An analytic version of the Langlands correspondence for complex curves

Edward Frenkel

University of California, Berkeley

January 2021
In this talk I will present some results and conjectures from a joint work with Pavel Etingof and David Kazhdan.

and two papers in preparation

Answering a question posed by R.P. Langlands, we propose an analytic version of the Langlands correspondence for complex curves.
In this talk I will present some results and conjectures from a joint work with Pavel Etingof and David Kazhdan.

and two papers in preparation

Answering a question posed by R.P. Langlands, we propose an analytic version of the Langlands correspondence for complex curves.
In this talk I will present some results and conjectures from a joint work with Pavel Etingof and David Kazhdan.

Answering a question posed by R.P. Langlands, we propose an analytic version of the Langlands correspondence for complex curves.

and two papers in preparation
In this talk I will present some results and conjectures from a joint work with Pavel Etingof and David Kazhdan.

and two papers in preparation

Answering a question posed by R.P. Langlands, we propose an analytic version of the Langlands correspondence for complex curves.
The unramified Langlands correspondence for a curve X/\mathbb{F}_q:

on one side, joint spectrum of the commuting Hecke operators acting on the space of L^2 functions on the set of \mathbb{F}_q-points of the stack Bun_G of G-bundles on X;

on the other side, Galois data associated to X and the Langlands dual group $^L G$.

If X is a curve over \mathbb{C}, the Langlands correspondence has been traditionally formulated in terms of sheaves rather than functions. It is usually referred to as geometric or categorical.

It turns out that there is a function-theoretic (or analytic) version for complex curves as well. The two versions complement each other.

Analogy: correlation functions in 2D conformal field theory are single-valued bilinear combinations of (multi-valued) conformal and anti-conformal blocks.
The *unramified Langlands correspondence* for a curve X/\mathbb{F}_q:

on one side, joint spectrum of the commuting *Hecke operators* acting on the space of L^2 functions on the set of \mathbb{F}_q-points of the stack Bun_G of G-bundles on X;

on the other side, *Galois data* associated to X and the Langlands dual group LG.

If X is a curve over \mathbb{C}, the Langlands correspondence has been traditionally formulated in terms of *sheaves* rather than functions. It is usually referred to as *geometric* or *categorical*.

It turns out that there is a *function-theoretic* (or *analytic*) version for complex curves as well. The two versions complement each other.

Analogy: correlation functions in 2D conformal field theory are single-valued *bilinear combinations* of (multi-valued) conformal and anti-conformal blocks.
The *unramified Langlands correspondence* for a curve X/\mathbb{F}_q:

on one side, joint spectrum of the commuting Hecke operators acting on the space of L^2 functions on the set of \mathbb{F}_q-points of the stack Bun_G of G-bundles on X;

on the other side, Galois data associated to X and the Langlands dual group $^L G$.

If X is a curve over \mathbb{C}, the Langlands correspondence has been traditionally formulated in terms of sheaves rather than functions. It is usually referred to as geometric or categorical.

It turns out that there is a *function-theoretic* (or analytic) version for complex curves as well. The two versions complement each other.

Analogy: correlation functions in 2D conformal field theory are single-valued bilinear combinations of (multi-valued) conformal and anti-conformal blocks.
The unramified Langlands correspondence for a curve X/F_q:

on one side, joint spectrum of the commuting Hecke operators acting on the space of L^2 functions on the set of F_q-points of the stack Bun_G of G-bundles on X;

on the other side, Galois data associated to X and the Langlands dual group LG.

If X is a curve over \mathbb{C}, the Langlands correspondence has been traditionally formulated in terms of sheaves rather than functions. It is usually referred to as geometric or categorical.

It turns out that there is a function-theoretic (or analytic) version for complex curves as well. The two versions complement each other.

Analogy: correlation functions in 2D conformal field theory are single-valued bilinear combinations of (multi-valued) conformal and anti-conformal blocks.
The *unramified Langlands correspondence* for a curve X/\mathbb{F}_q:

on one side, joint spectrum of the commuting Hecke operators acting on the space of L^2 functions on the set of \mathbb{F}_q-points of the stack Bun_G of G-bundles on X;

on the other side, Galois data associated to X and the Langlands dual group $^L G$.

If X is a curve over \mathbb{C}, the Langlands correspondence has been traditionally formulated in terms of sheaves rather than functions. It is usually referred to as geometric or categorical.

It turns out that there is a *function-theoretic (or analytic) version* for complex curves as well. The two versions complement each other.

Analogy: correlation functions in 2D conformal field theory are single-valued bilinear combinations of (multi-valued) conformal and anti-conformal blocks.
The unramified Langlands correspondence for a curve X/\mathbb{F}_q:

on one side, joint spectrum of the commuting Hecke operators acting on the space of L^2 functions on the set of \mathbb{F}_q-points of the stack Bun_G of G-bundles on X;

on the other side, Galois data associated to X and the Langlands dual group L^G.

If X is a curve over \mathbb{C}, the Langlands correspondence has been traditionally formulated in terms of sheaves rather than functions. It is usually referred to as geometric or categorical.

It turns out that there is a function-theoretic (or analytic) version for complex curves as well. The two versions complement each other.

Analogy: correlation functions in 2D conformal field theory are single-valued bilinear combinations of (multi-valued) conformal and anti-conformal blocks.
Namely, it is possible to associate to Bun_G of X/\mathbb{C} (and more generally X/F, where F is a local field) a natural Hilbert space \mathcal{H}_G and define analogues of the Hecke operators acting on a dense subspace of \mathcal{H}_G. We conjecture that they give rise to mutually commuting normal compact operators on \mathcal{H}_G.

In the case $F = \mathbb{C}$, these Hecke operators commute with the global holomorphic differential operators on Bun_G introduced by Beilinson and Drinfeld, as well as their complex conjugates.

We conjecture that the joint spectrum of this commutative algebra (properly understood) can be identified with the set of L^G-opers on X whose monodromy is in the split real form of L^G, up to conjugation (these play the role of the Galois data).

This statement may be viewed as an analytic Langlands conjecture for complex curves.
Namely, it is possible to associate to Bun_G of X/\mathbb{C} (and more generally X/F, where F is a local field) a natural Hilbert space \mathcal{H}_G and define analogues of the Hecke operators acting on a dense subspace of \mathcal{H}_G. We conjecture that they give rise to mutually commuting normal compact operators on \mathcal{H}_G.

In the case $F = \mathbb{C}$, these Hecke operators commute with the global holomorphic differential operators on Bun_G introduced by Beilinson and Drinfeld, as well as their complex conjugates.

We conjecture that the joint spectrum of this commutative algebra (properly understood) can be identified with the set of L^G-opers on X whose monodromy is in the split real form of L^G, up to conjugation (these play the role of the Galois data).

This statement may be viewed as an analytic Langlands conjecture for complex curves.
Namely, it is possible to associate to \(\text{Bun}_G \) of \(X/\mathbb{C} \) (and more generally \(X/F \), where \(F \) is a local field) a natural Hilbert space \(\mathcal{H}_G \) and define analogues of the Hecke operators acting on a dense subspace of \(\mathcal{H}_G \). We conjecture that they give rise to mutually commuting normal compact operators on \(\mathcal{H}_G \).

In the case \(F = \mathbb{C} \), these Hecke operators commute with the global holomorphic differential operators on \(\text{Bun}_G \) introduced by Beilinson and Drinfeld, as well as their complex conjugates.

We conjecture that the joint spectrum of this commutative algebra (properly understood) can be identified with the set of \(L G \)-opers on \(X \) whose monodromy is in the split real form of \(L G \), up to conjugation (these play the role of the Galois data).

This statement may be viewed as an analytic Langlands conjecture for complex curves.
Namely, it is possible to associate to Bun_G of X/\mathbb{C} (and more generally X/F, where F is a local field) a natural Hilbert space \mathcal{H}_G and define analogues of the Hecke operators acting on a dense subspace of \mathcal{H}_G. We conjecture that they give rise to mutually commuting normal compact operators on \mathcal{H}_G.

In the case $F = \mathbb{C}$, these Hecke operators commute with the global holomorphic differential operators on Bun_G introduced by Beilinson and Drinfeld, as well as their complex conjugates.

We conjecture that the joint spectrum of this commutative algebra (properly understood) can be identified with the set of L^G-opers on X whose monodromy is in the split real form of L^G, up to conjugation (these play the role of the Galois data).

This statement may be viewed as an analytic Langlands conjecture for complex curves.
Basic definitions

X – smooth projective irreducible curve over \mathbb{C}

$S \subset X$ – reduced divisor

K_X – canonical line bundle on X

G – connected simple algebraic group over \mathbb{C}

$L^\ast G$ – the Langlands dual group

$\text{Bun}_G = \text{Bun}_G(X, S)$ – algebraic stack of pairs (\mathcal{F}, r_S), where \mathcal{F} is a G-bundle on X and r_S is a B-reduction of $\mathcal{F}|_S$

$\text{Bun}_G^s = \text{Bun}_G^s(X, S) \subset \text{Bun}_G(X, S)$ – substack of those stable pairs (\mathcal{F}, r_S) whose group of automorphisms is equal to the center $Z(G)$ of G
Basic definitions

X – smooth projective irreducible curve over \mathbb{C}

$S \subset X$ – reduced divisor

K_X – canonical line bundle on X

G – connected simple algebraic group over \mathbb{C}

L^G – the Langlands dual group

$\text{Bun}_G = \text{Bun}_G(X, S)$ – algebraic stack of pairs (\mathcal{F}, r_S), where \mathcal{F} is a G-bundle on X and r_S is a B-reduction of $\mathcal{F}|_S$

$\text{Bun}^s_G = \text{Bun}^s_G(X, S) \subset \text{Bun}_G(X, S)$ – substack of those stable pairs (\mathcal{F}, r_S) whose group of automorphisms is equal to the center $Z(G)$ of G
Basic definitions

\(X \) – smooth projective irreducible curve over \(\mathbb{C} \)

\(S \subset X \) – reduced divisor

\(K_X \) – canonical line bundle on \(X \)

\(G \) – connected simple algebraic group over \(\mathbb{C} \)

\(L^G \) – the Langlands dual group

\(\text{Bun}_G = \text{Bun}_G(X, S) \) – algebraic stack of pairs \((\mathcal{F}, r_S)\), where \(\mathcal{F} \) is a \(G \)-bundle on \(X \) and \(r_S \) is a \(B \)-reduction of \(\mathcal{F}|_S \)

\(\text{Bun}_G^s = \text{Bun}_G^s(X, S) \subset \text{Bun}_G(X, S) \) – substack of those stable pairs \((\mathcal{F}, r_S)\) whose group of automorphisms is equal to the center \(Z(G) \) of \(G \)
Basic definitions

\(X\) – smooth projective irreducible curve over \(\mathbb{C}\)

\(S \subset X\) – reduced divisor

\(K_X\) – canonical line bundle on \(X\)

\(G\) – connected simple algebraic group over \(\mathbb{C}\)

\(L^G\) – the Langlands dual group

\(\text{Bun}_G = \text{Bun}_G(X, S)\) – algebraic stack of pairs \((\mathcal{F}, r_S)\), where \(\mathcal{F}\) is a \(G\)-bundle on \(X\) and \(r_S\) is a \(B\)-reduction of \(\mathcal{F}|_S\)

\(\text{Bun}^s_G = \text{Bun}^s_G(X, S) \subset \text{Bun}_G(X, S)\) – substack of those stable pairs \((\mathcal{F}, r_S)\) whose group of automorphisms is equal to the center \(Z(G)\) of \(G\)
Basic definitions

X – smooth projective irreducible curve over \mathbb{C}

$S \subset X$ – reduced divisor

K_X – canonical line bundle on X

G – connected simple algebraic group over \mathbb{C}

L^G – the Langlands dual group

$\text{Bun}_G = \text{Bun}_G(X, S)$ – algebraic stack of pairs (\mathcal{F}, r_S), where \mathcal{F} is a G-bundle on X and r_S is a B-reduction of $\mathcal{F}|_S$

$\text{Bun}_G^s = \text{Bun}_G^s(X, S') \subset \text{Bun}_G(X, S)$ – substack of those stable pairs (\mathcal{F}, r_S) whose group of automorphisms is equal to the center $Z(G)$ of G
Basic definitions

\(X \) – smooth projective irreducible curve over \(\mathbb{C} \)

\(S \subset X \) – reduced divisor

\(K_X \) – canonical line bundle on \(X \)

\(G \) – connected simple algebraic group over \(\mathbb{C} \)

\(L^*G \) – the Langlands dual group

\(\text{Bun}_G = \text{Bun}_G(X, S) \) – algebraic stack of pairs \((\mathcal{F}, r_S)\), where \(\mathcal{F} \) is a \(G \)-bundle on \(X \) and \(r_S \) is a \(B \)-reduction of \(\mathcal{F}|_S \)

\(\text{Bun}_G^s = \text{Bun}_G^s(X, S) \subset \text{Bun}_G(X, S) \) – substack of those stable pairs \((\mathcal{F}, r_S)\) whose group of automorphisms is equal to the center \(Z(G) \) of \(G \)
Basic definitions

X – smooth projective irreducible curve over \mathbb{C}

$S \subset X$ – reduced divisor

K_X – canonical line bundle on X

G – connected simple algebraic group over \mathbb{C}

L^G – the Langlands dual group

$\text{Bun}_G = \text{Bun}_G(X, S)$ – algebraic stack of pairs (\mathcal{F}, r_S), where \mathcal{F} is a G-bundle on X and r_S is a B-reduction of $\mathcal{F}|_S$

$\text{Bun}_G^s = \text{Bun}_G^s(X, S') \subset \text{Bun}_G(X, S)$ – substack of those stable pairs (\mathcal{F}, r_S) whose group of automorphisms is equal to the center $Z(G)$ of G
Assumption:

\(\text{Bun}^s_G(X, S) \) is *open and dense* in \(\text{Bun}_G(X, S) \), i.e. one of the following cases:

1. the genus of \(X \) is greater than 1, and \(S \) is arbitrary;
2. \(X \) is an elliptic curve and \(|S| \geq 1\);
3. \(X = \mathbb{P}^1 \) and \(|S| \geq 3\).

The stack \(\text{Bun}^s_G(X, S) \) is a \(Z(G) \)-gerbe over a smooth algebraic variety \(\text{Bun}^s_G(X, S) \).
K_{Bun} – the canonical line bundle on Bun_G

For simply-connected G, Beilinson and Drinfeld have constructed a square root $K_{\text{Bun}}^{1/2}$ of K_{Bun}. For a general G, their construction sometimes requires a choice of a square root of the canonical line bundle K_X on X. If so, we will make such a choice (however, the bundle $\Omega_{\text{Bun}}^{1/2}$ below does not depend on this choice).

We’ll use the same notation for the restriction of this $K_{\text{Bun}}^{1/2}$ to Bun_G^s.

Given a holomorphic line bundle \mathcal{L} on a variety Y, let

$|\mathcal{L}| := \mathcal{L} \otimes \overline{\mathcal{L}}$

Set $\Omega_{\text{Bun}}^{1/2} := |K_{\text{Bun}}^{1/2}|$ – the line bundle of half-densities on Bun_G^s.

\(K_{\text{Bun}} \) – the canonical line bundle on \(\text{Bun}_G \)

For simply-connected \(G \), Beilinson and Drinfeld have constructed a square root \(K^{1/2}_{\text{Bun}} \) of \(K_{\text{Bun}} \). For a general \(G \), their construction sometimes requires a choice of a square root of the canonical line bundle \(K_X \) on \(X \). If so, we will make such a choice (however, the bundle \(\Omega^{1/2}_{\text{Bun}} \) below does not depend on this choice).

We’ll use the same notation for the restriction of this \(K^{1/2}_{\text{Bun}} \) to \(\text{Bun}^s_G \).

Given a holomorphic line bundle \(\mathcal{L} \) on a variety \(Y \), let

\[|\mathcal{L}| := \mathcal{L} \otimes \overline{\mathcal{L}} \]

Set \(\Omega^{1/2}_{\text{Bun}} := |K^{1/2}_{\text{Bun}}| \) – the line bundle of half-densities on \(\text{Bun}^s_G \).
K_{Bun} – the canonical line bundle on Bun_G

For simply-connected G, Beilinson and Drinfeld have constructed a square root $K_{\text{Bun}}^{1/2}$ of K_{Bun}. For a general G, their construction sometimes requires a choice of a square root of the canonical line bundle K_X on X. If so, we will make such a choice (however, the bundle $\Omega_{\text{Bun}}^{1/2}$ below does not depend on this choice).

We’ll use the same notation for the restriction of this $K_{\text{Bun}}^{1/2}$ to Bun_G^s.

Given a holomorphic line bundle \mathcal{L} on a variety Y, let

$$|\mathcal{L}| := \mathcal{L} \otimes \overline{\mathcal{L}}$$

Set $\Omega_{\text{Bun}}^{1/2} := |K_{\text{Bun}}^{1/2}|$ – the line bundle of half-densities on Bun_G^s.
K_{Bun} – the canonical line bundle on Bun_G

For simply-connected G, Beilinson and Drinfeld have constructed a square root $K_{\text{Bun}}^{1/2}$ of K_{Bun}. For a general G, their construction sometimes requires a choice of a square root of the canonical line bundle K_X on X. If so, we will make such a choice (however, the bundle $\Omega_{\text{Bun}}^{1/2}$ below does not depend on this choice).

We’ll use the same notation for the restriction of this $K_{\text{Bun}}^{1/2}$ to Bun_G^s.

