \leftarrow \text{Kh}(L) \leftarrow \text{Kh}(L)
\]

\[
H_b \rightarrow H_{b+1/2} \rightarrow H_{b+1} \oplus 0 \leftarrow 0 \leftarrow 0
\]
Proof sketch of $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_{\#}) \oplus h^2n q^{4n} H_b$.

There are unoriented skein exact triangles

\[
\begin{align*}
\text{Kh}(K_b) & \to \text{Kh}(K_{b+1/2}) \to \text{Kh}(K_{b+1}) \\
& \text{Kh}(L) & \text{Kh}(L)
\end{align*}
\]

compatible with ribbon concordance splittings (Levine-Zemke 2019)

\[
\begin{align*}
\text{Kh}(K_{\#}) & \to \text{Kh}(K_{\#}) \to \text{Kh}(K_{\#}) \\
& \text{Kh}(L) & \text{Kh}(L)
\end{align*}
\]

\[
\begin{align*}
H_b & \to H_{b+1/2} \to H_{b+1} \\
\oplus & 0 & 0
\end{align*}
\]

The isomorphisms $H_b \to H_{b+1/2} \to H_{b+1}$ each shift bigradings by $(1, 2)$. \qed
Jones polynomial and Khovanov homology

To show the groups $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_{\#}) \oplus h^{2n}q^{4n}H_b$ for $n \in \mathbb{Z}$ are distinct, it suffices to show that $H_b \neq 0$ whenever b is nontrivial.
To show the groups $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_\#) \oplus h^{2n} q^{4n} H_b$ for $n \in \mathbb{Z}$ are distinct, it suffices to show that $H_b \neq 0$ whenever b is nontrivial.

Theorem (W. 2020)

$$\dim \text{Kh}(K_b) = \dim \text{Kh}(K_\#) \text{ if and only if } b \text{ is trivial.}$$

In other words, $H_b = 0$ if and only if b is trivial.
Jones polynomial and Khovanov homology

To show the groups $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_{\#}) \oplus h^{2n}q^{4n}H_b$ for $n \in \mathbb{Z}$ are distinct, it suffices to show that $H_b \neq 0$ whenever b is nontrivial.

Theorem (W. 2020)

$\dim \text{Kh}(K_b) = \dim \text{Kh}(K_{\#})$ if and only if b is trivial.

In other words, $H_b = 0$ if and only if b is trivial.

Corollary (W. 2020)

The generalized cosmetic crossing conjecture is true for split links.
To show the groups $\text{Kh}(K_{b+n}) \cong \text{Kh}(K_{\#}) \oplus h^{2n} q^{4n} H_b$ for $n \in \mathbb{Z}$ are distinct, it suffices to show that $H_b \neq 0$ whenever b is nontrivial.

Theorem (W. 2020)

$\dim \text{Kh}(K_b) = \dim \text{Kh}(K_{\#})$ if and only if b is trivial.

In other words, $H_b = 0$ if and only if b is trivial.

Corollary (W. 2020)

The generalized cosmetic crossing conjecture is true for split links.

Hedden-Watson 2018 showed that the Khovanov homology groups of K_{b+n} for $n \in \mathbb{Z}$ are distinct in the case where the split link is the unlink.
Jones polynomial and Khovanov homology

To show the groups $\text{Kh}(K_{b+n}) \cong \text{Kh}(K\#) \oplus h^{2n}q^{4n}H_b$ for $n \in \mathbb{Z}$ are distinct, it suffices to show that $H_b \neq 0$ whenever b is nontrivial.

Theorem (W. 2020)

$$\dim \text{Kh}(K_b) = \dim \text{Kh}(K\#) \quad \text{if and only if} \quad b \text{ is trivial.}$$

In other words, $H_b = 0$ if and only if b is trivial.

Corollary (W. 2020)

The generalized cosmetic crossing conjecture is true for split links.

