Computing with Elliptic Surfaces:
A bit of theoretical background

AMS Short Course
January, 2012

Noam D. Elkies
Harvard University
Overview

Elliptic surface [over \(P^1 \)]: birationally the curve
\((a_1, a_2, a_3, a_4, a_6)\) over \(k(t) \), i.e.

\[Y^2 + a_1(t)XY + a_3(t)Y = X^3 + a_2(t)X^2 + a_4(t)X + a_6(t)\]

with each \(a_i(t) \) a polynomial (really homog. poly. in \((t : 1)\)) of degree \(i \cdot \nu \).

NB often useful to **NOT** mechanically go to narrow Weierstrass form \((a_1 = a_2 = a_3 = 0)\)
even in characteristic zero when such a form is always available. E.g. the universal curve with
7-torsion [Tate 1966]:

\[(a_1, a_2, a_3, a_4, a_6) = (1 + d - d^2, d^2 - d^3, d^2 - d^3, 0, 0)\]

with torsion point at \((0, 0)\); narrow Weierstrass form is **MUCH** less pleasant!
Standard picture/cartoon of an elliptic surface:

\[E_{t_3} \quad E_{t_2} \quad E_{t_1} \]

\[\pi \ (\text{a.k.a. } t) \]

\[s_0 \quad s \]

\[t_3 \quad t_2 \quad t_1 \]
To make a very beautiful but long story short:

This picture, together with intersection theory on \mathcal{E}, yields a Euclidean lattice N_{ess} of rank $\rho - 2$, the “essential lattice” of the elliptic surface: N_{ess} is the orthogonal complement in $\text{NS}(\mathcal{E})\langle -1 \rangle$ of the indefinite lattice spanned by s_0 and the fiber E_t. (Here ρ is the Picard number, that is, the rank of $\text{NS}(\mathcal{E})$; and “$\langle -1 \rangle$” means: multiply inner product by -1.) The essential lattice is even: $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in N_{\text{ess}}$.
The vertical divisors (components of reducible fibers) generate a sublattice R of N_{ess}, each fiber contributing a factor A_n, D_n, or E_n according to its Kodaira type, and thus computable via Tate’s algorithm. If $\nu \geq 2$ this is also the root lattice of N_{ess} (the \mathbb{Z}-span of vectors of norm 2); when $\nu = 1$, there may be roots not in R: in this case $N_{\text{ess}} \cong E_8$ always, but usually R is strictly smaller than E_8.

It follows that the MW rank is $\rho - 2 - \text{rank}(R)$. The pairing (inner product) on $(N_{\text{ess}}/R) \otimes \mathbb{Q}$ gives canonical height, and

$$|\text{disc}(\text{NS})| = |T|^{-2} \text{disc}(R) \cdot \text{Regulator}$$

(BSD/Artin–Tate).