Given a holomorphic line bundle \mathcal{L} on a variety Y, let

$$|\mathcal{L}| := \mathcal{L} \otimes \overline{\mathcal{L}}$$

Set $\Omega_{\text{Bun}}^{1/2} := |K_{\text{Bun}}^{1/2}|$ – the line bundle of half-densities on Bun_G^s.

K_{Bun} – the canonical line bundle on Bun_G

For simply-connected G, Beilinson and Drinfeld have constructed a square root $K_{\text{Bun}}^{1/2}$ of K_{Bun}. For a general G, their construction sometimes requires a choice of a square root of the canonical line bundle K_X on X. If so, we will make such a choice (however, the bundle $\Omega_{\text{Bun}}^{1/2}$ below does not depend on this choice).

We’ll use the same notation for the restriction of this $K_{\text{Bun}}^{1/2}$ to Bun^s_G.

Given a holomorphic line bundle \mathcal{L} on a variety Y, let

$$|\mathcal{L}| := \mathcal{L} \otimes \overline{\mathcal{L}}$$

Set $\Omega_{\text{Bun}}^{1/2} := |K_{\text{Bun}}^{1/2}|$ – the line bundle of half-densities on Bun^s_G.

Hilbert space

Let V_G – space of smooth compactly supported sections of $\Omega_{Bun}^{1/2}$ over Bun^s_G, and let

$$\langle \cdot, \cdot \rangle - \text{positive-definite Hermitian form on } V_G \text{ given by}$$

$$\langle v, w \rangle := \int_{Bun^s_G} v \cdot \overline{w}, \quad v, w \in V_G$$

\mathcal{H}_G – the Hilbert space completion of V_G
Let V_G – space of smooth compactly supported sections of $\Omega^{1/2}_{Bun}$ over Bun^s_G, and let

$\langle \cdot, \cdot \rangle$ – positive-definite Hermitian form on V_G given by

$$\langle v, w \rangle := \int_{Bun^s_G} v \cdot \overline{w}, \quad v, w \in V_G$$

\mathcal{H}_G – the Hilbert space completion of V_G
Let V_G – space of smooth compactly supported sections of $\Omega_{Bun}^{1/2}$ over Bun^s_G, and let

$\langle \cdot , \cdot \rangle$ – positive-definite Hermitian form on V_G given by

$$\langle v , w \rangle := \int_{Bun^s_G} v \cdot \overline{w} , \quad v , w \in V_G$$

\mathcal{H}_G – the Hilbert space completion of V_G
What kind of operators could act on the Hilbert space \mathcal{H}_G?

1. holomorphic differential operators;
2. anti-holomorphic differential operators;
3. Hecke (integral) operators.

Challenges: Differential operators are unbounded. It is a highly non-trivial task to define their self-adjoint (or normal) extensions, which is necessary to be able to make sense of the notion of their joint spectra on \mathcal{H}_G (and there could be different choices).

Hecke operators are also initially defined on a dense subspace of \mathcal{H}_G. But we conjecture that they extend by continuity to normal compact operators on the entire \mathcal{H}_G. If one proves this, one gets a good spectral problem for both Hecke & differential operators since one can show that they commute (in the sense we’ll discuss later).
What kind of operators could act on the Hilbert space \mathcal{H}_G?

1. holomorphic differential operators;
2. anti-holomorphic differential operators;
3. Hecke (integral) operators.

Challenges: Differential operators are unbounded. It is a highly non-trivial task to define their self-adjoint (or normal) extensions, which is necessary to be able to make sense of the notion of their joint spectra on \mathcal{H}_G (and there could be different choices).

Hecke operators are also initially defined on a dense subspace of \mathcal{H}_G. But we conjecture that they extend by continuity to normal compact operators on the entire \mathcal{H}_G. If one proves this, one gets a good spectral problem for both Hecke & differential operators since one can show that they commute (in the sense we’ll discuss later).
What kind of operators could act on the Hilbert space \mathcal{H}_G?

1. holomorphic differential operators;
2. anti-holomorphic differential operators;
3. Hecke (integral) operators.

Challenges: Differential operators are unbounded. It is a highly non-trivial task to define their self-adjoint (or normal) extensions, which is necessary to be able to make sense of the notion of their joint spectra on \mathcal{H}_G (and there could be different choices).

Hecke operators are also initially defined on a dense subspace of \mathcal{H}_G. But we conjecture that they extend by continuity to normal compact operators on the entire \mathcal{H}_G. If one proves this, one gets a good spectral problem for both Hecke & differential operators since one can show that they commute (in the sense we’ll discuss later).
What kind of operators could act on the Hilbert space \mathcal{H}_G?

1. holomorphic differential operators;
2. anti-holomorphic differential operators;
3. Hecke (integral) operators.

Challenges: Differential operators are unbounded. It is a highly non-trivial task to define their self-adjoint (or normal) extensions, which is necessary to be able to make sense of the notion of their joint spectra on \mathcal{H}_G (and there could be different choices).

Hecke operators are also initially defined on a dense subspace of \mathcal{H}_G. But we conjecture that they extend by continuity to normal compact operators on the entire \mathcal{H}_G. If one proves this, one gets a good spectral problem for both Hecke & differential operators since one can show that they commute (in the sense we’ll discuss later).
Holomorphic differential operators

Consider the case of simply-connected G and $|S| = \emptyset$. Let \mathcal{D}_G be the sheaf of algebraic (hence holomorphic) differential operators acting on the line bundle $K_{\text{Bun}}^{1/2}$ on Bun_G.

$$D_G := \Gamma(\text{Bun}_G, \mathcal{D}_G)$$

Theorem 1 (Beilinson & Drinfeld)

$$D_G \simeq \text{Fun Op}_{L^G}(X),$$
where $\text{Op}_{L^G}(X)$ – space of L^G-opers on X.

Definition. An L^G-oper on a curve X is a holomorphic L^G-bundle with a holomorphic connection ∇ and a reduction to a Borel subgroup L^B which is in a special relative position with ∇.

Example (to be discussed later). A PGL_2-oper on X is a projective connection, i.e. a second-order holomorphic differential operator of the form $\partial_z^2 - v(z): K_X^{-1/2} \to K_X^{3/2}$.

Edward Frenkel (UC Berkeley)
Holomorphic differential operators

Consider the case of simply-connected G and $|S| = \emptyset$.
Let \mathcal{D}_G be the sheaf of algebraic (hence holomorphic) differential operators acting on the line bundle $K_{\text{Bun}}^{1/2}$ on Bun_G.

$$D_G := \Gamma(\text{Bun}_G, \mathcal{D}_G)$$

Theorem 1 (Beilinson & Drinfeld)

$$D_G \simeq \text{Fun Op}_{L^G}(X), \text{ where Op}_{L^G}(X) – \text{space of } L^G\text{-opers on } X.$$

Definition. An L^G-oper on a curve X is a holomorphic L^G-bundle with a holomorphic connection ∇ and a reduction to a Borel subgroup L^B which is in a special relative position with ∇.

Example (to be discussed later). A PGL_2-oper on X is a projective connection, i.e. a second-order holomorphic differential operator of the form

$$\partial_z^2 - v(z) : K_X^{-1/2} \rightarrow K_X^{3/2}.$$
Holomorphic differential operators

Consider the case of simply-connected G and $|S| = \emptyset$. Let \mathcal{D}_G be the sheaf of algebraic (hence holomorphic) differential operators acting on the line bundle $K_{\text{Bun}}^{1/2}$ on Bun_G.

$$D_G := \Gamma(\text{Bun}_G, \mathcal{D}_G)$$

Theorem 1 (Beilinson & Drinfeld)

$$D_G \simeq \text{Fun Op}_{L^G}(X), \text{ where Op}_{L^G}(X) \text{ – space of } L^G\text{-opers on } X.$$

Definition. An L^G-oper on a curve X is a holomorphic L^G-bundle with a holomorphic connection ∇ and a reduction to a Borel subgroup L^B which is in a special relative position with ∇.

Example (to be discussed later). A PGL_2-oper on X is a projective connection, i.e. a second-order holomorphic differential operator of the form

$$\partial_z^2 - v(z) : K_X^{-1/2} \rightarrow K_X^{3/2}.$$
Holomorphic differential operators

Consider the case of simply-connected G and $|S| = \emptyset$. Let \mathcal{D}_G be the sheaf of algebraic (hence holomorphic) differential operators acting on the line bundle $K_{\text{Bun}}^{1/2}$ on Bun_G.

$$D_G := \Gamma(\text{Bun}_G, \mathcal{D}_G)$$

Theorem 1 (Beilinson & Drinfeld)

$D_G \simeq \text{Fun Op}_{L^G}(X)$, where $\text{Op}_{L^G}(X)$ — space of L^G-opers on X.

Definition. An L^G-oper on a curve X is a holomorphic L^G-bundle with a holomorphic connection ∇ and a reduction to a Borel subgroup L^B which is in a special relative position with ∇.

Example (to be discussed later). A PGL_2-oper on X is a projective connection, i.e. a second-order holomorphic differential operator of the form

$$\partial_z^2 - v(z): K_X^{-1/2} \to K_X^{3/2}.$$
Holomorphic differential operators

Consider the case of simply-connected G and $|S| = \emptyset$. Let \mathcal{D}_G be the sheaf of algebraic (hence holomorphic) differential operators acting on the line bundle $K^{1/2}_{\text{Bun}}$ on Bun_G.

$$D_G := \Gamma(\text{Bun}_G, \mathcal{D}_G)$$

Theorem 1 (Beilinson & Drinfeld)

$$D_G \simeq \text{Fun Op}_{L^G}(X), \text{ where Op}_{L^G}(X) \text{ – space of } L^G\text{-opers on } X.$$

Definition. An L^G-oper on a curve X is a holomorphic L^G-bundle with a holomorphic connection ∇ and a reduction to a Borel subgroup L^B which is in a special relative position with ∇.

Example (to be discussed later). A PGL_2-oper on X is a projective connection, i.e. a second-order holomorphic differential operator of the form $\partial_z^2 - v(z) : K_X^{-1/2} \to K_X^{3/2}$.
Holomorphic differential operators

Consider the case of simply-connected G and $|S| = \emptyset$. Let D_G be the sheaf of algebraic (hence holomorphic) differential operators acting on the line bundle $K^{1/2}_{\text{Bun}}$ on Bun_G.

$$D_G := \Gamma(\text{Bun}_G, D_G)$$

Theorem 1 (Beilinson & Drinfeld)

$$D_G \simeq \text{Fun Op}_{L^G}(X), \text{ where Op}_{L^G}(X) \text{ – space of } L^G\text{-opers on } X.$$

Definition. An L^G-oper on a curve X is a holomorphic L^G-bundle with a holomorphic connection ∇ and a reduction to a Borel subgroup L^B which is in a special relative position with ∇.

Example (to be discussed later). A PGL_2-oper on X is a projective connection, i.e. a second-order holomorphic differential operator of the form $\partial_z^2 - v(z) : K_X^{-1/2} \to K_X^{3/2}$.

Edward Frenkel (UC Berkeley)

Analytic version of the Langlands correspondence

January 2021
Holomorphic differential operators

Consider the case of simply-connected G and $|S| = \emptyset$. Let \mathcal{D}_G be the sheaf of algebraic (hence holomorphic) differential operators acting on the line bundle $K_{\text{Bun}}^{1/2}$ on Bun_G.

$$D_G := \Gamma(\text{Bun}_G, \mathcal{D}_G)$$

Theorem 1 (Beilinson & Drinfeld)

$$D_G \simeq \text{Fun Op}_{L^G}(X), \text{ where Op}_{L^G}(X) - \text{space of } L^G\text{-opers on } X.$$

Definition. An L^G-oper on a curve X is a holomorphic L^G-bundle with a holomorphic connection ∇ and a reduction to a Borel subgroup L^B which is in a special relative position with ∇.

Example (to be discussed later). A PGL_2-oper on X is a projective connection, i.e. a second-order holomorphic differential operator of the form

$$\partial^2_z - v(z) : K_X^{-1/2} \to K_X^{3/2}.$$
Anti-holomorphic differential operators

Complex conjugates of elements of D_G are global anti-holomorphic differential operators acting on $\overline{K}_{\text{Bun}}^{1/2}$. They generate a commutative algebra \overline{D}_G.

$$\overline{D}_G \simeq \text{Fun} \overline{\text{Op}}_{LG}(X)$$

$A_G := D_G \otimes \overline{D}_G$ is a commutative algebra acting on C^∞ sections of the line bundle $\Omega^{1/2}_{\text{Bun}} = K_{\text{Bun}}^{1/2} \otimes \overline{K}_{\text{Bun}}^{1/2}$ on Bun_G^s.

Let \tilde{V}_G be the space of smooth sections of $\Omega^{1/2}_{\text{Bun}}$ on $\text{Bun}_G^{vs} \subset \text{Bun}_G^s$, the moduli space of very stable G-bundles (those F which do not admit non-zero $\phi \in \Gamma(X, g\mathcal{F} \otimes K_X)$ taking nilpotent values everywhere).
Anti-holomorphic differential operators

Complex conjugates of elements of D_G are global anti-holomorphic differential operators acting on $\overline{K_{\text{Bun}}}^{1/2}$. They generate a commutative algebra \overline{D}_G.

$$\overline{D}_G \simeq \text{Fun}\overline{\text{Op}}_L(G)(X)$$

$A_G := D_G \otimes \overline{D}_G$ is a commutative algebra acting on C^∞ sections of the line bundle $\Omega^{1/2}_{\text{Bun}} = K_{\text{Bun}}^{1/2} \otimes \overline{K}_{\text{Bun}}^{1/2}$ on Bun^s_G.

Let \tilde{V}_G be the space of smooth sections of $\Omega^{1/2}_{\text{Bun}}$ on $\text{Bun}^s_G \subset \text{Bun}^s_G$, the moduli space of very stable G-bundles (those \mathcal{F} which do not admit non-zero $\phi \in \Gamma(X, \mathfrak{g}_\mathcal{F} \otimes K_X)$ taking nilpotent values everywhere).
Complex conjugates of elements of D_G are global anti-holomorphic differential operators acting on $\overline{K}_{\text{Bun}}^{1/2}$. They generate a commutative algebra \overline{D}_G.

\[\overline{D}_G \simeq \text{Fun} \overline{\text{Op}}_{LG}(X) \]

$\mathcal{A}_G := D_G \otimes \overline{D}_G$ is a commutative algebra acting on C^∞ sections of the line bundle $\Omega_{\text{Bun}}^{1/2} = K_{\text{Bun}}^{1/2} \otimes \overline{K}_{\text{Bun}}^{1/2}$ on Bun_G^s.

Let \tilde{V}_G be the space of smooth sections of $\Omega_{\text{Bun}}^{1/2}$ on $\text{Bun}_G^{\text{vs}} \subset \text{Bun}_G^s$, the moduli space of very stable G-bundles (those \mathcal{F} which do not admit non-zero $\phi \in \Gamma(X, g_{\mathcal{F}} \otimes K_X)$ taking nilpotent values everywhere).
Anti-holomorphic differential operators

Complex conjugates of elements of D_G are global anti-holomorphic differential operators acting on $\overline{K}^{1/2}_{\text{Bun}}$. They generate a commutative algebra \overline{D}_G.

$$\overline{D}_G \cong \text{Fun} \overline{\text{Op}}_{L_G}(X)$$

$\mathcal{A}_G := D_G \otimes \overline{D}_G$ is a commutative algebra acting on C^∞ sections of the line bundle $\Omega^{1/2}_{\text{Bun}} = K^{1/2}_{\text{Bun}} \otimes \overline{K}^{1/2}_{\text{Bun}}$ on Bun_G^s.

Let \tilde{V}_G be the space of smooth sections of $\Omega^{1/2}_{\text{Bun}}$ on $\text{Bun}_G^{\text{vs}} \subset \text{Bun}_G^s$, the moduli space of very stable G-bundles (those \mathcal{F} which do not admit non-zero $\phi \in \Gamma(X, \mathfrak{g}_\mathcal{F} \otimes K_X)$ taking nilpotent values everywhere).
Given a homomorphism $\Lambda : \mathcal{A}_G \to \mathbb{C}$, denote by $\widetilde{V}_{G,\Lambda}$ the corresponding eigenspace of \mathcal{A}_G in \widetilde{V}_G.

$$\Lambda = (\chi, \mu), \text{ where } \chi \in \text{Op}_{L_G}(X), \mu \in \text{Op}_{L_G}(X).$$

If f is a non-zero element of $\widetilde{V}_{G,(\chi,\mu)}$, then it satisfies two systems of differential equations:

1. $P \cdot f = \chi(P)f, \quad P \in D_G$
2. $Q \cdot f = \mu(Q)f, \quad Q \in \overline{D}_G$

System (1) is known as the *quantum Hitchin system*.
“Doubling” of the quantum Hitchin system

Given a homomorphism $\Lambda : A_G \to \mathbb{C}$, denote by $\widetilde{V}_{G,\Lambda}$ the corresponding eigenspace of A_G in \widetilde{V}_G.

$\Lambda = (\chi, \mu)$, where $\chi \in \text{Op}_{L_G}(X), \mu \in \overline{\text{Op}}_{L_G}(X)$.