Hedden-Watson 2018 showed that the Khovanov homology groups of K_{b+n} for $n \in \mathbb{Z}$ are distinct in the case where the split link is the unlink.

Corollary (Miyazaki 2020)

If K_b is isotopic to $K\#$, then b is trivial.
Proposition

Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{Kh}(K^b) = \dim \text{Kh}(K^\#)$. Let $C: K^\# \to K^b$ be a ribbon concordance. Then C induces a map of spectral sequences $\text{Kh} \Rightarrow H$ which is an isomorphism on the E^2-page. It is therefore an isomorphism on the E^∞-page, so $\dim H(K^b) = \dim H(K^\#)$. Thus b is trivial. \square
Proposition

Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).
Proposition

Let H be a knot invariant taking the form of a vector space over F with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).
Proposition

Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{Kh}(K_b) = \dim \text{Kh}(K^\#)$.
Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{K}h$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{K}h(K_b) = \dim \text{K}h(K^\#)$. Let $C : K^\# \to K_b$ be a ribbon concordance.
Jones polynomial and Khovanov homology

Proposition

Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{Kh}(K_b) = \dim \text{Kh}(K_\#)$. Let $C : K_\# \to K_b$ be a ribbon concordance. Then C induces a map of spectral sequences $\text{Kh} \Rightarrow H$ which is an isomorphism on the E_2-page.
Proposition

Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{Kh}(K_b) = \dim \text{Kh}(K_\#)$. Let $C : K_\# \to K_b$ be a ribbon concordance. Then C induces a map of spectral sequences $\text{Kh} \Rightarrow H$ which is an isomorphism on the E_2-page. It is therefore an isomorphism on the E_∞-page, so $\dim H(K_b) = \dim H(K_\#)$. \qed
Jones polynomial and Khovanov homology

Proposition

Let H be a knot invariant taking the form of a vector space over \mathbb{F} with a functorial spectral sequence $\text{Kh} \Rightarrow H$. If $\dim H$ detects the trivial band, then $\dim \text{Kh}$ detects the trivial band.

H could be the Heegaard Floer homology of the double branched cover, singular instanton homology $I^\#$, etc. (Baldwin-Hedden-Lobb 2019).

Proof.

Suppose $\dim \text{Kh}(K_b) = \dim \text{Kh}(K_\#)$. Let $C: K_\# \to K_b$ be a ribbon concordance. Then C induces a map of spectral sequences $\text{Kh} \Rightarrow H$ which is an isomorphism on the E_2-page. It is therefore an isomorphism on the E_∞-page, so $\dim H(K_b) = \dim H(K_\#)$. Thus b is trivial.
There is a functorial spectral sequence $\text{Kh} \Rightarrow I^\#$.

Theorem (W. 2020)

Singular instanton homology detects the trivial band:

$\dim I^\#(K^b) = \dim I^\#(K^#)$ if and only if b is trivial.

The proof involves showing that $\dim KHI$ detects the trivial band.

Dowlin 2018 constructed a spectral sequence from Khovanov homology to knot Floer homology.

Theorem (W. 2020)

Knot Floer homology detects the trivial band:

$\dim \hat{HFK}(K^b) = \dim \hat{HFK}(K^#)$ if and only if b is trivial.

Functoriality of Dowlin's spectral sequence has not been established.
There is a functorial spectral sequence $\text{Kh} \Rightarrow \text{I}^\#$.

Theorem (W. 2020)
Singular instanton homology detects the trivial band:
$$\dim \text{I}^\#(K^b) = \dim \text{I}^\#(K^\#)$$
if and only if b is trivial.
The proof involves showing that $\dim KHI$ detects the trivial band.

Dowlin 2018 constructed a spectral sequence from Khovanov homology to knot Floer homology.

Theorem (W. 2020)
Knot Floer homology detects the trivial band:
$$\dim \hat{HFK}(K^b) = \dim \hat{HFK}(K^\#)$$
if and only if b is trivial.
Functoriality of Dowlin's spectral sequence has not been established.
There is a functorial spectral sequence $\text{Kh} \Rightarrow I^\#$.

