Billiards and curves in moduli space

Curtis T McMullen
Harvard University

Avila, Hubert, Kenyon, Kontsevich, Lanneau, Masur, Smillie, Yoccoz, Zorich, ...

A Little History

\[\int \frac{dx}{\sqrt{1 - x^2}} = \sin^{-1} x \]

\[Q(x) \text{ a polynomial} \]

\[\int \frac{dx}{\sqrt[3]{1 - x^3}} = 3\sqrt[3]{\frac{x-1}{1+\sqrt[3]{x}} + 1} \sqrt[3]{\frac{x-1}{1-\sqrt[3]{x}}} + 1(x-1)F_1 \left(\frac{2}{3}; \frac{1}{3}; \frac{1}{3}; -\frac{x-1}{1-\sqrt[3]{x}}, -\frac{x-1}{1+\sqrt[3]{x}} \right) \]

\[F_1 = \text{Appell hypergeometric function} \]

\[M_g = \text{moduli space of Riemann surfaces } X \text{ of genus } g \]

\[\{ \} \]

-- a complex variety, dimension 3g-3

Teichmüller metric: every holomorphic map

\[f : \mathbb{H}^2 \to M_g \]

is distance-decreasing.

TOTALLY unsymmetric

→ Riemann surfaces, homology, Hodge theory, automorphic forms, ...
How to describe X in \mathcal{M}_g?

$g=1$: $X = \mathbb{C}/\Lambda$

$g>1$: $X = \text{?} \quad \text{Uniformization Theorem}$

Every X in \mathcal{M}_g can be built from a polygon in \mathbb{C}

$X = P / \text{gluing by translations}$

Moduli space $\Omega\mathcal{M}_g$

Dynamical:

$\text{SL}_2(\mathbb{R})$ acts on $\Omega\mathcal{M}_g$

Polygon for $A \cdot (X,\omega) = A \cdot (\text{Polygon for } (X,\omega))$

Complex geodesics $f : \mathcal{H} \to \mathcal{M}_g$

Teichmüller curves

$\text{SL}_2(\mathbb{R})$ orbit of (X,ω) in $\Omega\mathcal{M}_g$ projects to a *complex geodesic* in \mathcal{M}_g:

$$\mathcal{H} \to \mathcal{M}_g$$

$V = \mathcal{H} / \text{SL}(X,\omega)$

$\text{stabilizer of } (X,\omega)$

$\text{SL}(X,\omega)$ lattice $\leftrightarrow f : V \to \mathcal{M}_g$ is an algebraic, isometrically immersed *Teichmüller curve*.
Rigidity Conjecture

The closure of any complex geodesic \(f(H) \subset \mathcal{M}_g \)

is an algebraic subvariety.

Celebrated theorem of Ratner (1995) \(\Rightarrow \)

true for \(\mathbb{H} \rightarrow \) locally symmetric spaces

\(X = K\backslash G/\Gamma \)

Complex geodesics in genus two

Theorem

Let \(f : \mathbb{H} \rightarrow \mathcal{M}_2 \) be a complex geodesic.

Then \(f(H) \) is either:

- A Teichmüller curve, \(\dim = 1 \)
- A Hilbert modular surface \(H_D \), or \(\dim = 2 \)
- The whole space \(\mathcal{M}_2 \), \(\dim = 3 \)

Recent progress towards general \(g \)

Eskin -- Mirzakhani

Classification Problem

What are the Teichmüller curves \(V \rightarrow \mathcal{M}_2 \)?

Billiards in polygons

Neither periodic nor evenly distributed
Billiard theorists

Optimal Billiards

Theorem. In a regular n-gon, every billiard path is either periodic or uniformly distributed. (Veech)

Billiards and Riemann surfaces

P is a Lattice Polygon

\[(X, \omega) = P/\sim \]

\(X \) has genus 2
\(\omega \) has just one zero!

\(\Leftrightarrow \) \(SL(X, \omega) \) is a lattice
\(\Leftrightarrow (X, \omega) \) generates a Teichmüller curve

Theorem (Veech, Masur): If \(P \) is a lattice polygon, then billiards in \(P \) is optimal. (renormalization)
Optimal Billiards

Example: if $X = \mathbb{C}/\Lambda$, $\omega=dz$, then $SL(X,\omega) = SL_2(\mathbb{Z})$

Theorem (Veech, 1989): For $(X,\omega) = (y^2 = x^n-1, dx/y)$, $SL(X,\omega)$ is a lattice.

Corollary

Any regular polygon is a lattice polygon.