If f is a non-zero element of $\widetilde{V}_{G,(\chi,\mu)}$, then it satisfies two systems of differential equations:

1. $P \cdot f = \chi(P)f, \quad P \in D_G$

2. $Q \cdot f = \mu(Q)f, \quad Q \in \overline{D}_G$

System (1) is known as the quantum Hitchin system.
“Doubling” of the quantum Hitchin system

Given a homomorphism \(\Lambda : \mathcal{A}_G \rightarrow \mathbb{C} \), denote by \(\tilde{V}_{G,\Lambda} \) the corresponding eigenspace of \(\mathcal{A}_G \) in \(\tilde{V}_G \).

\[\Lambda = (\chi, \mu), \text{ where } \chi \in \text{Op}_{LG}(X), \mu \in \text{Op}_{LG}(X). \]

If \(f \) is a non-zero element of \(\tilde{V}_{G,(\chi,\mu)} \), then it satisfies two systems of differential equations:

\[
\begin{align*}
(1) \quad P \cdot f &= \chi(P)f, \quad P \in \mathcal{D}_G \\
(2) \quad Q \cdot f &= \mu(Q)f, \quad Q \in \overline{\mathcal{D}}_G
\end{align*}
\]

System (1) is known as the quantum Hitchin system.
“Doubling” of the quantum Hitchin system

Given a homomorphism $\Lambda : A_G \to \mathbb{C}$, denote by $\tilde{V}_{G,\Lambda}$ the corresponding eigenspace of A_G in \tilde{V}_G.

$\Lambda = (\chi, \mu)$, where $\chi \in \text{Op}_{L_G}(X)$, $\mu \in \text{Op}_{L_G}(X)$.

If f is a non-zero element of $\tilde{V}_{G,(\chi,\mu)}$, then it satisfies two systems of differential equations:

(1) $P \cdot f = \chi(P)f, \quad P \in D_G$

(2) $Q \cdot f = \mu(Q)f, \quad Q \in \overline{D}_G$

System (1) is known as the quantum Hitchin system.
Given a homomorphism $\Lambda : \mathcal{A}_G \rightarrow \mathbb{C}$, denote by $\tilde{V}_{G,\Lambda}$ the corresponding eigenspace of \mathcal{A}_G in \tilde{V}_G.

$\Lambda = (\chi, \mu)$, where $\chi \in \text{Op}_{L_G}(X)$, $\mu \in \overline{\text{Op}}_{L_G}(X)$.

If f is a non-zero element of $\tilde{V}_{G,(\chi,\mu)}$, then it satisfies two systems of differential equations:

1. $P \cdot f = \chi(P)f$, $P \in D_G$
2. $Q \cdot f = \mu(Q)f$, $Q \in \overline{D}_G$

System (1) is known as the quantum Hitchin system.
The corresponding left \mathcal{D}_G-module

$$\Delta_\chi := \mathcal{D}_G \otimes_{\mathcal{D}_G} \mathbb{C}_\chi$$

was introduced and studied by Beilinson and Drinfeld, who have proved that Δ_χ is a Hecke eigensheaf corresponding to the L^G-oper χ under the geometric/categorical Langlands correspondence.

Moreover, they have shown that the restriction of Δ_χ to Bun^vs_G is a vector bundle with a projectively flat connection (of a rank that grows exponentially with the genus of X).

Local sections of Δ_χ over Bun^vs_G are local holomorphic solutions of system (1). They are multi-valued and the monodromy is rather complicated, which is why it’s impossible to attach to a given χ a specific holomorphic half-form. (Even if there were single-valued solutions, it wouldn’t be clear which one to choose.) Instead, we attach a whole \mathcal{D}_G-module on Bun_G to χ.
The corresponding left \mathcal{D}_G-module

$$\Delta_\chi := \mathcal{D}_G \otimes_{\mathcal{D}_G} \mathbb{C}_\chi$$

was introduced and studied by Beilinson and Drinfeld, who have proved that Δ_χ is a Hecke eigensheaf corresponding to the L^G-oper χ under the geometric/categorical Langlands correspondence.

Moreover, they have shown that the restriction of Δ_χ to Bun_G^{vs} is a vector bundle with a projectively flat connection (of a rank that grows exponentially with the genus of X).

Local sections of Δ_χ over Bun_G^{vs} are local holomorphic solutions of system (1). They are multi-valued and the monodromy is rather complicated, which is why it’s impossible to attach to a given χ a specific holomorphic half-form. (Even if there were single-valued solutions, it wouldn’t be clear which one to choose.) Instead, we attach a whole \mathcal{D}_G-module on Bun_G to χ.
The corresponding left \mathcal{D}_G-module

$$\Delta_\chi := \mathcal{D}_G \otimes_{\mathcal{D}_G} \mathbb{C}_\chi$$

was introduced and studied by Beilinson and Drinfeld, who have proved that Δ_χ is a Hecke eigensheaf corresponding to the $^L G$-oper χ under the geometric/categorical Langlands correspondence.

Moreover, they have shown that the restriction of Δ_χ to Bun^vs_G is a vector bundle with a projectively flat connection (of a rank that grows exponentially with the genus of X).

Local sections of Δ_χ over Bun^vs_G are local holomorphic solutions of system (1). They are multi-valued and the monodromy is rather complicated, which is why it’s impossible to attach to a given χ a specific holomorphic half-form. (Even if there were single-valued solutions, it wouldn’t be clear which one to choose.) Instead, we attach a whole \mathcal{D}_G-module on Bun_G to χ.
The corresponding left \mathcal{D}_G-module

$$\Delta_\chi := \mathcal{D}_G \otimes_{D_G} \mathbb{C}_\chi$$

was introduced and studied by Beilinson and Drinfeld, who have proved that Δ_χ is a Hecke eigensheaf corresponding to the L^G-oper χ under the geometric/categorical Langlands correspondence.

Moreover, they have shown that the restriction of Δ_χ to Bun^vs_G is a vector bundle with a projectively flat connection (of a rank that grows exponentially with the genus of X).

Local sections of Δ_χ over Bun^vs_G are local holomorphic solutions of system (1). They are multi-valued and the monodromy is rather complicated, which is why it’s impossible to attach to a given χ a specific holomorphic half-form. (Even if there were single-valued solutions, it wouldn’t be clear which one to choose.) Instead, we attach a whole \mathcal{D}_G-module on Bun_G to χ.
Likewise, to $\mu \in \overline{Op}_{LG}(X)$ we attach an anti-holomorphic D-module $\overline{\Delta}_\mu$ whose local sections on Bun^vs_G are local anti-holomorphic solutions of system (2), also multi-valued.

However, if we look for smooth solutions of systems (1) and (2) simultaneously, it is possible that for some χ and μ there will be a single-valued solution, which can be written locally in bilinear form

$$f = \sum_{i,j} a_{ij} \phi_i(z) \overline{\psi}_j(\overline{z})$$

$\{\phi_i\}$ – local sections of Δ_χ

$\{\overline{\psi}_j\}$ – local sections of $\overline{\Delta}_\mu$.

This actually implies that $\dim \tilde{V}_{G,(\chi,\mu)} < \infty$.

Moreover, if Δ_χ is irreducible and has regular singularities (question posed by Beilinson and Drinfeld; follows from the results of D. Gaitsgory for $G = PGL_n$) and $\tilde{V}_{G,(\chi,\mu)} \neq 0$, then $\dim \tilde{V}_{G,(\chi,\mu)} = 1$.
Likewise, to $\mu \in \overline{O_{pL}}_G(X)$ we attach an anti-holomorphic D-module $\overline{\Delta}_\mu$ whose local sections on Bun^v_G are local anti-holomorphic solutions of system (2), also multi-valued.

However, if we look for smooth solutions of systems (1) and (2) simultaneously, it is possible that for some χ and μ there will be a single-valued solution, which can be written locally in bilinear form

$$f = \sum_{i,j} a_{ij} \phi_i(z) \overline{\psi}_j(z)$$

$\{\phi_i\}$ – local sections of Δ_χ

$\{\overline{\psi}_j\}$ – local sections of $\overline{\Delta}_\mu$.

This actually implies that $\dim \tilde{V}_{G,(\chi,\mu)} < \infty$.

Moreover, if Δ_χ is irreducible and has regular singularities (question posed by Beilinson and Drinfeld; follows from the results of D. Gaitsgory for $G = PGL_n$) and $\tilde{V}_{G,(\chi,\mu)} \neq 0$, then $\dim \tilde{V}_{G,(\chi,\mu)} = 1$.
Likewise, to $\mu \in \overline{Op}_{LG}(X)$ we attach an anti-holomorphic D-module $\overline{\Delta}_\mu$ whose local sections on Bun^vs_G are local anti-holomorphic solutions of system (2), also multi-valued.

However, if we look for smooth solutions of systems (1) and (2) simultaneously, it is possible that for some χ and μ there will be a single-valued solution, which can be written locally in bilinear form

$$f = \sum_{i,j} a_{ij} \phi_i(z) \overline{\psi}_j(z)$$

$\{\phi_i\}$ – local sections of Δ_χ

$\{\overline{\psi}_j\}$ – local sections of $\overline{\Delta}_\mu$.

This actually implies that $\dim \tilde{V}_{G,(\chi,\mu)} < \infty$.

Moreover, if Δ_χ is irreducible and has regular singularities (question posed by Beilinson and Drinfeld; follows from the results of D. Gaitsgory for $G = PGL_n$) and $\tilde{V}_{G,(\chi,\mu)} \neq 0$, then $\dim \tilde{V}_{G,(\chi,\mu)} = 1$.
Likewise, to $\mu \in Op_{LG}(X)$ we attach an anti-holomorphic D-module Δ_μ whose local sections on Bun^vs_G are local anti-holomorphic solutions of system (2), also multi-valued.

However, if we look for smooth solutions of systems (1) and (2) simultaneously, it is possible that for some χ and μ there will be a single-valued solution, which can be written locally in bilinear form

$$f = \sum_{i,j} a_{ij} \phi_i(z) \overline{\psi}_j(z)$$

$\{\phi_i\}$ – local sections of Δ_χ

$\{\overline{\psi}_j\}$ – local sections of Δ_μ.

This actually implies that $\dim \tilde{V}_{G,(\chi,\mu)} < \infty$.

Moreover, if Δ_χ is irreducible and has regular singularities (question posed by Beilinson and Drinfeld; follows from the results of D. Gaitsgory for $G = PGL_n$) and $\tilde{V}_{G,(\chi,\mu)} \neq 0$, then $\dim \tilde{V}_{G,(\chi,\mu)} = 1$.
Likewise, to $\mu \in \overline{Op}_{LG}(X)$ we attach an anti-holomorphic D-module $\overline{\Delta}_{\mu}$ whose local sections on Bun_{G}^{vs} are local anti-holomorphic solutions of system (2), also multi-valued.

However, if we look for smooth solutions of systems (1) and (2) simultaneously, it is possible that for some χ and μ there will be a single-valued solution, which can be written locally in bilinear form

$$f = \sum_{i,j} a_{ij} \phi_{i}(z) \overline{\psi}_{j}(\overline{z})$$

$\{\phi_{i}\}$ – local sections of Δ_{χ}

$\{\overline{\psi}_{j}\}$ – local sections of $\overline{\Delta}_{\mu}$.

This actually implies that $\dim \tilde{V}_{G,(\chi,\mu)} < \infty$.

Moreover, if Δ_{χ} is irreducible and has regular singularities (question posed by Beilinson and Drinfeld; follows from the results of D. Gaitsgory for $G = PGL_{n}$) and $\tilde{V}_{G,(\chi,\mu)} \neq 0$, then $\dim \tilde{V}_{G,(\chi,\mu)} = 1$.
Likewise, to $\mu \in \text{Op}_{P_{L_{G}}(X)}$ we attach an anti-holomorphic D-module Δ_{μ} whose local sections on Bun_{G}^{vs} are local anti-holomorphic solutions of system (2), also multi-valued.

However, if we look for smooth solutions of systems (1) and (2) simultaneously, it is possible that for some χ and μ there will be a single-valued solution, which can be written locally in bilinear form

$$f = \sum_{i,j} a_{ij} \phi_{i}(z) \overline{\psi}_{j}(\overline{z})$$

$\{\phi_{i}\}$ – local sections of Δ_{χ}

$\{\overline{\psi}_{j}\}$ – local sections of Δ_{μ}.

This actually implies that $\dim \tilde{V}_{G,(\chi,\mu)} < \infty$.

Moreover, if Δ_{χ} is irreducible and has regular singularities (question posed by Beilinson and Drinfeld; follows from the results of D. Gaitsgory for $G = PGL_{n}$) and $\tilde{V}_{G,(\chi,\mu)} \neq 0$, then $\dim \tilde{V}_{G,(\chi,\mu)} = 1$.
Conjecture 1

1. All $\tilde{V}_{G,(\chi,\mu)} \subset \mathcal{H}_G$
2. There is an orthogonal decomposition
$$\mathcal{H}_G = \bigoplus_{(\chi,\mu)} \tilde{V}_{G,(\chi,\mu)}$$
3. If $\tilde{V}_{G,(\chi,\mu)} \neq 0$, then $\mu = \tau(\chi)$, where τ is the Chevalley involution on ^{L}G and $\chi \in \text{Op}_{^{L}G}(X)_{\mathbb{R}}$.

Definition. $\text{Op}_{^{L}G}(X)_{\mathbb{R}}$ is the set of ^{L}G-opers on X such that the *monodromy representation* $\rho_{\chi} : \pi_1(X, p_0) \to ^{L}G(\mathbb{C})$ is isomorphic to its complex conjugate, i.e. $\rho_{\chi} \cong \overline{\rho}_{\chi}$.

We expect that $\text{Op}_{^{L}G}(X)_{\mathbb{R}}$ is a *discrete subset* of $\text{Op}_{^{L}G}(X)$. This is known for $^{L}G = \text{PGL}_2$ (G. Faltings).

For $G = \text{PGL}_2$, Conjecture 1 implements ideas of J. Teschner.
Conjecture 1

1. All $\widetilde{V}_{G,(\chi,\mu)} \subset \mathcal{H}_G$

2. There is an orthogonal decomposition

$$\mathcal{H}_G = \bigoplus_{(\chi,\mu)} \widetilde{V}_{G,(\chi,\mu)}$$

3. If $\widetilde{V}_{G,(\chi,\mu)} \neq 0$, then $\mu = \tau(\chi)$, where τ is the Chevalley involution on $^L G$ and $\chi \in \text{Op}_{^L G}(X)_R$.

Definition. $\text{Op}_{^L G}(X)_R$ is the set of $^L G$-opers on X such that the monodromy representation $\rho_\chi : \pi_1(X,p_0) \to ^L G(\mathbb{C})$ is isomorphic to its complex conjugate, i.e. $\rho_\chi \simeq \overline{\rho}_\chi$.

We expect that $\text{Op}_{^L G}(X)_R$ is a discrete subset of $\text{Op}_{^L G}(X)$. This is known for $^L G = PGL_2$ (G. Faltings).

For $G = PGL_2$, Conjecture 1 implements ideas of J. Teschner.
Conjecture 1

1. All $\tilde{V}_{G,(\chi,\mu)} \subset \mathcal{H}_G$
2. There is an orthogonal decomposition
 \[\mathcal{H}_G = \bigoplus_{(\chi,\mu)} \tilde{V}_{G,(\chi,\mu)} \]
3. If $\tilde{V}_{G,(\chi,\mu)} \neq 0$, then $\mu = \tau(\chi)$, where τ is the Chevalley involution on L^G and $\chi \in \text{Op}_{L^G}(X)_{\mathbb{R}}$.

Definition. $\text{Op}_{L^G}(X)_{\mathbb{R}}$ is the set of L^G-opers on X such that the monodromy representation $\rho_{\chi} : \pi_1(X, p_0) \to L^G(\mathbb{C})$ is isomorphic to its complex conjugate, i.e. $\rho_{\chi} \simeq \bar{\rho}_{\chi}$.

We expect that $\text{Op}_{L^G}(X)_{\mathbb{R}}$ is a discrete subset of $\text{Op}_{L^G}(X)$. This is known for $L^G = PGL_2$ (G. Faltings).

For $G = PGL_2$, Conjecture 1 implements ideas of J. Teschner.
Conjecture 1

1. All $\tilde{V}_{G,(\chi,\mu)} \subset \mathcal{H}_G$

2. There is an orthogonal decomposition

$$\mathcal{H}_G = \bigoplus_{(\chi,\mu)} \tilde{V}_{G,(\chi,\mu)}$$

3. If $\tilde{V}_{G,(\chi,\mu)} \neq 0$, then $\mu = \tau(\chi)$, where τ is the Chevalley involution on L^G and $\chi \in \text{Op}_{L^G}(X)_\mathbb{R}$.

Definition. $\text{Op}_{L^G}(X)_\mathbb{R}$ is the set of L^G-opers on X such that the *monodromy representation* $\rho_\chi : \pi_1(X, p_0) \to L^G(\mathbb{C})$ is isomorphic to its complex conjugate, i.e. $\rho_\chi \simeq \bar{\rho}_\chi$.

We expect that $\text{Op}_{L^G}(X)_\mathbb{R}$ is a *discrete subset* of $\text{Op}_{L^G}(X)$. This is known for $L^G = PGL_2$ (G. Faltings).

For $G = PGL_2$, Conjecture 1 implements ideas of J. Teschner.
We expect that $\text{Op}_{L^G}(X)_\mathbb{R}$ coincides with the set of all L^G-opers on X with \textit{real monodromy}, i.e. such that the image in $L^G(\mathbb{C})$ of the monodromy representation

$$\rho_\chi : \pi_1(X, p_0) \to L^G$$

associated to χ is contained, up to conjugation, in the \textit{split real form} $L^G(\mathbb{R})$ of $L^G(\mathbb{C})$.

This is known for $G = PGL_2$ and we can prove it for general G in the case when there is at least one point with Borel reduction (i.e. $|S| \neq \emptyset$).
We expect that $\text{Op}_{L^G}(X)_\mathbb{R}$ coincides with the set of all L^G-opers on X with \textit{real monodromy}, i.e. such that the image in $L^G(\mathbb{C})$ of the monodromy representation

$$
\rho_\chi : \pi_1(X, p_0) \to L^G
$$

associated to χ is contained, up to conjugation, in the \textit{split real form} $L^G(\mathbb{R})$ of $L^G(\mathbb{C})$.