Theorem (W. 2020)

Singular instanton homology detects the trivial band: $\dim I^\#(K_b) = \dim I^\#(K^\#)$ if and only if b is trivial.

Dowlin 2018 constructed a spectral sequence from Khovanov homology to knot Floer homology.

Theorem (W. 2020)

Knot Floer homology detects the trivial band: $\dim \hat{HFK}(K_b) = \dim \hat{HFK}(K^\#)$ if and only if b is trivial.

Functoriality of Dowlin's spectral sequence has not been established.
There is a functorial spectral sequence $\text{Kh} \Rightarrow \mathcal{I}^\#$.

Theorem (W. 2020)

_Singular instanton homology detects the trivial band: $\dim \mathcal{I}^\#(K_b) = \dim \mathcal{I}^\#(K_\#)$ if and only if b is trivial._

The proof involves showing that $\dim \text{KHI}$ detects the trivial band.
There is a functorial spectral sequence $\text{Kh} \Rightarrow \text{I}^\#$.

Theorem (W. 2020)

Singular instanton homology detects the trivial band: $\dim I^\#(K_b) = \dim I^\#(K_\#)$ if and only if b is trivial.

The proof involves showing that $\dim \text{KHI}$ detects the trivial band.

Dowlin 2018 constructed a spectral sequence from Khovanov homology to knot Floer homology.

Theorem (W. 2020)

Knot Floer homology detects the trivial band: $\dim \hat{HFK}(K_b) = \dim \hat{HFK}(K_\#)$ if and only if b is trivial.

Functoriality of Dowlin's spectral sequence has not been established.
There is a functorial spectral sequence $\text{Kh} \Rightarrow I^\#$.

Theorem (W. 2020)

Singular instanton homology detects the trivial band: $\dim I^\#(K_b) = \dim I^\#(K\#)$ if and only if b is trivial.

The proof involves showing that $\dim \text{KHI}$ detects the trivial band.

Dowlin 2018 constructed a spectral sequence from Khovanov homology to knot Floer homology.

Theorem (W. 2020)

Knot Floer homology detects the trivial band: $\dim \widehat{\text{HFK}}(K_b) = \dim \widehat{\text{HFK}}(K\#)$ if and only if b is trivial.
There is a functorial spectral sequence $\text{Kh} \Rightarrow I^\#$.

Theorem (W. 2020)

Singular instanton homology detects the trivial band: $\dim I^\#(K_b) = \dim I^\#(K\#)$ if and only if b is trivial.

The proof involves showing that $\dim \text{KHI}$ detects the trivial band.

Dowlin 2018 constructed a spectral sequence from Khovanov homology to knot Floer homology.

Theorem (W. 2020)

Knot Floer homology detects the trivial band: $\dim \hat{\text{HFK}}(K_b) = \dim \hat{\text{HFK}}(K\#)$ if and only if b is trivial.

Functoriality of Dowlin’s spectral sequence has not been established.
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K_{\#}) \text{ when } b \text{ is nontrivial} \]
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K\#) \text{ when } b \text{ is nontrivial} \]

A diagram for \(K_b \cup C \) has basepoints \(w_K, z_K, w_C, z_C \).
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K\#) \text{ when } b \text{ is nontrivial} \]

A diagram for \(K_b \cup C \) has basepoints \(w_K, z_K, w_C, z_C \). Let \(\text{CFL}^{-}(K_b \cup C, \sigma) \) over \(F[U] \) count discs blocked by \(w_K, z_K, w_C \) and record intersection with \(z_C \) in \(U \).
dim $\widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K_\#)$ when b is nontrivial

A diagram for $K_b \cup C$ has basepoints w_K, z_K, w_C, z_C. Let $\text{CFL}^{-}(K_b \cup C, \sigma)$ over $F[U]$ count discs blocked by w_K, z_K, w_C and record intersection with z_C in U.