Explicit package: Pentagon example

$(X,\omega) = (y^2=x^5-1, dx/y)$

\Rightarrow **Direct proof that $SL(X,\omega)$ is a lattice**

20th century lattice billiards

- **Square** $\sim SL_2(\mathbb{Z})$
- **Tiled by squares** $\sim SL_2(\mathbb{Z})$
- **Regular polygons** $\sim (2,n,\infty)$ triangle group
- **Various triangles** triangle groups

Genus 2

$\sim\Rightarrow$ Regular 5- 8- and 10-gon

Problem

Are there infinitely many primitive Teichmüller curves V in the moduli space M_2?
Jacobians with real multiplication

Theorem

\((X, \omega)\) generates a Teichmüller curve \(V\Rightarrow\)

\(\text{Jac}(X)\) admits real multiplication by \(\mathcal{O}_D \subset \mathbb{Q}(\sqrt{D})\).

Corollary

\(V\) lies on a Hilbert modular surface

\[V \subset H_D \subset \mathcal{M}_2 \]

\[\text{H} \times \text{H} / \text{SL}_2(\mathcal{O}_D) \]

The Weierstrass curves

\(W_D = \{X \in \mathcal{M}_2 : \mathcal{O}_D \text{ acts on } \text{Jac}(X) \text{ and its eigenform } \omega \text{ has a double zero.}\}\)

Theorem. \(W_D\) is a finite union of Teichmüller curves.

\[W_D = \{X \in \mathcal{M}_2 : \mathcal{O}_D \text{ acts on } \text{Jac}(X) \text{ and its eigenform } \omega \text{ has a double zero.}\} \]

Corollaries

- \(P_d\) has optimal billiards for all integers \(d > 0\).
- There are infinitely many primitive \(V\) in genus 2.

The regular decagon

Theorem. The only other primitive Teichmüller curve in genus two is generated by the regular decagon.

Torsion divisors in genus two

Theorem (Möller) \((X, \omega)\) generates a Teichmüller curve \(\Rightarrow [P-Q] \text{ is torsion in } \text{Jac}(X)\)

Teichmüller curves in genus 2

Theorem

The Weierstrass curves W_D account for all the primitive Teichmüller curves in genus 2 --

-- except for the curve coming from the regular decagon.

Mysteries

• Is W_D irreducible?
• What is its Euler characteristic?
• What is its genus?
• Algebraic points (X, ω) in W_D?
• What is $\Gamma = SL(X, \omega)$?

$W_D = \mathbb{H}/\Gamma$, $\Gamma \subset SL_2(\mathcal{O}_D)$

Classification Theorem

W_D is connected except when $D = 1 \mod 8, D > 9$.

Euler characteristic of W_D

Theorem (Bainbridge, 2006)

$$\chi(W_D) = -\frac{9}{2}\chi(SL_2(\mathcal{O}_D))$$

= coefficients of a modular form

Compare: $\chi(M_{g,1}) = \zeta(1-2g)$ (Harer-Zagier)

Proof: Uses cusp form on Hilbert modular surface with $(\alpha) = W_D - P_D$, where P_D is a Shimura curve
Elliptic points on W_D

Theorem (Mukamel, 2011)

The number of orbifold points on W_D is given by a sum of class numbers for $Q(\sqrt{-D})$.

Proof: (X, ω) corresponds to an orbifold point \Rightarrow X covers a CM elliptic curve E \Rightarrow $(X, \omega), p: X \to E$ and $\text{Jac}(X)$ can be described explicitly.

Algebraic points on W_D

$X \in M_2$

- $D=5 \quad y^2 = x^5 - 1$
- $D=8 \quad y^2 = x^8 - 1$
- $D=13 \quad y^2 = (x^2 - 1)(x^4 - ax^2 + 1)$

 \[a = 2594 + 720 \sqrt{13} \]