This is known for $G = PGL_2$ and we can prove it for general G in the case when there is at least one point with Borel reduction (i.e. $|S| \neq \emptyset$).
Proving Conjecture 1 directly is a daunting task. This is where the third set of operators on \mathcal{H}_G – integral Hecke operators – comes in handy.

Though they are also initially defined on a dense subspace of \mathcal{H}_G (like diff. operators), we conjecture that, unlike the differential operators, they extend to (mutually commuting) continuous operators on the entire \mathcal{H}_G, which are moreover normal and compact with trivial common kernel.

If so, then by a general result of functional analysis, \mathcal{H}_G decomposes into a (completed) direct sum of mutually orthogonal finite-dimensional eigenspaces of the Hecke operators. Moreover, we can show that they commute with the differential operators, and so the Compactness Conjecture can be used to prove Conjecture 1.
Proving Conjecture 1 directly is a daunting task. This is where the third set of operators on \mathcal{H}_G — integral Hecke operators — comes in handy.

Though they are also initially defined on a dense subspace of \mathcal{H}_G (like diff. operators), we conjecture that, unlike the differential operators, they extend to (mutually commuting) continuous operators on the entire \mathcal{H}_G, which are moreover normal and compact with trivial common kernel.

If so, then by a general result of functional analysis, \mathcal{H}_G decomposes into a (completed) direct sum of mutually orthogonal finite-dimensional eigenspaces of the Hecke operators. Moreover, we can show that they commute with the differential operators, and so the Compactness Conjecture can be used to prove Conjecture 1.
Proving Conjecture 1 directly is a daunting task. This is where the third set of operators on \mathcal{H}_G – integral Hecke operators – comes in handy.

Though they are also initially defined on a dense subspace of \mathcal{H}_G (like diff. operators), we conjecture that, unlike the differential operators, they extend to (mutually commuting) continuous operators on the entire \mathcal{H}_G, which are moreover normal and compact with trivial common kernel.

If so, then by a general result of functional analysis, \mathcal{H}_G decomposes into a (completed) direct sum of mutually orthogonal finite-dimensional eigenspaces of the Hecke operators. Moreover, we can show that they commute with the differential operators, and so the Compactness Conjecture can be used to prove Conjecture 1.
In fact, Hecke operators can be defined for curves over any local field.

For non-archimedean local fields, these operators were essentially defined by A. Braverman and D. Kazhdan in *Some examples of Hecke algebras for two-dimensional local fields*, Nagoya Math. J. Volume 184 (2006), 57-84.

For $G = PGL_2$, $X = \mathbb{P}^1$, Hecke operators were studied by M. Kontsevich in his paper *Notes on motives in finite characteristic* (2007). In his letters to us (2019) he conjectured compactness of averages of the Hecke operators over sufficiently many points.

The idea that Hecke operators over \mathbb{C} could be used to construct an analogue of the Langlands correspondence was suggested in 2018 by R.P. Langlands, who attempted to construct them in the case when $G = GL_2$, X is an elliptic curve, and $S = \emptyset$ (however, for an elliptic curve X we can only define Hecke operators if $|S| \neq \emptyset$).
In fact, Hecke operators can be defined for curves over any local field.

For non-archimedean local fields, these operators were essentially defined by A. Braverman and D. Kazhdan in *Some examples of Hecke algebras for two-dimensional local fields*, Nagoya Math. J. Volume 184 (2006), 57-84.

For $G = PGL_2$, $X = \mathbb{P}^1$, Hecke operators were studied by M. Kontsevich in his paper *Notes on motives in finite characteristic* (2007). In his letters to us (2019) he conjectured compactness of averages of the Hecke operators over sufficiently many points.

The idea that Hecke operators over \mathbb{C} could be used to construct an analogue of the Langlands correspondence was suggested in 2018 by R.P. Langlands, who attempted to construct them in the case when $G = GL_2$, X is an elliptic curve, and $S = \emptyset$ (however, for an elliptic curve X we can only define Hecke operators if $|S| \neq \emptyset$).
Hecke operators

In fact, Hecke operators can be defined for curves over any local field.

For non-archimedean local fields, these operators were essentially defined by A. Braverman and D. Kazhdan in *Some examples of Hecke algebras for two-dimensional local fields*, Nagoya Math. J. Volume 184 (2006), 57-84.

For $G = PGL_2$, $X = \mathbb{P}^1$, Hecke operators were studied by M. Kontsevich in his paper *Notes on motives in finite characteristic* (2007). In his letters to us (2019) he conjectured compactness of averages of the Hecke operators over sufficiently many points.

The idea that Hecke operators over \mathbb{C} could be used to construct an analogue of the Langlands correspondence was suggested in 2018 by R.P. Langlands, who attempted to construct them in the case when $G = GL_2$, X is an elliptic curve, and $S = \emptyset$ (however, for an elliptic curve X we can only define Hecke operators if $|S| \neq \emptyset$).
Hecke operators

In fact, Hecke operators can be defined for curves over any local field.

For non-archimedian local fields, these operators were essentially defined by A. Braverman and D. Kazhdan in *Some examples of Hecke algebras for two-dimensional local fields*, Nagoya Math. J. Volume 184 (2006), 57-84.

For $G = PGL_2$, $X = \mathbb{P}^1$, Hecke operators were studied by M. Kontsevich in his paper *Notes on motives in finite characteristic* (2007). In his letters to us (2019) he conjectured compactness of averages of the Hecke operators over sufficiently many points.

The idea that Hecke operators over \mathbb{C} could be used to construct an analogue of the Langlands correspondence was suggested in 2018 by R.P. Langlands, who attempted to construct them in the case when $G = GL_2$, X is an elliptic curve, and $S = \emptyset$ (however, for an elliptic curve X we can only define Hecke operators if $|S| \neq \emptyset$).
In fact, Hecke operators can be defined for curves over any local field. For non-archimedean local fields, these operators were essentially defined by A. Braverman and D. Kazhdan in

For $G = PGL_2, X = \mathbb{P}^1$, Hecke operators were studied by M. Kontsevich in his paper *Notes on motives in finite characteristic* (2007). In his letters to us (2019) he conjectured compactness of averages of the Hecke operators over sufficiently many points.

The idea that Hecke operators over \mathbb{C} could be used to construct an analogue of the Langlands correspondence was suggested in 2018 by R.P. Langlands, who attempted to construct them in the case when $G = GL_2, X$ is an elliptic curve, and $S = \emptyset$ (however, for an elliptic curve X we can only define Hecke operators if $|S| \neq \emptyset$).
For a dominant coweight λ of G, denote by

$$q : Z(\lambda) \to \text{Bun}_G \times \text{Bun}_G \times X$$

the *Hecke correspondence* attached to λ. Let

$$p_{1,2} : \text{Bun}_G \times \text{Bun}_G \times X \to \text{Bun}_G, \quad p_3 : \text{Bun}_G \times \text{Bun}_G \times X \to X$$

be the projections, and set $q_i := p_i \circ q$.

The following is due to Beilinson–Drinfeld and Braverman–Kazhdan.

Theorem 2

There exists an isomorphism

$$a : q_1^*(K_{\text{Bun}}^{1/2}) \simeq q_2^*(K_{\text{Bun}}^{1/2}) \otimes \omega_2 \otimes q_3^*(K_X^{-}(\lambda, \rho))$$

where ω_2 is the relative canonical bundle along the fibers of $q_2 \times q_3$ and ρ is the half sum of positive roots.
For a dominant coweight λ of G, denote by

$$q : Z(\lambda) \to \text{Bun}_G \times \text{Bun}_G \times X$$

the Hecke correspondence attached to λ. Let

$$p_{1,2} : \text{Bun}_G \times \text{Bun}_G \times X \to \text{Bun}_G, \quad p_3 : \text{Bun}_G \times \text{Bun}_G \times X \to X$$

be the projections, and set $q_i := p_i \circ q$.

The following is due to Beilinson–Drinfeld and Braverman–Kazhdan.

Theorem 2

There exists an isomorphism

$$a : q_1^*(K_{\text{Bun}}^{1/2}) \simeq q_2^*(K_{\text{Bun}}^{1/2}) \otimes \omega_2 \otimes q_3^*(K_X^{-}(\lambda, \rho))$$

where ω_2 is the relative canonical bundle along the fibers of $q_2 \times q_3$ and ρ is the half sum of positive roots.
For a dominant coweight λ of G, denote by

$$q : Z(\lambda) \to \text{Bun}_G \times \text{Bun}_G \times X$$

the **Hecke correspondence** attached to λ. Let

$$p_{1,2} : \text{Bun}_G \times \text{Bun}_G \times X \to \text{Bun}_G, \quad p_3 : \text{Bun}_G \times \text{Bun}_G \times X \to X$$

be the projections, and set $q_i := p_i \circ q$.

The following is due to Beilinson–Drinfeld and Braverman–Kazhdan.

Theorem 2

There exists an isomorphism

$$\alpha : q_1^*(K_{\text{Bun}}^{1/2}) \simeq q_2^*(K_{\text{Bun}}^{1/2}) \otimes \omega_2 \otimes q_3^*(K_X^{-}(\lambda, \rho))$$

where ω_2 is the relative canonical bundle along the fibers of $q_2 \times q_3$ and ρ is the half sum of positive roots.
For a dominant coweight λ of G, denote by

$$q : Z(\lambda) \to \text{Bun}_G \times \text{Bun}_G \times X$$

the Hecke correspondence attached to λ. Let

$$p_{1,2} : \text{Bun}_G \times \text{Bun}_G \times X \to \text{Bun}_G, \quad p_3 : \text{Bun}_G \times \text{Bun}_G \times X \to X$$

be the projections, and set $q_i := p_i \circ q$.

The following is due to Beilinson–Drinfeld and Braverman–Kazhdan.

Theorem 2

There exists an isomorphism

$$a : q_1^*(K_{\text{Bun}}^{1/2}) \cong q_2^*(K_{\text{Bun}}^{1/2}) \otimes \omega_2 \otimes q_3^*(K_{X}^-(\lambda, \rho))$$

where ω_2 is the relative canonical bundle along the fibers of $q_2 \times q_3$ and ρ is the half sum of positive roots.
The isomorphism α gives rise to an isomorphism

$$|\alpha| : q_1^*(\Omega_{\text{Bun}}^{1/2}) \cong q_2^*(\Omega_{\text{Bun}}^{1/2}) \otimes \Omega_2 \otimes q_3^*(|K_X|^{-\langle \lambda, \rho \rangle})$$

where $\Omega_2 := |\omega_2|$ is the relative line bundle of densities along the fibers of $q_2 \times q_3$. Let

$$U_G(\lambda) := \{ F \in \text{Bun}_G^s | (q_2(q_1^{-1}(F)) \subset \text{Bun}_G^s \}$$

This is an open subset of Bun_G^s, which is dense if

$$\dim \text{Bun}_G = \dim G \cdot (g - 1) + \dim G/B \cdot |S| \quad (g > 1)$$

is sufficiently large. (For example, for $G = PGL_2, \lambda = \omega_1$, this is so if $\dim \text{Bun}_G > 1$.)

Assume that $U_G(\lambda) \subset \text{Bun}_G^s$ is dense and let $V_G(\lambda) \subset V_G$ be the subspace of half-densities f such that $\text{supp}(f) \subset U_G(\lambda)$.
The isomorphism \(a \) gives rise to an isomorphism

\[
|a| : q_1^*(\Omega_{\text{Bun}}^{1/2}) \simeq q_2^*(\Omega_{\text{Bun}}^{1/2}) \otimes \Omega_2 \otimes q_3^*(|K_X|^{-\langle \lambda, \rho \rangle})
\]

where \(\Omega_2 := |\omega_2| \) is the relative line bundle of densities along the fibers of \(q_2 \times q_3 \). Let

\[
U_G(\lambda) := \{ \mathcal{F} \in \text{Bun}^s_G | (q_2(q_1^{-1}(\mathcal{F})) \subset \text{Bun}^s_G \}
\]

This is an open subset of \(\text{Bun}^s_G \), which is dense if

\[
\dim \text{Bun}_G = \dim G \cdot (g - 1) + \dim G/B \cdot |S| \quad (g > 1)
\]

is sufficiently large. (For example, for \(G = PGL_2, \lambda = \omega_1 \), this is so if \(\dim \text{Bun}_G > 1 \).)

Assume that \(U_G(\lambda) \subset \text{Bun}^s_G \) is dense and let \(V_G(\lambda) \subset V_G \) be the subspace of half-densities \(f \) such that \(\text{supp}(f) \subset U_G(\lambda) \).
The isomorphism a gives rise to an isomorphism

$$|a| : q_1^*(\Omega_{\text{Bun}}^{1/2}) \cong q_2^*(\Omega_{\text{Bun}}^{1/2}) \otimes \Omega_2 \otimes q_3^*(|K_X|^{-\langle \lambda, \rho \rangle})$$

where $\Omega_2 := |\omega_2|$ is the relative line bundle of densities along the fibers of $q_2 \times q_3$. Let

$$U_G(\lambda) := \{ \mathcal{F} \in \text{Bun}_G^s | (q_2(q_1^{-1}(\mathcal{F})) \subset \text{Bun}_G^s \}$$

This is an open subset of Bun_G^s, which is dense if

$$\dim \text{Bun}_G = \dim G \cdot (g - 1) + \dim G/B \cdot |S| \quad (g > 1)$$

is sufficiently large. (For example, for $G = \text{PGL}_2$, $\lambda = \omega_1$, this is so if $\dim \text{Bun}_G > 1$.)

Assume that $U_G(\lambda) \subset \text{Bun}_G^s$ is dense and let $V_G(\lambda) \subset V_G$ be the subspace of half-densities f such that $\text{supp}(f) \subset U_G(\lambda)$.
The isomorphism a gives rise to an isomorphism

$$|a| : q_1^*(\Omega_{\Bun}^{1/2}) \simeq q_2^*(\Omega_{\Bun}^{1/2}) \otimes \Omega_2 \otimes q_3^*(|K_X|^{-\langle \lambda, \rho \rangle})$$

where $\Omega_2 := |\omega_2|$ is the relative line bundle of densities along the fibers of $q_2 \times q_3$. Let

$$U_G(\lambda) := \{ \mathcal{F} \in \Bun^s_G | (q_2(q_1^{-1}(\mathcal{F}))) \subset \Bun^s_G \}$$

This is an open subset of \Bun^s_G, which is dense if

$$\dim \Bun_G = \dim G \cdot (g - 1) + \dim G/B \cdot |S| \quad (g > 1)$$

is sufficiently large. (For example, for $G = PGL_2, \lambda = \omega_1$, this is so if $\dim \Bun_G > 1$.)

Assume that $U_G(\lambda) \subset \Bun^s_G$ is dense and let $V_G(\lambda) \subset V_G$ be the subspace of half-densities f such that $\text{supp}(f) \subset U_G(\lambda)$.
The isomorphism \(\alpha \) gives rise to an isomorphism

\[
|\alpha| : q_1^*(\Omega_{\text{Bun}}^{1/2}) \simeq q_2^*(\Omega_{\text{Bun}}^{1/2}) \otimes \Omega_2 \otimes q_3^*(|K_X|^\langle \lambda, \rho \rangle)
\]

where \(\Omega_2 := |\omega_2| \) is the relative line bundle of densities along the fibers of \(q_2 \times q_3 \). Let

\[
U_G(\lambda) := \{ \mathcal{F} \in \text{Bun}_G^s | (q_2(q_1^{-1}(\mathcal{F})) \subset \text{Bun}_G^s \}
\]

This is an open subset of \(\text{Bun}_G^s \), which is dense if

\[
\dim \text{Bun}_G = \dim G \cdot (g - 1) + \dim G/B \cdot |S| \quad (g > 1)
\]

is sufficiently large. (For example, for \(G = PGL_2, \lambda = \omega_1 \), this is so if \(\dim \text{Bun}_G > 1 \).

\textbf{Assume} that \(U_G(\lambda) \subset \text{Bun}_G^s \) is dense and let \(V_G(\lambda) \subset V_G \) be the subspace of half-densities \(f \) such that \(\text{supp}(f) \subset U_G(\lambda) \).
\[Z_{G,x} := (q_2 \times q_3)^{-1}(G \times x), \quad G \in \text{Bun}_G(\mathbb{C}), \quad x \in X(\mathbb{C}) \]

It is compact and isomorphic to the closure \(\overline{\text{Gr}_\lambda} \) of the \(G[[z]] \)-orbit \(\text{Gr}_\lambda \) in the affine Grassmannian of \(G \).

The results of Braverman–Kazhdan imply that for any \(f \in V_G(\lambda) \) and \(x \in X(\mathbb{C}) \), the restriction of the pull-back \(q_1^*(f) \) to \(Z_{G,x} \) is a well-defined measure with values in the line \(|\Omega_{\text{Bun}}|^1_2 \otimes |K_X|^\lambda \langle \lambda, \rho \rangle \).

Hence for any \(f \in V_G(\lambda) \), the integral

\[
(\hat{H}_\lambda(x) \cdot f)(G) := \int_{Z_{G,F}^x} q_1^*(f),
\]

is absolutely convergent for all \(G \in \text{Bun}_G^s(\mathbb{C}) \) and belongs to the space \(\hat{V}_G \) of smooth functions on \(\text{Bun}_G^s(\mathbb{C}) \).