Claim: $\text{rank } \text{HFL}^{-}(K_b \cup C, \sigma) = 2 \cdot \dim \widehat{\text{HFK}}(K_b)$.
\[
\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K\#) \text{ when } b \text{ is nontrivial}
\]

A diagram for \(K_b \cup C\) has basepoints \(w_K, z_K, w_C, z_C\). Let \(\text{CFL}^-(K_b \cup C, \sigma)\) over \(\mathbb{F}[U]\) count discs blocked by \(w_K, z_K, w_C\) and record intersection with \(z_C\) in \(U\).

Claim: \(\text{rank } \text{HFL}^-(K_b \cup C, \sigma) = 2 \cdot \dim \widehat{\text{HFK}}(K_b)\).

\[
0 \longrightarrow \text{CFL}^-(K_b \cup C, \sigma) \xrightarrow{U-\text{Id}} \text{CFL}^-(K_b \cup C, \sigma) \longrightarrow \frac{\text{CFL}^-(K_b \cup C, \sigma)}{U-\text{Id}} \longrightarrow 0
\]

\[
\cdots \longrightarrow \text{HFL}^-(K_b \cup C, \sigma) \xrightarrow{U-\text{Id}} \text{HFL}^-(K_b \cup C, \sigma) \longrightarrow \widehat{\text{HFK}}(K_b) \otimes \mathbb{F}^2 \longrightarrow \cdots
\]
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K_{\#}) \text{ when } b \text{ is nontrivial} \]

Goal: \(\text{rank } \text{HFL}^{-}(K_b \cup C, \sigma) > \text{rank } \text{HFL}^{-}(K_{\#} \cup C, \sigma) \) when \(b \) is nontrivial.
dim $\widehat{\text{HF}}K(K_b) > \dim \widehat{\text{HF}}K(K\#)$ when b is nontrivial

Goal: rank $\text{HFL}^-(K_b \cup C, \sigma) > \text{rank} \: \text{HFL}^-(K\# \cup C, \sigma)$ when b is nontrivial.

A ribbon concordance $K\# \cup C \to K_b \cup C$ gives an inclusion

$$\text{HFL}^-(K\# \cup C, \sigma) \hookrightarrow \text{HFL}^-(K_b \cup C, \sigma)$$

onto an $\mathbb{F}[U]$-module summand.
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K_\#) \text{ when } b \text{ is nontrivial} \]

Goal: \(\text{rank } \text{HFL}^-(K_b \cup C, \sigma) > \text{rank } \text{HFL}^-(K_\# \cup C, \sigma) \) when \(b \) is nontrivial.

A ribbon concordance \(K_\# \cup C \to K_b \cup C \) gives an inclusion

\[\text{HFL}^-(K_\# \cup C, \sigma) \hookrightarrow \text{HFL}^-(K_b \cup C, \sigma) \]

onto an \(F[U] \)-module summand. The generators of the infinite \(U \)-towers in \(\text{HFL}^-(K_\# \cup C, \sigma) \) all lie in the same Alexander grading.
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K_\#) \text{ when } b \text{ is nontrivial} \]

Goal: \(\text{rank } \text{HFL}^-(K_b \cup C, \sigma) > \text{rank } \text{HFL}^-(K_\# \cup C, \sigma) \) when \(b \) is nontrivial.

A ribbon concordance \(K_\# \cup C \to K_b \cup C \) gives an inclusion

\[
\text{HFL}^-(K_\# \cup C, \sigma) \hookrightarrow \text{HFL}^-(K_b \cup C, \sigma)
\]

onto an \(\mathbf{F}[U] \)-module summand. The generators of the infinite \(U \)-towers in \(\text{HFL}^-(K_\# \cup C, \sigma) \) all lie in the same Alexander grading. It suffices to find two infinite \(U \)-towers in \(\text{HFL}^-(K_b \cup C, \sigma) \) whose generators differ in grading.
\[\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K\#) \text{ when } b \text{ is nontrivial} \]

Goal: \(\text{rank } \text{HFL}^-(K_b \cup C, \sigma) > \text{rank } \text{HFL}^-(K\# \cup C, \sigma) \) when \(b \) is nontrivial.