Therefore this integral defines a Hecke operator

\[
\hat{H}_\lambda(x) : V_G(\lambda) \to \hat{V}_G
\]
\[Z_{G,x} := (q_2 \times q_3)^{-1}(G \times x), \quad G \in \text{Bun}_G(\mathbb{C}), \quad x \in X(\mathbb{C}) \]

It is compact and isomorphic to the closure \(\overline{\text{Gr}}_{r,\lambda} \) of the \(G[[t]] \)-orbit \(\text{Gr}_{r,\lambda} \) in the affine Grassmannian of \(G \).

The results of Braverman–Kazhdan imply that for any \(f \in V_G(\lambda) \) and \(x \in X(\mathbb{C}) \), the restriction of the pull-back \(q_1^*(f) \) to \(Z_{G,x} \) is a well-defined measure with values in the line \(|\Omega_{\text{Bun}}|^{1/2}_G \otimes |K_X|^{-\langle \lambda, \rho \rangle}_x \).

Hence for any \(f \in V_G(\lambda) \), the integral

\[
(\hat{H}_\lambda(x) \cdot f)(G) := \int_{Z_{G,F}^x} q_1^*(f),
\]

is absolutely convergent for all \(G \in \text{Bun}_G^s(\mathbb{C}) \) and belongs to the space \(\hat{V}_G \) of smooth functions on \(\text{Bun}_G^s(\mathbb{C}) \).

Therefore this integral defines a \textbf{Hecke operator}

\[
\hat{H}_\lambda(x) : V_G(\lambda) \to \hat{V}_G
\]
\[
Z_{G,x} := (q_2 \times q_3)^{-1}(G \times x), \quad G \in \text{Bun}_G(\mathbb{C}), \quad x \in X(\mathbb{C})
\]

It is compact and isomorphic to the closure $\overline{\text{Gr}}_\lambda$ of the $G[[\mathbb{z}]]$-orbit Gr_λ in the affine Grassmannian of G.

The results of Braverman–Kazhdan imply that for any $f \in V_G(\lambda)$ and $x \in X(\mathbb{C})$, the restriction of the pull-back $q_1^*(f)$ to $Z_{G,x}$ is a well-defined measure with values in the line $|\Omega_{\text{Bun}}|_G^{-1/2} \otimes |K_X|^{-\langle \lambda, \rho \rangle}_x$.

Hence for any $f \in V_G(\lambda)$, the integral

\[
(\hat{H}_\lambda(x) \cdot f)(G) := \int_{Z_{G,x}^e(F)} q_1^*(f),
\]

is absolutely convergent for all $G \in \text{Bun}_G^s(\mathbb{C})$ and belongs to the space \hat{V}_G of smooth functions on $\text{Bun}_G^s(\mathbb{C})$.

Therefore this integral defines a Hecke operator

\[
\hat{H}_\lambda(x) : V_G(\lambda) \to \hat{V}_G
\]
\[Z_{G,x} := (q_2 \times q_3)^{-1}(\mathcal{G} \times x), \quad \mathcal{G} \in \text{Bun}_G(\mathbb{C}), \quad x \in X(\mathbb{C}) \]

It is compact and isomorphic to the closure \(\overline{\text{Gr}_\lambda} \) of the \(G[[\hat{z}]] \)-orbit \(\text{Gr}_\lambda \) in the affine Grassmannian of \(G \).

The results of Braverman–Kazhdan imply that for any \(f \in V_G(\lambda) \) and \(x \in X(\mathbb{C}) \), the restriction of the pull-back \(q_1^*(f) \) to \(Z_{G,x} \) is a well-defined measure with values in the line \(|\Omega_{\text{Bun}}|_G^{1/2} \otimes |K_X|^{-\langle \lambda, \rho \rangle}_x \).

Hence for any \(f \in V_G(\lambda) \), the integral

\[
(\hat{H}_\lambda(x) \cdot f)(\mathcal{G}) := \int_{Z_{G,x}^*(F)} q_1^*(f),
\]

is absolutely convergent for all \(\mathcal{G} \in \text{Bun}^s_G(\mathbb{C}) \) and belongs to the space \(\hat{V}_G \) of smooth functions on \(\text{Bun}^s_G(\mathbb{C}) \).

Therefore this integral defines a Hecke operator

\[
\hat{H}_\lambda(x) : V_G(\lambda) \to \hat{V}_G
\]
\[Z_{G,x} := (q_2 \times q_3)^{-1}(G \times x), \quad G \in \text{Bun}_G(\mathbb{C}), \quad x \in X(\mathbb{C}) \]

It is compact and isomorphic to the closure \(\overline{\text{Gr}_\lambda} \) of the \(G[[z]] \)-orbit \(\text{Gr}_\lambda \) in the affine Grassmannian of \(G \).

The results of Braverman–Kazhdan imply that for any \(f \in V_G(\lambda) \) and \(x \in X(\mathbb{C}) \), the restriction of the pull-back \(q_1^*(f) \) to \(Z_{G,x} \) is a well-defined measure with values in the line \(|\Omega_{\text{Bun}}|_{G}^{1/2} \otimes |K_X|^{-\langle \lambda, \rho \rangle}_x \).

Hence for any \(f \in V_G(\lambda) \), the integral

\[
(\hat{H}_\lambda(x) \cdot f)(G) := \int_{Z_G^x(F)} q_1^*(f),
\]

is absolutely convergent for all \(G \in \text{Bun}^s_G(\mathbb{C}) \) and belongs to the space \(\widehat{V}_G \) of smooth functions on \(\text{Bun}^s_G(\mathbb{C}) \).

Therefore this integral defines a \textit{Hecke operator}

\[\hat{H}_\lambda(x) : V_G(\lambda) \to \widehat{V}_G \]
Conjecture 2 (Compactness Conjecture)

1. For any $f \in V_G(\lambda)$ and $x \in X(\mathbb{C})$, the section $\hat{H}_\lambda(x) \cdot f$ is square-integrable (i.e. belongs to \mathcal{H}_G) and hence we obtain an operator

$$H_\lambda(x) : V_G(\lambda) \to \mathcal{H}_G \otimes |K_x|^{-\langle \lambda, \rho \rangle}_x.$$

2. For any identification $(K_X^{1/2})_x \cong \mathbb{C}$, the corresponding operators $V_G(\lambda) \to \mathcal{H}_G$ extend to a family of commuting compact normal operators on \mathcal{H}_G, which we also denote by $H_\lambda(x)$.

3. $H_\lambda(x)^\dagger = H_{-w_0(\lambda)}(x)$.

4. $\bigcap_{\lambda, x} \text{Ker} H_\lambda(x) = \{0\}.$

Remark. We expect that integrals defining Hecke operators $H_\lambda(x)$ are absolutely convergent for all $f \in V_G$. From now on we assume that Compactness Conjecture holds.
Conjecture 2 (Compactness Conjecture)

1. For any $f \in V_G(\lambda)$ and $x \in X(\mathbb{C})$, the section $\widehat{H}_\lambda(x) \cdot f$ is square-integrable (i.e. belongs to \mathcal{H}_G) and hence we obtain an operator

$$H_\lambda(x) : V_G(\lambda) \to \mathcal{H}_G \otimes |K_X|^{-\langle \lambda, \rho \rangle}_x.$$

2. For any identification $(K^{1/2}_X)_x \cong \mathbb{C}$, the corresponding operators $V_G(\lambda) \to \mathcal{H}_G$ extend to a family of commuting compact normal operators on \mathcal{H}_G, which we also denote by $H_\lambda(x)$.

3. $H_\lambda(x)^\dagger = H_{-w_0(\lambda)}(x)$.

4. $\bigcap_{\lambda, x} \text{Ker} H_\lambda(x) = \{0\}$.

Remark. We expect that integrals defining Hecke operators $H_\lambda(x)$ are absolutely convergent for all $f \in V_G$.

From now on we assume that Compactness Conjecture holds.
Conjecture 2 (Compactness Conjecture)

1. For any $f \in V_G(\lambda)$ and $x \in X(\mathbb{C})$, the section $\hat{H}_\lambda(x) \cdot f$ is square-integrable (i.e. belongs to \mathcal{H}_G) and hence we obtain an operator

$$H_\lambda(x) : V_G(\lambda) \to \mathcal{H}_G \otimes |K_X|_x^{-\langle \lambda, \rho \rangle}.$$

2. For any identification $(K_X^{1/2})_x \cong \mathbb{C}$, the corresponding operators $V_G(\lambda) \to \mathcal{H}_G$ extend to a family of commuting compact normal operators on \mathcal{H}_G, which we also denote by $H_\lambda(x)$.

3. $H_\lambda(x) \dagger = H_{-w_0(\lambda)}(x)$.

4. $\bigcap_{\lambda,x} \ker H_\lambda(x) = \{0\}$.

Remark. We expect that integrals defining Hecke operators $H_\lambda(x)$ are absolutely convergent for all $f \in V_G$.

From now on we assume that Compactness Conjecture holds.
Let \mathbb{H}_G be the **commutative algebra** generated by operators $H_\lambda(x)$, $\lambda \in \hat{P}^+$, $x \in X$. Denote by $\text{Spec}(\mathbb{H}_G)$ its **spectrum**.

Corollary 3

There is an orthogonal decomposition

$$\mathcal{H}_G = \bigoplus_{s \in \text{Spec}(\mathbb{H}_G)} \mathcal{H}_G(s)$$

where $\mathcal{H}_G(s)$, $s \in \text{Spec}(\mathbb{H}_G)$, are the **finite-dimensional joint eigenspaces** of \mathbb{H}_G in \mathcal{H}_G.

Conjecture 3

Every $\mathbb{H}_G(s)$ is an **eigenspace** of \mathcal{A}_G.

Corollary 4

If $(\chi, \mu) \in \text{Spec } \mathcal{A}_G$, then $\mu = \tau(\overline{\chi})$ and $\chi \in \text{Op}^\gamma_{LG}(X)_\mathbb{R}$.

$\text{Op}^\gamma_{LG}(X)_\mathbb{R}$ – subset of real LG-opers in a **component** of $\text{Op}_{LG}(X)$.

Edward Frenkel (UC Berkeley)
Analytic version of the Langlands correspondence
January 2021
Let \mathcal{H}_G be the **commutative algebra** generated by operators $H_\lambda(x), \lambda \in \tilde{P}^+, x \in X$. Denote by $\text{Spec}(\mathcal{H}_G)$ its **spectrum**.

Corollary 3

There is an orthogonal decomposition

$$\mathcal{H}_G = \bigoplus_{s \in \text{Spec}(\mathcal{H}_G)} \mathcal{H}_G(s)$$

where $\mathcal{H}_G(s), s \in \text{Spec}(\mathcal{H}_G)$, are the **finite-dimensional joint eigenspaces** of \mathcal{H}_G in \mathcal{H}_G.

Conjecture 3

Every $\mathcal{H}_G(s)$ is an **eigenspace** of A_G.

Corollary 4

If $(\chi, \mu) \in \text{Spec} A_G$, then $\mu = \tau(\overline{\chi})$ and $\chi \in \text{Op}_{LG}^\gamma(X)_{\mathbb{R}}$.

$\text{Op}_{LG}^\gamma(X)_{\mathbb{R}}$ – subset of real LG-opers in a **component** of $\text{Op}_{LG}(X)$.
Let \mathbb{H}_G be the commutative algebra generated by operators $H_\lambda(x), \lambda \in \check{P}^+, x \in X$. Denote by $\text{Spec}(\mathbb{H}_G)$ its spectrum.

Corollary 3

There is an orthogonal decomposition

$$\mathcal{H}_G = \bigoplus_{s \in \text{Spec}(\mathbb{H}_G)} \mathcal{H}_G(s)$$

where $\mathcal{H}_G(s), s \in \text{Spec}(\mathbb{H}_G)$, are the finite-dimensional joint eigenspaces of \mathbb{H}_G in \mathcal{H}_G.

Conjecture 3

Every $\mathbb{H}_G(s)$ is an eigenspace of A_G.

Corollary 4

If $(\chi, \mu) \in \text{Spec} A_G$, then $\mu = \tau(\overline{\chi})$ and $\chi \in \text{Op}^\gamma_{L_G}(X)_\mathbb{R}$.

$\text{Op}^\gamma_{L_G}(X)_\mathbb{R}$ – subset of real L_G-opers in a component of $\text{Op}_{L_G}(X)$.
Let \mathbb{H}_G be the commutative algebra generated by operators $H_\lambda(x), \lambda \in \check{P}^+, x \in X$. Denote by $\text{Spec}(\mathbb{H}_G)$ its spectrum.

Corollary 3

There is an orthogonal decomposition

$$\mathcal{H}_G = \bigoplus_{s \in \text{Spec}(\mathbb{H}_G)} \mathcal{H}_G(s)$$

where $\mathcal{H}_G(s), s \in \text{Spec}(\mathbb{H}_G)$, are the finite-dimensional joint eigenspaces of \mathbb{H}_G in \mathcal{H}_G.

Conjecture 3

Every $\mathbb{H}_G(s)$ is an eigenspace of A_G.

Corollary 4

If $(\chi, \mu) \in \text{Spec} A_G$, then $\mu = \tau(\overline{\chi})$ and $\chi \in \text{Op}^\gamma_{LG}(X)_\mathbb{R}$.

$\text{Op}^\gamma_{LG}(X)_\mathbb{R}$ – subset of real $^L G$-opers in a component of $\text{Op}_{LG}(X)$.
Let H_G be the commutative algebra generated by operators $H_\lambda(x), \lambda \in \check{P}^+, x \in X$. Denote by $\text{Spec}(H_G)$ its spectrum.

Corollary 3

There is an orthogonal decomposition

$$H_G = \bigoplus_{s \in \text{Spec}(H_G)} H_G(s)$$

*where $H_G(s), s \in \text{Spec}(H_G)$, are the finite-dimensional joint eigenspaces of H_G in H_G.***

Conjecture 3

Every $H_G(s)$ is an eigenspace of A_G.

Corollary 4

*If $(\chi, \mu) \in \text{Spec} A_G$, then $\mu = \tau(\overline{\chi})$ and $\chi \in \text{Op}_{LG}^\gamma(X)_{\mathbb{R}}$.***

$\text{Op}_{LG}^\gamma(X)_{\mathbb{R}}$ – subset of real L_G-opers in a component of $\text{Op}_{LG}(X)$.

Edward Frenkel (UC Berkeley) Analytic version of the Langlands correspondence January 2021
Remark. Recall that first we defined a Hecke operator
\[\hat{H}_\lambda(x) : V_G(\lambda) \to \hat{V}_G. \]

The algebra \(\mathcal{A}_G \) naturally acts on both \(V_G(\lambda) \) and \(\hat{V}_G \). Hence the commutators \([P, \hat{H}_\lambda(x)], P \in \mathcal{A}_G, \) make sense.

We have \([P, \hat{H}_\lambda(x)] = 0, \ \forall P \in \mathcal{A}_G. \)

To see this, realize \(\text{Bun}_G \) as \(G(X \setminus x) \backslash G(F_x) / G(O_x). \)

Then \(\hat{H}_\lambda(x) \) acts from the right, whereas \(\mathcal{A}_G \) can be obtained from the action of the center of \(\tilde{U}(\hat{g})_{\text{crit}} \) from the left.

However, to prove Conjecture 3 we need a stronger form of commutativity, and a crucial element in proving it is the system of differential equations satisfied by \(\hat{H}_\lambda(x) \) which we discuss below.

Pavel will explain this in more detail in his talk.
Remark. Recall that first we defined a Hecke operator \(\hat{H}_\lambda(x) : V_G(\lambda) \to \hat{V}_G \).

The algebra \(\mathcal{A}_G \) naturally acts on both \(V_G(\lambda) \) and \(\hat{V}_G \). Hence the commutators \([P, \hat{H}_\lambda(x)], P \in \mathcal{A}_G\), make sense.

We have \([P, \hat{H}_\lambda(x)] = 0, \quad \forall P \in \mathcal{A}_G\).

To see this, realize \(\text{Bun}_G \) as \(G(X \setminus x) \setminus G(F_x)/G(O_x) \).

Then \(\hat{H}_\lambda(x) \) acts from the right, whereas \(\mathcal{A}_G \) can be obtained from the action of the center of \(\hat{U}(\hat{\mathfrak{g}})_{\text{crit}} \) from the left.

However, to prove Conjecture 3 we need a stronger form of commutativity, and a crucial element in proving it is the system of differential equations satisfied by \(\hat{H}_\lambda(x) \) which we discuss below.

Pavel will explain this in more detail in his talk.
Remark. Recall that first we defined a Hecke operator
\[\hat{H}_\lambda(x) : V_G(\lambda) \to \hat{V}_G. \]

The algebra \(\mathcal{A}_G \) naturally acts on both \(V_G(\lambda) \) and \(\hat{V}_G \). Hence the commutators \([P, \hat{H}_\lambda(x)], P \in \mathcal{A}_G\), make sense.

We have \([P, \hat{H}_\lambda(x)] = 0, \quad \forall P \in \mathcal{A}_G\).

To see this, realize \(\text{Bun}_G \) as \(G(X \setminus x) \backslash G(F_x) / G(O_x) \).

Then \(\hat{H}_\lambda(x) \) acts from the right, whereas \(\mathcal{A}_G \) can be obtained from the action of the center of \(\tilde{\mathcal{U}}(\hat{g})_{\text{crit}} \) from the left.

However, to prove Conjecture 3 we need a stronger form of commutativity, and a crucial element in proving it is the system of differential equations satisfied by \(\hat{H}_\lambda(x) \) which we discuss below.

Pavel will explain this in more detail in his talk.
Remark. Recall that first we defined a Hecke operator
\[\hat{H}_\lambda(x) : V_G(\lambda) \to \hat{V}_G. \]

The algebra \(\mathcal{A}_G \) naturally acts on both \(V_G(\lambda) \) and \(\hat{V}_G \). Hence the commutators \([P, \hat{H}_\lambda(x)], P \in \mathcal{A}_G\), make sense.

We have \([P, \hat{H}_\lambda(x)] = 0, \quad \forall P \in \mathcal{A}_G\).

To see this, realize \(\text{Bun}_G \) as \(G(X \setminus x) \backslash G(F_x)/G(O_x) \).

Then \(\hat{H}_\lambda(x) \) acts from the right, whereas \(\mathcal{A}_G \) can be obtained from the action of the center of \(\hat{U}(\hat{g})_{\text{crit}} \) from the left.

However, to prove Conjecture 3 we need a stronger form of commutativity, and a crucial element in proving it is the system of differential equations satisfied by \(\hat{H}_\lambda(x) \) which we discuss below.

Pavel will explain this in more detail in his talk.
Remark. Recall that first we defined a Hecke operator
\[\hat{H}_\lambda(x) : V_G(\lambda) \to \hat{\mathcal{V}}_G. \]

The algebra \(\mathcal{A}_G \) naturally acts on both \(V_G(\lambda) \) and \(\hat{\mathcal{V}}_G \). Hence the commutators \([P, \hat{H}_\lambda(x)], P \in \mathcal{A}_G\), make sense.

We have \([P, \hat{H}_\lambda(x)] = 0, \ \forall P \in \mathcal{A}_G\).

To see this, realize \(\text{Bun}_G \) as \(G(X \backslash x) \backslash G(F_x)/G(O_x) \).

Then \(\hat{H}_\lambda(x) \) acts from the right, whereas \(\mathcal{A}_G \) can be obtained from the action of the center of \(\hat{\mathcal{U}}(\hat{\mathfrak{g}})_{\text{crit}} \) from the left.

However, to prove Conjecture 3 we need a stronger form of commutativity, and a crucial element in proving it is the system of differential equations satisfied by \(\hat{H}_\lambda(x) \) which we discuss below.

Pavel will explain this in more detail in his talk.
Remark. Recall that first we defined a Hecke operator
\[\hat{H}_\lambda(x) : V_G(\lambda) \to \hat{V}_G. \]

The algebra \(\mathcal{A}_G \) naturally acts on both \(V_G(\lambda) \) and \(\hat{V}_G \). Hence the commutators \([P, \hat{H}_\lambda(x)], P \in \mathcal{A}_G \), make sense.

We have \([P, \hat{H}_\lambda(x)] = 0, \forall P \in \mathcal{A}_G \).

To see this, realize \(\text{Bun}_G \) as \(G(X \backslash x) \backslash G(F_x) / G(O_x) \).

Then \(\hat{H}_\lambda(x) \) acts from the right, whereas \(\mathcal{A}_G \) can be obtained from the action of the center of \(\tilde{U}(\hat{g})_{\text{crit}} \) from the left.

However, to prove Conjecture 3 we need a stronger form of commutativity, and a crucial element in proving it is the system of differential equations satisfied by \(\hat{H}_\lambda(x) \) which we discuss below.

Pavel will explain this in more detail in his talk.
With a choice of $K_X^{1/2}$, we can identify $\text{Op}_{LG_{ad}}(X)$ with a specific component $\text{Op}_{LG}^\gamma(X)$ in $\text{Op}_{LG}(X)$.

An oper $\chi \in \text{Op}_{LG}^\gamma(X)$ is a triple $(\mathcal{F}_L^\gamma, \mathcal{F}_B^\gamma, \nabla,)$, where \mathcal{F}_L^γ is a specific L^G-bundle on X equipped with a reduction \mathcal{F}_B^γ to a Borel subgroup $L^B \subset L^G$, and ∇_χ is a holomorphic connection on \mathcal{F}_L^γ, satisfying a transversality condition with respect to \mathcal{F}_B^γ.

Consider the case $G = SL_2$ (following Beilinson and Drinfeld).

\[
\text{Op}_{SL_2}(X) = \bigsqcup_{\gamma \in \theta(X)} \text{Op}_{SL_2}^\gamma(X)
\]

where $\theta(X)$ is the set of isomorphism classes of square roots of K_X.

Consider a component $\text{Op}_{SL_2}^\gamma(X)$ of $\text{Op}_{SL_2}(X)$.

$K_X^{1/2}$ – a square root of K_X in the isomorphism class γ.

\mathcal{V}_{ω_1} – the rank 2 vector bundle associated to $\mathcal{F}_{SL_2}^\gamma$. Then

\[
0 \to K_X^{1/2} \to \mathcal{V}_{\omega_1} \to K_X^{-1/2} \to 0
\]
With a choice of $K^{1/2}_X$, we can identify $\text{Op}_{LG_{ad}}(X)$ with a specific component $\text{Op}^\gamma_{LG}(X)$ in $\text{Op}_{LG}(X)$.

An oper $\chi \in \text{Op}^\gamma_{LG}(X)$ is a triple $(\mathcal{F}^\gamma_{LG}, \mathcal{F}^\gamma_{LB}, \nabla, \gamma)$, where \mathcal{F}^γ_{LG} is a specific LG-bundle on X equipped with a reduction \mathcal{F}^γ_{LB} to a Borel subgroup $LB \subset LG$, and ∇_χ is a holomorphic connection on \mathcal{F}^γ_{LG}, satisfying a transversality condition with respect to \mathcal{F}^γ_{LB}.

Consider the case $G = SL_2$ (following Beilinson and Drinfeld).

$$\text{Op}_{SL_2}(X) = \bigsqcup_{\gamma \in \theta(X)} \text{Op}^\gamma_{SL_2}(X)$$

where $\theta(X)$ is the set of isomorphism classes of square roots of K_X.

Consider a component $\text{Op}^\gamma_{SL_2}(X)$ of $\text{Op}_{SL_2}(X)$.

$K^{1/2}_X$ – a square root of K_X in the isomorphism class γ.
\mathcal{V}_{ω_1} – the rank 2 vector bundle associated to $\mathcal{F}^\gamma_{SL_2}$. Then

$$0 \rightarrow K^{1/2}_X \rightarrow \mathcal{V}_{\omega_1} \rightarrow K^{-1/2}_X \rightarrow 0$$
With a choice of $K_X^{1/2}$, we can identify $\text{Op}^{\text{LG}_{\text{ad}}}(X)$ with a specific component $\text{Op}^{\gamma}_{\text{LG}}(X)$ in $\text{Op}_{\text{LG}}(X)$.

An oper $\chi \in \text{Op}^{\gamma}_{\text{LG}}(X)$ is a triple $(\mathcal{F}^{\gamma}_{\text{LG}}, \mathcal{F}^{\gamma}_{\text{LB}}, \nabla,)$, where $\mathcal{F}^{\gamma}_{\text{LG}}$ is a specific LG-bundle on X equipped with a reduction $\mathcal{F}^{\gamma}_{\text{LB}}$ to a Borel subgroup $LB \subset LG$, and ∇_{χ} is a holomorphic connection on $\mathcal{F}^{\gamma}_{\text{LG}}$, satisfying a transversality condition with respect to $\mathcal{F}^{\gamma}_{\text{LB}}$.

Consider the case $G = SL_2$ (following Beilinson and Drinfeld).

$$\text{Op}_{SL_2}(X) = \bigsqcup_{\gamma \in \theta(X)} \text{Op}^{\gamma}_{SL_2}(X)$$

where $\theta(X)$ is the set of isomorphism classes of square roots of K_X.

Consider a component $\text{Op}^{\gamma}_{SL_2}(X)$ of $\text{Op}_{SL_2}(X)$.

$K_X^{1/2}$ – a square root of K_X in the isomorphism class γ.

∇_{ω_1} – the rank 2 vector bundle associated to $\mathcal{F}^{\gamma}_{SL_2}$. Then

$$0 \rightarrow K_X^{1/2} \rightarrow \nabla_{\omega_1} \rightarrow K_X^{-1/2} \rightarrow 0$$
With a choice of $K_{X}^{1/2}$, we can identify $\text{Op}_{LG_{\text{ad}}}^{\gamma}(X)$ with a specific component $\text{Op}_{LG}^{\gamma}(X)$ in $\text{Op}_{LG}(X)$.

An oper $\chi \in \text{Op}_{LG}^{\gamma}(X)$ is a triple $(\mathcal{F}_{LG}^{\gamma}, \mathcal{F}_{LB}^{\gamma}, \nabla)$, where $\mathcal{F}_{LG}^{\gamma}$ is a specific LG-bundle on X equipped with a reduction $\mathcal{F}_{LB}^{\gamma}$ to a Borel subgroup $LB \subset LG$, and ∇_{χ} is a holomorphic connection on $\mathcal{F}_{LG}^{\gamma}$, satisfying a transversality condition with respect to $\mathcal{F}_{LB}^{\gamma}$.

Consider the case $G = SL_{2}$ (following Beilinson and Drinfeld).

\[
\text{Op}_{SL_{2}}(X) = \bigsqcup_{\gamma \in \theta(X)} \text{Op}_{SL_{2}}^{\gamma}(X)
\]

where $\theta(X)$ is the set of isomorphism classes of square roots of K_{X}.

Consider a component $\text{Op}_{SL_{2}}^{\gamma}(X)$ of $\text{Op}_{SL_{2}}(X)$.

$K_{X}^{1/2}$ – a square root of K_{X} in the isomorphism class γ.

$\mathcal{V}_{\omega_{1}}$ – the rank 2 vector bundle associated to $\mathcal{F}_{SL_{2}}^{\gamma}$. Then

\[
0 \rightarrow K_{X}^{1/2} \rightarrow \mathcal{V}_{\omega_{1}} \rightarrow K_{X}^{-1/2} \rightarrow 0
\]
Each component $\text{Op}^\gamma_{SL_2}(X)$ is isomorphic to $\text{Op}_{PGL_2}(X)$. Here’s an alternative description of this component.

A *projective connection* associated to $K^{1/2}_X$ is a second-order differential operator $P : K^{-1/2}_X \rightarrow K^{3/2}_X$ such that

1. $\text{symb}(P) = 1 \in \mathcal{O}_X$, and
2. P is algebraically self-adjoint.

They form an affine space $\mathcal{P}roj^\gamma(X)$. Locally, $P = \partial^2_z - v(z)$.

Lemma 5

There is a bijection $\text{Op}^\gamma_{SL_2}(X) \simeq \mathcal{P}roj^\gamma(X)$

$$\chi \in \text{Op}^\gamma_{SL_2}(X) \quad \mapsto \quad P_\chi \in \mathcal{P}roj^\gamma(X)$$

such that the section $s_{\omega_1} \in \Gamma(X, K^{-1/2}_X \otimes \mathcal{V}_{\omega_1})$ corresponding to the embedding $K^{1/2}_X \hookrightarrow \mathcal{V}_{\omega_1}$ satisfies $P_\chi \cdot s_{\omega_1} = 0$

(here we use the \mathcal{D}_X-module structure on \mathcal{V}_{ω_1} corresponding to ∇_χ).
We will say that \(\chi \in \text{Op}_{L G}^\gamma(X)_\mathbb{R} \) if the monodromy representation \(\rho_\chi : \pi_1(X, p_0) \to L G(\mathbb{C}) \) is isomorphic to its complex conjugate, i.e. \(\rho_\chi \cong \overline{\rho}_\chi \).

According to Corollary 4, we expect that there is a map
\[
\Phi : \text{Op}_{L G}^\gamma(X)_\mathbb{R} \to \text{Spec}(\mathbb{H}_G)
\]
(possibly multivalued) and we wish to describe it explicitly. This would give a description of the eigenvalues of the Hecke operators.

As \(x \) varies along \(X \), the Hecke operators \(H_\lambda(x) \) combine into a section of the \(C^\infty \) line bundle \(|K_X|^{-\langle \lambda, \rho \rangle} \) on \(X \) with values in operators \(\mathcal{H}_G \to \mathcal{H}_G \). We denote it by \(H_\lambda \).

Thus, each eigenvalue of \(H_\lambda \) defines a section of the \(C^\infty \) line bundle \(|K_X|^{-\langle \lambda, \rho \rangle} \) on \(X \).

We will now write an explicit formula for the eigenvalue \(\Phi_\lambda(\chi) \) corresponding to \(\chi \in \text{Op}_{L G}^\gamma(X)_\mathbb{R} \).
We will say that $\chi \in \text{Op}_{L,G}^\gamma(X)_{\mathbb{R}}$ if the monodromy representation $\rho_\chi : \pi_1(X, p_0) \to L_G(\mathbb{C})$ is isomorphic to its complex conjugate, i.e. $\rho_\chi \cong \overline{\rho}_\chi$.

According to Corollary 4, we expect that there is a map

$$\Phi : \text{Op}_{L,G}^\gamma(X)_{\mathbb{R}} \to \text{Spec}(\mathbb{H}_G)$$

(possibly multivalued) and we wish to describe it explicitly. This would give a description of the eigenvalues of the Hecke operators.

As x varies along X, the Hecke operators $H_\lambda(x)$ combine into a section of the C^∞ line bundle $|K_X|^{-\langle \lambda, \rho \rangle}$ on X with values in operators $\mathcal{H}_G \to \mathcal{H}_G$. We denote it by H_λ.

Thus, each eigenvalue of H_λ defines a section of the C^∞ line bundle $|K_X|^{-\langle \lambda, \rho \rangle}$ on X.

We will now write an explicit formula for the eigenvalue $\Phi_\lambda(\chi)$ corresponding to $\chi \in \text{Op}_{L,G}^\gamma(X)_{\mathbb{R}}$.
We will say that $\chi \in \text{Op}^\gamma_{LG}(X)_\mathbb{R}$ if the monodromy representation $\rho_\chi : \pi_1(X, p_0) \to ^LG(\mathbb{C})$ is isomorphic to its complex conjugate, i.e. $\rho_\chi \cong \overline{\rho}_\chi$.

According to Corollary 4, we expect that there is a map

$$\Phi : \text{Op}^\gamma_{LG}(X)_\mathbb{R} \to \text{Spec}(\mathbb{H}_G)$$

(possibly multivalued) and we wish to describe it explicitly. This would give a description of the eigenvalues of the Hecke operators.

As x varies along X, the Hecke operators $H_\lambda(x)$ combine into a section of the C^∞ line bundle $|K_X|^{-(\lambda, \rho)}$ on X with values in operators $\mathcal{H}_G \to \mathcal{H}_G$. We denote it by H_λ.

Thus, each eigenvalue of H_λ defines a section of the C^∞ line bundle $|K_X|^{-(\lambda, \rho)}$ on X.

We will now write an explicit formula for the eigenvalue $\Phi_\lambda(\chi)$ corresponding to $\chi \in \text{Op}^\gamma_{LG}(X)_\mathbb{R}$.
We will say that $\chi \in \text{Op}^\gamma_{LG}(X)_\mathbb{R}$ if the monodromy representation $\rho_\chi : \pi_1(X, p_0) \to LG(\mathbb{C})$ is isomorphic to its complex conjugate, i.e. $\rho_\chi \simeq \overline{\rho}_\chi$.

According to Corollary 4, we expect that there is a map

$$\Phi : \text{Op}^\gamma_{LG}(X)_\mathbb{R} \to \text{Spec}(\mathbb{H}_G)$$

(possibly multivalued) and we wish to describe it explicitly. This would give a description of the eigenvalues of the Hecke operators.

As x varies along X, the Hecke operators $H_\lambda(x)$ combine into a section of the C^∞ line bundle $|K_X|^{-\langle \lambda, \rho \rangle}$ on X with values in operators $\mathcal{H}_G \to \mathcal{H}_G$. We denote it by H_λ.

Thus, each eigenvalue of H_λ defines a section of the C^∞ line bundle $|K_X|^{-\langle \lambda, \rho \rangle}$ on X.

We will now write an explicit formula for the eigenvalue $\Phi_\lambda(\chi)$ corresponding to $\chi \in \text{Op}^\gamma_{LG}(X)_\mathbb{R}$.
We will say that \(\chi \in \text{Op}_{L_G}^\gamma (X)_\mathbb{R} \) if the monodromy representation \(\rho_\chi : \pi_1(X, p_0) \to L_G(\mathbb{C}) \) is isomorphic to its complex conjugate, i.e. \(\rho_\chi \simeq \overline{\rho_\chi} \).

According to Corollary 4, we expect that there is a map
\[
\Phi : \text{Op}_{L_G}^\gamma (X)_\mathbb{R} \to \text{Spec}(\text{H}_G)
\]
(possibly multivalued) and we wish to describe it explicitly. This would give a description of the eigenvalues of the Hecke operators.

As \(x \) varies along \(X \), the Hecke operators \(H_\lambda (x) \) combine into a section of the \(C^\infty \) line bundle \(|K_X|^{-\langle \lambda, \rho \rangle} \) on \(X \) with values in operators \(\mathcal{H}_G \to \mathcal{H}_G \). We denote it by \(H_\lambda \).

Thus, each eigenvalue of \(H_\lambda \) defines a section of the \(C^\infty \) line bundle \(|K_X|^{-\langle \lambda, \rho \rangle} \) on \(X \).

We will now write an explicit formula for the eigenvalue \(\Phi_\lambda (\chi) \) corresponding to \(\chi \in \text{Op}_{L_G}^\gamma (X)_\mathbb{R} \).
Consider first the case $G = SL_2, \lambda = \omega_1$.

Let $\chi \in Op_{SL_2}(X)_\mathbb{R}$. The corresponding eigenvalue of H_{ω_1} is a section $\Phi_{\omega_1}(\chi)$ of $|K_X|^{-1/2}$.

Recall $0 \to K_X^{1/2} \to \mathcal{V}_{\omega_1} \to K_X^{1/2} \to 0$

and $s_{\omega_1} \in \Gamma(X, K_X^{-1/2} \otimes \mathcal{V}_{\omega_1})$ corresponding to $K_X^{-1/2} \to \mathcal{V}_{\omega_1}$.