A ribbon concordance \(K\# \cup C \to K_b \cup C \) gives an inclusion

\[\text{HFL}^-(K\# \cup C, \sigma) \hookrightarrow \text{HFL}^-(K_b \cup C, \sigma) \]

onto an \(\mathbb{F}[U] \)-module summand. The generators of the infinite \(U \)-towers in \(\text{HFL}^-(K\# \cup C, \sigma) \) all lie in the same Alexander grading. It suffices to find two infinite \(U \)-towers in \(\text{HFL}^-(K_b \cup C, \sigma) \) whose generators differ in grading.

Sutured manifold decompositions along surfaces \(S_i \) disjoint from \(\partial \mathcal{N}(C) \):

\[S^3(K_b \cup C) \xrightarrow{S_1} (M_1, \gamma_1) \xrightarrow{S_2} \cdots \xrightarrow{S_n} S^3(\text{Hopf link}) \]

\[\text{HFL}^-(K_b \cup C, \sigma) \leftrightarrow \text{SFH}^-(M_1, \gamma_1, \sigma) \leftrightarrow \cdots \leftrightarrow \text{HFL}^-(\text{Hopf link}, \sigma) \]
dim $\text{KHI}(K_b) > \text{dim KHI}(K\#)$ when b is nontrivial

Theory needed to adapt this argument to instanton Floer homology:
dim KHI(\(K_b\)) > dim KHI(\(K_\#\)) when \(b\) is nontrivial

Theory needed to adapt this argument to instanton Floer homology:

- Definitions of KHI\(^-\)(\(K_b \cup C, \sigma\)) and SHI\(^-\)(\(M, \gamma, \sigma\)) building on Etnyre–Vela-Vick–Zarev, Baldwin–Sivek, Li, Ghosh–Li
dim $\text{KHI}(K_b) > \dim \text{KHI}(K\#)$ when b is nontrivial

Theory needed to adapt this argument to instanton Floer homology:

- Definitions of $\text{KHI}^-(K_b \cup C, \sigma)$ and $\text{SHI}^-(M, \gamma, \sigma)$ building on Etnyre–Vela-Vick–Zarev, Baldwin–Sivek, Li, Ghosh–Li
 - $\mathcal{C}[U]$-module structure and gradings
dim $\text{KHI}(K_b) > \dim \text{KHI}(K\#)$ when b is nontrivial

Theory needed to adapt this argument to instanton Floer homology:

- Definitions of $\text{KHI}^-(K_b \cup C, \sigma)$ and $\text{SHI}^-(M, \gamma, \sigma)$ building on Etnyre–Vela-Vick–Zarev, Baldwin–Sivek, Li, Ghosh–Li
 - $\mathcal{C}[U]$-module structure and gradings
- Behavior of $\text{SHI}^-(M, \gamma, \sigma)$ under suitable surface decompositions
dim $\text{KHI}(K_b) > \dim \text{KHI}(K_\#)$ when b is nontrivial

Theory needed to adapt this argument to instanton Floer homology:

- Definitions of $\text{KHI}^{-}(K_b \cup C, \sigma)$ and $\text{SHI}^{-}(M, \gamma, \sigma)$ building on Etnyre–Vela-Vick–Zarev, Baldwin–Sivek, Li, Ghosh–Li
 - $\mathbb{C}[U]$-module structure and gradings
- Behavior of $\text{SHI}^{-}(M, \gamma, \sigma)$ under suitable surface decompositions
- Behavior of $\text{KHI}^{-}(K_b \cup C, \sigma)$ under ribbon concordance
For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_\#)$ related?
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_\#)$ related?

Some answers:
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_\#)$ related?

Some answers:

1. $\widehat{HFK}(K_b) \cong \widehat{HFK}(K_{b+n})$.