By definition of $Op_{SL_2}(X)_\mathbb{R}$,

$$(\mathcal{V}_{\omega_1}, \nabla_{\chi, \omega_1}) \simeq (\overline{\mathcal{V}}_{\omega_1}, \overline{\nabla}_{\chi, \omega_1})$$

as C^∞ flat bundles. Since $\mathcal{V}_{\omega_1} \simeq \mathcal{V}_{\omega_1}^*$, we get an Hermitian form

$$h_{\chi, \omega_1}(\cdot, \cdot) : (\mathcal{V}_{\omega_1}, \nabla_{\chi, \omega_1}) \otimes (\overline{\mathcal{V}}_{\omega_1}, \overline{\nabla}_{\chi, \omega_1}) \to (C^\infty_X, d)$$

Conjecture 4

$$\Phi_{\omega_1}(\chi) = \pm h_{\chi, \omega_1}(s_{\omega_1}, \overline{s_{\omega_1}})$$
Consider first the case $G = SL_2, \lambda = \omega_1$.

Let $\chi \in Op_{SL_2}^\gamma(X)_\mathbb{R}$. The corresponding eigenvalue of H_{ω_1} is a section $\Phi_{\omega_1}(\chi)$ of $|K_X|^{-1/2}$.

Recall $0 \to K_X^{1/2} \to \mathcal{V}_{\omega_1} \to K_X^{1/2} \to 0$ and $s_{\omega_1} \in \Gamma(X, K_X^{-1/2} \otimes \mathcal{V}_{\omega_1})$ corresponding to $K_X^{-1/2} \hookrightarrow \mathcal{V}_{\omega_1}$.

By definition of $Op_{SL_2}^\gamma(X)_\mathbb{R}$,

$$\left(\mathcal{V}_{\omega_1}, \nabla_{\chi, \omega_1}\right) \simeq \left(\overline{\mathcal{V}}_{\omega_1}, \overline{\nabla}_{\chi, \omega_1}\right)$$

as C^∞ flat bundles. Since $\mathcal{V}_{\omega_1} \simeq \mathcal{V}_{\omega_1}^*$, we get an Hermitian form

$$h_{\chi, \omega_1}(\cdot, \cdot) : (\mathcal{V}_{\omega_1}, \nabla_{\chi, \omega_1}) \otimes (\overline{\mathcal{V}}_{\omega_1}, \overline{\nabla}_{\chi, \omega_1}) \to (C^\infty_X, d)$$

Conjecture 4

$$\Phi_{\omega_1}(\chi) = \pm h_{\chi, \omega_1}(s_{\omega_1}, \overline{s_{\omega_1}})$$
Consider first the case $G = SL_2, \lambda = \omega_1$.

Let $\chi \in Op^\gamma_{SL_2}(X)_{\mathbb{R}}$. The corresponding eigenvalue of H_{ω_1} is a section $\Phi_{\omega_1}(\chi)$ of $|K_X|^{-1/2}$.

Recall $0 \to K_X^{1/2} \to V_{\omega_1} \to K_X^{1/2} \to 0$ and $s_{\omega_1} \in \Gamma(X, K_X^{-1/2} \otimes V_{\omega_1})$ corresponding to $K_X^{-1/2} \hookrightarrow V_{\omega_1}$.

By definition of $Op^\gamma_{SL_2}(X)_{\mathbb{R}}$,

$$(V_{\omega_1}, \nabla_{\chi, \omega_1}) \sim (\overline{V}_{\omega_1}, \overline{\nabla}_{\chi, \omega_1})$$

as C^∞ flat bundles. Since $V_{\omega_1} \simeq V_{\omega_1}^*$, we get an Hermitian form

$$h_{\chi, \omega_1}(\cdot, \cdot) : (V_{\omega_1}, \nabla_{\chi, \omega_1}) \otimes (\overline{V}_{\omega_1}, \overline{\nabla}_{\chi, \omega_1}) \to (C^\infty_X, d)$$

Conjecture 4

$$\Phi_{\omega_1}(\chi) = \pm h_{\chi, \omega_1}(s_{\omega_1}, \overline{s_{\omega_1}})$$
Consider first the case $G = SL_2, \lambda = \omega_1$.

Let $\chi \in \text{Op}^\gamma_{SL_2}(X)_{\mathbb{R}}$. The corresponding eigenvalue of H_{ω_1} is a section $\Phi_{\omega_1}(\chi)$ of $|K_X|^{-1/2}$.

Recall

$$0 \rightarrow K_X^{1/2} \rightarrow \mathcal{V}_{\omega_1} \rightarrow K_X^{1/2} \rightarrow 0$$

and $s_{\omega_1} \in \Gamma(X, K_X^{-1/2} \otimes \mathcal{V}_{\omega_1})$ corresponding to $K_X^{-1/2} \hookrightarrow \mathcal{V}_{\omega_1}$.

By definition of $\text{Op}^\gamma_{SL_2}(X)_{\mathbb{R}}$,

$$(\mathcal{V}_{\omega_1}, \nabla_{\chi, \omega_1}) \simeq (\mathcal{V}_{\omega_1}, \nabla_{\chi, \omega_1})$$

as C^∞ flat bundles. Since $\mathcal{V}_{\omega_1} \simeq \mathcal{V}_{\omega_1}^*$, we get an Hermitian form $h_{\chi, \omega_1}(\cdot, \cdot) : (\mathcal{V}_{\omega_1}, \nabla_{\chi, \omega_1}) \otimes (\overline{\mathcal{V}_{\omega_1}}, \overline{\nabla_{\chi, \omega_1}}) \rightarrow (C^\infty_X, d)$

Conjecture 4

$$\Phi_{\omega_1}(\chi) = \pm h_{\chi, \omega_1}(s_{\omega_1}, \overline{s_{\omega_1}})$$
Consider first the case $G = SL_2, \lambda = \omega_1$.

Let $\chi \in \text{Op}_{SL_2}^\gamma(X)_\mathbb{R}$. The corresponding eigenvalue of H_{ω_1} is a section $\Phi_{\omega_1}(\chi)$ of $|K_X|^{-1/2}$.

Recall $0 \to K_X^{1/2} \to \mathcal{V}_{\omega_1} \to K_X^{1/2} \to 0$ and $s_{\omega_1} \in \Gamma(X, K_X^{-1/2} \otimes \mathcal{V}_{\omega_1})$ corresponding to $K_X^{-1/2} \hookrightarrow \mathcal{V}_{\omega_1}$.

By definition of $\text{Op}_{SL_2}^\gamma(X)_\mathbb{R}$,

$$(\mathcal{V}_{\omega_1}, \nabla_{\chi, \omega_1}) \simeq (\overline{\mathcal{V}}_{\omega_1}, \overline{\nabla}_{\chi, \omega_1})$$

as C^∞ flat bundles. Since $\mathcal{V}_{\omega_1} \simeq \mathcal{V}_{\omega_1}^*$, we get an Hermitian form

$$h_{\chi, \omega_1}(\cdot, \cdot) : (\mathcal{V}_{\omega_1}, \nabla_{\chi, \omega_1}) \otimes (\overline{\mathcal{V}}_{\omega_1}, \overline{\nabla}_{\chi, \omega_1}) \to (C_X^\infty, d)$$

Conjecture 4

$$\Phi_{\omega_1}(\chi) = \pm h_{\chi, \omega_1}(s_{\omega_1}, \overline{s_{\omega_1}})$$
Consider first the case $G = SL_2$, $\lambda = \omega_1$.

Let $\chi \in \text{Op}_{SL_2}^{\gamma}(X)_{\mathbb{R}}$. The corresponding eigenvalue of H_{ω_1} is a section $\Phi_{\omega_1}(\chi)$ of $|K_X|^{-1/2}$.

Recall $0 \to K_X^{1/2} \to \mathcal{V}_{\omega_1} \to K_X^{1/2} \to 0$ and $s_{\omega_1} \in \Gamma(X, K_X^{-1/2} \otimes \mathcal{V}_{\omega_1})$ corresponding to $K_X^{-1/2} \hookrightarrow \mathcal{V}_{\omega_1}$.

By definition of $\text{Op}_{SL_2}^{\gamma}(X)_{\mathbb{R}}$,

$$(\mathcal{V}_{\omega_1}, \nabla_{\chi, \omega_1}) \simeq (\overline{\mathcal{V}}_{\omega_1}, \overline{\nabla}_{\chi, \omega_1})$$

as C^∞ flat bundles. Since $\mathcal{V}_{\omega_1} \simeq \mathcal{V}_{\omega_1}^*$, we get an Hermitian form

$$h_{\chi, \omega_1}(\cdot, \cdot) : (\mathcal{V}_{\omega_1}, \nabla_{\chi, \omega_1}) \otimes (\overline{\mathcal{V}}_{\omega_1}, \overline{\nabla}_{\chi, \omega_1}) \to (C^\infty_X, d)$$

Conjecture 4

$$\Phi_{\omega_1}(\chi) = \pm h_{\chi, \omega_1}(s_{\omega_1}, \overline{s_{\omega_1}})$$
To see this, recall that $\chi \mapsto P_\chi : K_X^{-1/2} \to K_X^{3/2}$ and
\[P_\chi \cdot s_{\omega_1} = 0 \]

Lemma 6

$h_{\chi,\omega_1}(s_{\omega_1}, \overline{s_{\omega_1}})$ is the unique, up to a scalar, section Φ of $|K_X|^{-1/2}$ which is a solution of the system
\[P_\chi \cdot \Phi = 0, \quad \overline{P_\chi} \cdot \Phi = 0 \]

Hence we can prove Conjecture 4 by showing that the Hecke operator \hat{H}_{ω_1} satisfies the same system of second-order differential equations.

We can do this by using a theorem of Beilinson–Drinfeld describing the action of the Hecke functors on the sheaf D_G.
To see this, recall that $\chi \mapsto P_\chi : K_X^{-1/2} \rightarrow K_X^{3/2}$ and

$$P_\chi \cdot s_{\omega_1} = 0$$

Lemma 6

$h_{\chi, \omega_1}(s_{\omega_1}, \overline{s_{\omega_1}})$ is the unique, up to a scalar, section Φ of $|K_X|^{-1/2}$ which is a solution of the system

$$P_\chi \cdot \Phi = 0, \quad \overline{P_\chi} \cdot \Phi = 0$$

Hence we can prove Conjecture 4 by showing that the Hecke operator \hat{H}_{ω_1} satisfies the same system of second-order differential equations.

We can do this by using a theorem of Beilinson–Drinfeld describing the action of the Hecke functors on the sheaf \mathcal{D}_G.
To see this, recall that \(\chi \mapsto P_\chi : K_X^{-1/2} \to K_X^{3/2} \) and

\[
P_\chi \cdot s_{\omega_1} = 0
\]

Lemma 6

\(h_{\chi,\omega_1}(s_{\omega_1}, \overline{s_{\omega_1}}) \) is the unique, up to a scalar, section \(\Phi \) of \(|K_X|^{-1/2} \) which is a solution of the system

\[
P_\chi \cdot \Phi = 0, \quad \overline{P_\chi} \cdot \Phi = 0
\]

Hence we can prove Conjecture 4 by showing that the Hecke operator \(\widehat{H}_{\omega_1} \) satisfies the same system of second-order differential equations.

We can do this by using a theorem of Beilinson–Drinfeld describing the action of the Hecke functors on the sheaf \(D_G \).
To see this, recall that $\chi \mapsto P_\chi : K_X^{-1/2} \to K_X^{3/2}$ and

$$P_\chi \cdot s_{\omega_1} = 0$$

Lemma 6

$h_{\chi, \omega_1}(s_{\omega_1}, \overline{s_{\omega_1}})$ is the unique, up to a scalar, section Φ of $|K_X|^{-1/2}$ which is a solution of the system

$$P_\chi \cdot \Phi = 0, \quad \overline{P}_\chi \cdot \Phi = 0$$

Hence we can prove Conjecture 4 by showing that the Hecke operator \hat{H}_{ω_1} satisfies the same system of second-order differential equations.

We can do this by using a theorem of Beilinson–Drinfeld describing the action of the Hecke functors on the sheaf \mathcal{D}_G.
Explicit formula for $\Phi_\lambda(\chi)$ in general

In general, λ is a dominant coweight of G, which we can interpret as a dominant weight of LG. Let V_λ be the irreducible finite-dimensional representation of LG with highest weight λ.

Let \mathcal{V}_λ be the associated vector bundle $\mathcal{F}_{^LG}^\gamma \times V_\lambda$ equipped with the connection $\nabla_{\chi,\lambda}$ induced by ∇_λ. Then $\mathcal{F}_{^LB}^\gamma$ defines a line subbundle of \mathcal{V}_λ, which is known to be isomorphic to $K_{X}\langle \lambda,\rho \rangle$.

Thus, we have embeddings

$$\kappa_\lambda : K_{X}\langle \lambda,\rho \rangle \hookrightarrow \mathcal{V}_\lambda$$

$$\widetilde{\kappa}_\lambda : \mathcal{O}_X \hookrightarrow K_{X}\langle -\lambda,\rho \rangle \otimes \mathcal{V}_\lambda$$

$$s_\lambda := \widetilde{\kappa}_\lambda(1) \in \Gamma(X, K_{X}\langle -\lambda,\rho \rangle \otimes \mathcal{V}_\lambda)$$
Explicit formula for $\Phi_\lambda(\chi)$ in general

In general, λ is a dominant coweight of G, which we can interpret as a dominant weight of L^G. Let V_λ be the irreducible finite-dimensional representation of L^G with highest weight λ.

Let \mathcal{V}_λ be the associated vector bundle $\mathcal{F}_{L^G}^{\gamma} \times V_\lambda$ equipped with the connection $\nabla_{\chi,\lambda}$ induced by ∇_λ. Then $\mathcal{F}_{L_B}^{\gamma}$ defines a line subbundle of \mathcal{V}_λ, which is known to be isomorphic to $K_X^{(\lambda,\rho)}$.

Thus, we have embeddings

\[\kappa_\lambda : K_X^{(\lambda,\rho)} \hookrightarrow \mathcal{V}_\lambda \]

\[\tilde{\kappa}_\lambda : \mathcal{O}_X \hookrightarrow K_X^{-(\lambda,\rho)} \otimes \mathcal{V}_\lambda \]

\[s_\lambda := \tilde{\kappa}_\lambda(1) \in \Gamma(X, K_X^{-(\lambda,\rho)} \otimes \mathcal{V}_\lambda) \]
Explicit formula for $\Phi_\lambda(\chi)$ in general

In general, λ is a dominant coweight of G, which we can interpret as a dominant weight of L_G. Let V_λ be the irreducible finite-dimensional representation of L_G with highest weight λ.

Let \mathcal{V}_λ be the associated vector bundle $\mathcal{F}_{L_G}^\gamma \times V_\lambda$ equipped with the connection $\nabla_{\chi,\lambda}$ induced by ∇_λ. Then $\mathcal{F}_{L_B}^\gamma$ defines a line subbundle of \mathcal{V}_λ, which is known to be isomorphic to $K_X^{\langle \lambda, \rho \rangle}$.

Thus, we have embeddings

$$\kappa_\lambda : K_X^{\langle \lambda, \rho \rangle} \hookrightarrow \mathcal{V}_\lambda$$

$$\widetilde{\kappa}_\lambda : \mathcal{O}_X \hookrightarrow K_X^{-\langle \lambda, \rho \rangle} \otimes \mathcal{V}_\lambda$$

$$s_\lambda := \widetilde{\kappa}_\lambda(1) \in \Gamma(X, K_X^{-\langle \lambda, \rho \rangle} \otimes \mathcal{V}_\lambda)$$
If $\chi \in Op_{L_G}^\gamma(X)_{\mathbb{R}}$, then we have an isomorphism

$$(\mathcal{V}_\lambda, \nabla_{\chi,\lambda}) \simeq (\mathcal{V}_\lambda, \nabla_{\chi,\lambda})$$

of C^∞ flat bundles on X, and hence an Hermitian form

$$h_{\chi,\lambda}(\cdot, \cdot) : (\mathcal{V}_\lambda, \nabla_{\chi,\lambda}) \otimes (\overline{\mathcal{V}}_{-w_0(\lambda)}, \overline{\nabla}_{\chi,-w_0(\lambda)}) \to (C^\infty_X, d)$$

because $V_\lambda^* \simeq V_{-w_0(\lambda)}$. Since $\langle -w_0(\lambda), \rho \rangle = \langle \lambda, \rho \rangle$, we have

$$s_{-w_0(\lambda)} \in \Gamma(X, \overline{K}_X^{\langle \lambda, \rho \rangle} \otimes \overline{\mathcal{V}}_\lambda^*)$$

Conjecture 5

For $\chi \in Op_{L_G}^\gamma(X)_{\mathbb{R}}$, the section $\Phi_\lambda(\chi) \in \Gamma(X, |K_X^{\langle \lambda, \rho \rangle}|)$ is equal to

$$\Phi_\lambda(\chi) = h_{\chi,\lambda}(s_\lambda, \overline{s_{-w_0(\lambda)}})$$

up to a scalar.
If \(\chi \in \text{Op}_{L_G}(X)_\mathbb{R} \), then we have an isomorphism

\[
(V_\lambda, \nabla_{\chi, \lambda}) \cong (V_\lambda, \nabla_{\chi, \lambda})
\]

of \(C^\infty \) flat bundles on \(X \), and hence an Hermitian form

\[
h_{\chi, \lambda}(\cdot, \cdot) : (V_\lambda, \nabla_{\chi, \lambda}) \otimes (V_{-w_0(\lambda)}, \nabla_{\chi, -w_0(\lambda)}) \to (C^\infty_X, d)
\]

because \(V_\lambda^* \cong V_{-w_0(\lambda)} \). Since \(\langle -w_0(\lambda), \rho \rangle = \langle \lambda, \rho \rangle \), we have

\[
s_{-w_0(\lambda)} \in \Gamma(X, K_X^{-\langle \lambda, \rho \rangle} \otimes V_\lambda^*)
\]

Conjecture 5

For \(\chi \in \text{Op}_{L_G}(X)_\mathbb{R} \), the section \(\Phi_\lambda(\chi) \in \Gamma(X, |K_X^{-\langle \lambda, \rho \rangle}|) \) is equal to

\[
\Phi_\lambda(\chi) = h_{\chi, \lambda}(s_\lambda, \overline{s}_{-w_0(\lambda)})
\]

up to a scalar.
We have proved Conjecture 5 (modulo Compactness Conjecture) for $G = SL_n$ and $\lambda = \omega_1$ (in this case $\overline{Gr}_\lambda = Gr_\lambda$).

The proof is based on a system of differential equations satisfied by the Hecke operator \hat{H}_{ω_1}, which we derive from the theorem of Beilinson and Drinfeld describing the action of the corresponding Hecke functor on D_G.

These differential equations imply a “strong commutativity” between the differential operators and the Hecke operators, which can be used to prove Conjecture 3.

We expect that all of this can be extended to the case of a general simple Lie group G.
We have proved Conjecture 5 (modulo Compactness Conjecture) for $G = SL_n$ and $\lambda = \omega_1$ (in this case $\overline{Gr}_\lambda = Gr_\lambda$).

The proof is based on a system of differential equations satisfied by the Hecke operator \hat{H}_{ω_1}, which we derive from the theorem of Beilinson and Drinfeld describing the action of the corresponding Hecke functor on \mathcal{D}_G.

These differential equations imply a “strong commutativity” between the differential operators and the Hecke operators, which can be used to prove Conjecture 3.

We expect that all of this can be extended to the case of a general simple Lie group G.
We have proved Conjecture 5 (modulo Compactness Conjecture) for $G = SL_n$ and $\lambda = \omega_1$ (in this case $\overline{Gr}_\lambda = Gr_\lambda$).

The proof is based on a system of differential equations satisfied by the Hecke operator \widehat{H}_{ω_1}, which we derive from the theorem of Beilinson and Drinfeld describing the action of the corresponding Hecke functor on D_G.

These differential equations imply a “strong commutativity” between the differential operators and the Hecke operators, which can be used to prove Conjecture 3.

We expect that all of this can be extended to the case of a general simple Lie group G.
We have proved Conjecture 5 (modulo Compactness Conjecture) for $G = SL_n$ and $\lambda = \omega_1$ (in this case $\overline{Gr}_\lambda = Gr_\lambda$).

The proof is based on a system of differential equations satisfied by the Hecke operator \hat{H}_{ω_1}, which we derive from the theorem of Beilinson and Drinfeld describing the action of the corresponding Hecke functor on \mathcal{D}_G.

These differential equations imply a “strong commutativity” between the differential operators and the Hecke operators, which can be used to prove Conjecture 3.

We expect that all of this can be extended to the case of a general simple Lie group G.
We have proved Conjecture 5 (modulo Compactness Conjecture) for $G = SL_n$ and $\lambda = \omega_1$ (in this case $\overline{Gr}_\lambda = Gr_\lambda$).

The proof is based on a system of differential equations satisfied by the Hecke operator \hat{H}_{ω_1}, which we derive from the theorem of Beilinson and Drinfeld describing the action of the corresponding Hecke functor on \mathcal{D}_G.

These differential equations imply a “strong commutativity” between the differential operators and the Hecke operators, which can be used to prove Conjecture 3.

We expect that all of this can be extended to the case of a general simple Lie group G.
The Hecke correspondence $Z(\lambda)$ gives rise to an “integral transform” functor H_λ on the category of left D-modules. These are the Hecke functors. Consider for simplicity the case when Gr_λ is smooth (e.g. $G = PGL_n, \lambda = \omega_1$). Then

$$H_\lambda(\mathcal{F}) := (q_2 \times q_3)^* D q_1^*(\mathcal{F})$$

Recall that \mathcal{D}_G is the sheaf of twisted differential operators acting on the line bundle $\mathcal{L} = K_{\text{Bun}}^{1/2}$ on Bun_G:

$$\mathcal{D}_G = \mathcal{L} \otimes \mathcal{D}_{\text{Bun}_G} \otimes \mathcal{L}^{-1}$$

Beilinson and Drinfeld have computed $H_\lambda(\mathcal{D}_{\text{Bun}_G} \otimes \mathcal{L}^{-1})$.

To state their result, let $\mathcal{V}_\lambda^\text{univ}$ be the universal vector bundle over $\text{Op}_{L_G}(X) \times X$ with a partial connection ∇^univ along X, such that

$$\left(\mathcal{V}_\lambda^\text{univ}, \nabla^\text{univ}\right)|_{\chi \times X} = \left(\mathcal{V}_\lambda, \nabla_\chi\right)$$
The Hecke correspondence $Z(\lambda)$ gives rise to an “integral transform” functor H_λ on the category of left D-modules. These are the Hecke functors. Consider for simplicity the case when Gr_λ is smooth (e.g. $G = PGL_n, \lambda = \omega_1$). Then

$$H_\lambda(F) := (q_2 \times q_3)_*^D q_1^*(F)$$

Recall that D_G is the sheaf of twisted differential operators acting on the line bundle $L = K_{Bun}^{1/2}$ on Bun_G:

$$D_G = L \otimes D_{\text{Bun}_G} \otimes L^{-1}$$

Beilinson and Drinfeld have computed $H_\lambda(D_{\text{Bun}_G} \otimes L^{-1})$.

To state their result, let $\mathcal{V}^\text{univ}_\lambda$ be the universal vector bundle over $\text{Op}_{L_G}(X) \times X$ with a partial connection ∇^univ along X, such that

$$(\mathcal{V}^\text{univ}_\lambda, \nabla^\text{univ})|_{\chi \times X} = (\mathcal{V}_\lambda, \nabla_\chi)$$
The Hecke correspondence $Z(\lambda)$ gives rise to an “integral transform” functor H_λ on the category of left D-modules. These are the Hecke functors. Consider for simplicity the case when Gr_λ is smooth (e.g. $G = \text{PGL}_n$, $\lambda = \omega_1$). Then

$$H_\lambda(\mathcal{F}) := (q_2 \times q_3)_* q_1^*(\mathcal{F})$$

Recall that D_G is the sheaf of twisted differential operators acting on the line bundle $L = K^1_{\text{Bun}}$ on Bun_G:

$$D_G = L \otimes D_{\text{Bun}_G} \otimes L^{-1}$$

Beilinson and Drinfeld have computed $H_\lambda(D_{\text{Bun}_G} \otimes L^{-1})$.

To state their result, let $\mathcal{V}_\lambda^{\text{univ}}$ be the universal vector bundle over $\text{Op}_{\text{LG}}^\gamma(X) \times X$ with a partial connection ∇^{univ} along X, such that

$$(\mathcal{V}_\lambda^{\text{univ}}, \nabla^{\text{univ}})|_X = (\mathcal{V}_\lambda, \nabla_\chi)$$
The Hecke correspondence $Z(\lambda)$ gives rise to an “integral transform” functor H_λ on the category of left D-modules. These are the Hecke functors. Consider for simplicity the case when Gr_λ is smooth (e.g. $G = \text{PGL}_n$, $\lambda = \omega_1$). Then

$$H_\lambda(F) := (q_2 \times q_3)^D q_1^*(F)$$

Recall that D_G is the sheaf of twisted differential operators acting on the line bundle $L = K_{\text{Bun}}^{1/2}$ on Bun_G:

$$D_G = L \otimes D_{\text{Bun}_G} \otimes L^{-1}$$

Beilinson and Drinfeld have computed $H_\lambda(D_{\text{Bun}_G} \otimes L^{-1})$.

To state their result, let $V_{\lambda}^{\text{univ}}$ be the universal vector bundle over $\text{Op}_{L_G}(X) \times X$ with a partial connection ∇^{univ} along X, such that

$$(V_{\lambda}^{\text{univ}}, \nabla^{\text{univ}})|_{\chi \times X} = (V_{\lambda}, \nabla_{\chi})$$
The Hecke correspondence $Z(\lambda)$ gives rise to an “integral transform” functor H_λ on the category of left D-modules. These are the Hecke functors. Consider for simplicity the case when Gr_λ is smooth (e.g. $G = PGL_n, \lambda = \omega_1$). Then

$$H_\lambda(\mathcal{F}) := (q_2 \times q_3)_* q_1^*(\mathcal{F})$$

Recall that D_G is the sheaf of twisted differential operators acting on the line bundle $\mathcal{L} = K_{\text{Bun}}^{1/2}$ on Bun_G:

$$D_G = \mathcal{L} \otimes D_{\text{Bun}_G} \otimes \mathcal{L}^{-1}$$

Beilinson and Drinfeld have computed $H_\lambda(D_{\text{Bun}_G} \otimes \mathcal{L}^{-1})$.

To state their result, let $\mathcal{V}_\lambda^{\text{univ}}$ be the universal vector bundle over $\text{Op}^\gamma_{L_G}(X) \times X$ with a partial connection ∇^{univ} along X, such that

$$(\mathcal{V}_\lambda^{\text{univ}}, \nabla^{\text{univ}})|_{\chi \times X} = (\mathcal{V}_\lambda, \nabla_\chi)$$
Moreover, we have a map
\[\kappa_{\lambda}^{\text{univ}} : (\mathcal{O}_{\text{Op}_L^\gamma G}(X) \boxtimes K^{(\lambda, \rho)}_X) \to \mathcal{V}_\lambda^{\text{univ}} \]
corresponding to the oper Borel reduction.

Let \[\mathcal{V}_{\lambda, X}^{\text{univ}} := \pi_* (\mathcal{V}_\lambda^{\text{univ}}), \]
where \(\pi : \text{Op}_L^\gamma G(X) \times X \to X. \) The connection \(\nabla^{\text{univ}} \) makes \(\mathcal{V}_{\lambda, X}^{\text{univ}} \) into a left \(\mathcal{D}_X \)-module.

The algebra \(\mathcal{D}_G \simeq \text{Fun Op}_L^\gamma G(X) \) acts on \(\mathcal{V}_{\lambda, X}^{\text{univ}} \) and commutes with \(\mathcal{D}_X \).

The map \(\kappa_{\lambda}^{\text{univ}} \) yields a map
\[\kappa_{\lambda, X}^{\text{univ}} : K^{(\lambda, \rho)}_X \to \mathcal{V}_{\lambda, X}^{\text{univ}} \]
Moreover, we have a map

\[\kappa_{\lambda}^{\text{univ}} : (\mathcal{O}_{\text{Op} \gamma_{LG}}(X) \boxtimes K_X^{\langle \lambda, \rho \rangle}) \to \mathcal{V}_\lambda^{\text{univ}} \]

corresponding to the oper Borel reduction.

Let \[\mathcal{V}_{\lambda,X}^{\text{univ}} := \pi_* (\mathcal{V}_\lambda^{\text{univ}}), \] where \[\pi : \text{Op} \gamma_{LG}(X) \times X \to X. \] The connection \(\nabla^{\text{univ}} \) makes \(\mathcal{V}_{\lambda,X}^{\text{univ}} \) into a left \(\mathcal{D}_X \)-module.

The algebra \(\mathcal{D}_G \simeq \text{Fun Op} \gamma_{LG}(X) \) acts on \(\mathcal{V}_{\lambda,X}^{\text{univ}} \) and commutes with \(\mathcal{D}_X \).

The map \(\kappa_{\lambda}^{\text{univ}} \) yields a map

\[\kappa_{\lambda,X}^{\text{univ}} : K_X^{\langle \lambda, \rho \rangle} \to \mathcal{V}_{\lambda,X}^{\text{univ}} \]
Moreover, we have a map

\[\kappa_{\lambda}^{\text{univ}} : (\mathcal{O}_{\text{Op}}^\gamma_{L_G}(X) \boxtimes K_X^{(\lambda, \rho)}) \rightarrow V_\lambda^{\text{univ}} \]

corresponding to the oper Borel reduction.

Let \(V_{\lambda, X}^{\text{univ}} := \pi_*(V_\lambda^{\text{univ}}) \), where \(\pi : \text{Op}_L^\gamma_{L_G}(X) \times X \rightarrow X \). The connection \(\nabla^{\text{univ}} \) makes \(V_{\lambda, X}^{\text{univ}} \) into a left \(\mathcal{D}_X \)-module.

The algebra \(D_G \simeq \text{Fun Op}_{L_G}^\gamma(X) \) acts on \(V_{\lambda, X}^{\text{univ}} \) and commutes with \(\mathcal{D}_X \).

The map \(\kappa_{\lambda}^{\text{univ}} \) yields a map

\[\kappa_{\lambda, X}^{\text{univ}} : K_X^{(\lambda, \rho)} \rightarrow V_{\lambda, X}^{\text{univ}} \]
Moreover, we have a map

$$\kappa_{\lambda}^{\text{univ}} : (\mathcal{O}_{\text{Op}_{\text{LG}}}(X) \boxtimes K_{X}^{(\lambda,\rho)}) \to \mathcal{V}_{\lambda}^{\text{univ}}$$

corresponding to the oper Borel reduction.

Let $$\mathcal{V}_{\lambda,X}^{\text{univ}} := \pi_{*}(\mathcal{V}_{\lambda}^{\text{univ}})$$, where $$\pi : \text{Op}_{\text{LG}}(X) \times X \to X$$. The connection $$\nabla^{\text{univ}}$$ makes $$\mathcal{V}_{\lambda,X}^{\text{univ}}$$ into a left $$\mathcal{D}_{X}$$-module.

The algebra $$\mathcal{D}_{G} \simeq \text{Fun Op}_{\text{LG}}(X)$$ acts on $$\mathcal{V}_{\lambda,X}^{\text{univ}}$$ and commutes with $$\mathcal{D}_{X}$$.

The map $$\kappa_{\lambda}^{\text{univ}}$$ yields a map

$$\kappa_{\lambda,X}^{\text{univ}} : K_{X}^{(\lambda,\rho)} \to \mathcal{V}_{\lambda,X}^{\text{univ}}$$
Theorem 7 (Beilinson & Drinfeld)

\[H_\lambda(D_{Bun_G} \otimes L^{-1}) \simeq (D_{Bun_G} \otimes L^{-1}) \boxtimes V_{\lambda,X}^{\text{univ}}. \]

Moreover, the above isomorphism \(\alpha \) gives rise to a map

\[L^{-1} \boxtimes K^{(\lambda, \rho)}_X \rightarrow H_\lambda(D_{Bun_G} \otimes L^{-1}) \]

which corresponds to \(\iota \boxtimes \kappa_{\lambda,X}^{\text{univ}} \), where \(\iota : L^{-1} \hookrightarrow D_{Bun_G} \otimes L^{-1} \).

As shown by Beilinson and Drinfeld, this statement implies that \(\Delta_\chi \) is a Hecke eigensheaf, which is a key result in the geometric Langlands correspondence.

We claim that we can derive from this statement that the Hecke operator \(\hat{H}_\lambda(x) \) satisfies a differential equation, which is a key result in the analytic Langlands correspondence.
Theorem 7 (Beilinson & Drinfeld)

$$H_\lambda(D_{\text{Bun}_G} \otimes L^{-1}) \simeq (D_{\text{Bun}_G} \otimes L^{-1}) \boxtimes \mathcal{V}_{\lambda,X}^{\text{univ}}.$$

Moreover, the above isomorphism α gives rise to a map

$$L^{-1} \boxtimes K^{(\lambda,\rho)}_X \to H_\lambda(D_{\text{Bun}_G} \otimes L^{-1})$$

which corresponds to $\iota \boxtimes \kappa_{\lambda,X}^{\text{univ}}$, where $\iota : L^{-1} \hookrightarrow D_{\text{Bun}_G} \otimes L^{-1}$.

As shown by Beilinson and Drinfeld, this statement implies that Δ_χ is a Hecke eigensheaf, which is a key result in the geometric Langlands correspondence.

We claim that we can derive from this statement that the Hecke operator $\hat{H}_\lambda(x)$ satisfies a differential equation, which is a key result in the analytic Langlands correspondence.
Theorem 7 (Beilinson & Drinfeld)

\[H_\lambda(D_{\text{Bun}_G} \otimes \mathcal{L}^{-1}) \simeq (D_{\text{Bun}_G} \otimes \mathcal{L}^{-1}) \boxtimes \nu_{\lambda,X}^{\text{univ}}. \]

Moreover, the above isomorphism \(\alpha\) gives rise to a map

\[\mathcal{L}^{-1} \boxtimes K_X^{(\lambda,\rho)} \to H_\lambda(D_{\text{Bun}_G} \otimes \mathcal{L}^{-1}) \]

which corresponds to \(\iota \boxtimes \kappa_{\lambda,X}^{\text{univ}}\), where \(\iota: \mathcal{L}^{-1} \hookrightarrow D_{\text{Bun}_G} \otimes \mathcal{L}^{-1}\).

As shown by Beilinson and Drinfeld, this statement implies that \(\Delta_\chi\) is a Hecke eigensheaf, which is a key result in the geometric Langlands correspondence.

We claim that we can derive from this statement that the Hecke operator \(\hat{H}_\lambda(x)\) satisfies a differential equation, which is a key result in the analytic Langlands correspondence.