2. $\dim \widehat{HFK}(K_b) > \dim \widehat{HFK}(K_\#)$ if b is nontrivial.
3. $\dim \text{Kh}(K_b) > \dim \text{Kh}(K_\#)$ if b is nontrivial.
4. $\dim \text{KHI}(K_b) > \dim \text{KHI}(K_\#)$ if b is nontrivial.
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_\#)$ related?

Some answers:

1. $\widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K_{b+n})$.
2. $\widehat{\text{KHI}}(K_b) \cong \widehat{\text{KHI}}(K_{b+n})$.
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_\#)$ related?

Some answers:

1. - $\widehat{HFK}(K_b) \cong \widehat{HFK}(K_{b+n})$.
 - $\text{KHI}(K_b) \cong \text{KHI}(K_{b+n})$.
 - $\text{Kh}(K_b) \not\cong \text{Kh}(K_{b+n})$ if b is nontrivial.
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K\#)$ related?

Some answers:

1. $\widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K_{b+n})$.
 - $\text{KHI}(K_b) \cong \text{KHI}(K_{b+n})$.
 - $\text{Kh}(K_b) \not\cong \text{Kh}(K_{b+n})$ if b is nontrivial.

2. $\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K\#)$ if b is nontrivial.
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K_\#)$ related?

Some answers:

1. - $\widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K_{b+n})$.
 - $\text{KHI}(K_b) \cong \text{KHI}(K_{b+n})$.
 - $\text{Kh}(K_b) \not\cong \text{Kh}(K_{b+n})$ if b is nontrivial.

2. - $\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K_\#)$ if b is nontrivial.
 - $\dim \text{KHI}(K_b) > \dim \text{KHI}(K_\#)$ if b is nontrivial.
Summary

For a knot invariant H, two questions about band sums:

1. How are $H(K_b)$ and $H(K_{b+n})$ related?
2. How are $H(K_b)$ and $H(K\#)$ related?

Some answers:

1. - $\widehat{\text{HFK}}(K_b) \cong \widehat{\text{HFK}}(K_{b+n})$.
 - $\text{KHI}(K_b) \cong \text{KHI}(K_{b+n})$.
 - $\text{Kh}(K_b) \not\cong \text{Kh}(K_{b+n})$ if b is nontrivial.

2. - $\dim \widehat{\text{HFK}}(K_b) > \dim \widehat{\text{HFK}}(K\#)$ if b is nontrivial.
 - $\dim \text{KHI}(K_b) > \dim \text{KHI}(K\#)$ if b is nontrivial.
 - $\dim \text{Kh}(K_b) > \dim \text{Kh}(K\#)$ if b is nontrivial.
Nonsplit links?

What about nonsplit links?
What about nonsplit links?

If the generalized cosmetic crossing conjecture is false for L, then the polynomial invariants of L look like those of a split link.

- The Alexander polynomial of L vanishes.
- The Jones polynomial of L is divisible by $q - 1 + q^2$.
- The HOMFLYPT polynomial of L is divisible by $(\ell - 1 + \ell^2)/m$.
What about nonsplit links?

If the generalized cosmetic crossing conjecture is false for L, then the polynomial invariants of L look like those of a split link.

- the Alexander polynomial of L vanishes
What about nonsplit links?

If the generalized cosmetic crossing conjecture is false for L, then the polynomial invariants of L look like those of a split link.

- the Alexander polynomial of L vanishes
- the Jones polynomial of L is divisible by $q^{-1} + q$
Nonsplit links?

What about nonsplit links?

If the generalized cosmetic crossing conjecture is false for L, then the polynomial invariants of L look like those of a split link.

- the Alexander polynomial of L vanishes
- the Jones polynomial of L is divisible by $q^{-1} + q$
- the HOMFLYPT polynomial of L is divisible by $(\ell^{-1} + \ell)/m$
Thanks!

Thanks for listening!