- $D=108 \quad 96001 + 48003 a + 3 a^2 + a^3 = 0$

Genus of W_D

<table>
<thead>
<tr>
<th>D</th>
<th>$g(W_D)$</th>
<th>$c_2(W_D)$</th>
<th>$C(W_D)$</th>
<th>$\chi(W_D)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1/2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1/8</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1/8</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>-1/8</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>-1/8</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>-1/8</td>
</tr>
<tr>
<td>17</td>
<td>0.0</td>
<td>1.1</td>
<td>3.3</td>
<td>-1/8</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>-3</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>-3</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>-3</td>
</tr>
<tr>
<td>25</td>
<td>0.0</td>
<td>0.1</td>
<td>5.3</td>
<td>-3</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>-6</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>-2</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>-6</td>
</tr>
<tr>
<td>33</td>
<td>0.0</td>
<td>1.1</td>
<td>6.6</td>
<td>-3</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>-6</td>
</tr>
<tr>
<td>37</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>-1/3</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>-1/3</td>
</tr>
<tr>
<td>41</td>
<td>0.0</td>
<td>2.2</td>
<td>7.7</td>
<td>-6</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>-1/2</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>-9</td>
</tr>
<tr>
<td>49</td>
<td>0.0</td>
<td>2.0</td>
<td>10.8</td>
<td>-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>$g(W_D)$</th>
<th>$c_2(W_D)$</th>
<th>$C(W_D)$</th>
<th>$\chi(W_D)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>1</td>
<td>0</td>
<td>15</td>
<td>-15</td>
</tr>
<tr>
<td>53</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>-15</td>
</tr>
<tr>
<td>56</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>-15</td>
</tr>
<tr>
<td>57</td>
<td>1.1</td>
<td>1.1</td>
<td>10.10</td>
<td>-15</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>-18</td>
</tr>
<tr>
<td>61</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>-15</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>2</td>
<td>17</td>
<td>-18</td>
</tr>
<tr>
<td>65</td>
<td>1.1</td>
<td>2.2</td>
<td>11.11</td>
<td>-12</td>
</tr>
<tr>
<td>68</td>
<td>3</td>
<td>0</td>
<td>14</td>
<td>-18</td>
</tr>
<tr>
<td>69</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>-18</td>
</tr>
<tr>
<td>72</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>-15</td>
</tr>
<tr>
<td>73</td>
<td>1.1</td>
<td>1.1</td>
<td>16.16</td>
<td>-15</td>
</tr>
<tr>
<td>76</td>
<td>4</td>
<td>3</td>
<td>21</td>
<td>-15</td>
</tr>
<tr>
<td>77</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>-18</td>
</tr>
<tr>
<td>80</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>-24</td>
</tr>
<tr>
<td>81</td>
<td>2.0</td>
<td>0.3</td>
<td>16.14</td>
<td>-18</td>
</tr>
<tr>
<td>84</td>
<td>7</td>
<td>0</td>
<td>18</td>
<td>-30</td>
</tr>
<tr>
<td>85</td>
<td>6</td>
<td>2</td>
<td>16</td>
<td>-27</td>
</tr>
<tr>
<td>88</td>
<td>7</td>
<td>1</td>
<td>22</td>
<td>-27</td>
</tr>
<tr>
<td>89</td>
<td>3.3</td>
<td>3.3</td>
<td>14.14</td>
<td>-27</td>
</tr>
<tr>
<td>92</td>
<td>8</td>
<td>6</td>
<td>13</td>
<td>-30</td>
</tr>
<tr>
<td>93</td>
<td>8</td>
<td>2</td>
<td>12</td>
<td>-27</td>
</tr>
<tr>
<td>96</td>
<td>8</td>
<td>4</td>
<td>20</td>
<td>-36</td>
</tr>
</tbody>
</table>

Corollary

W_D has genus 0 only for $D < 50$

(table by Mukamel)

Computing W_D

$D=44$

Mukamel
Conjecture:
There are only finitely many Teichmüller curves in \mathcal{M}_g with $\deg(\text{trace field } SL(X,\omega)) = g = 3$ or more.

(avoid echo of lower genera)

[Rules out quadratic fields]

Theorem (Möller, Bainbridge-Möller):
Finiteness holds...
for hyperelliptic stratum $(g-1,g-1)$
for $g=3$, stratum $(3,1)$

Methods: Variation of Hodge structure; rigidity theorems of Deligne and Schmid; Neron models; arithmetic geometry

- Jac(X) admits real multiplication by K,
- $P-Q$ is torsion in Jac(X) for any two zeros of ω.

However...

Theorem
There exist infinitely many primitive Teichmüller curves in \mathcal{M}_g for genus $g = 2, 3$ and 4.

Exceptional triangular billiards

- $\frac{1}{3}$
- $\frac{1}{5}$
- $\frac{7}{15}$
- $\frac{4}{9}$
- $\frac{2}{9}$
- $\frac{5}{12}$
- $\frac{1}{4}$
Prym systems in genus 2, 3 and 4

Higher genus?

Question.
Are there only finitely many primitive Teichmüller curves in \(\mathcal{M}_g \) for each \(g \geq 5 \)?

What about the Hilbert modular surfaces \(H_D \subset \mathcal{M}_2 \)?

\begin{align*}
\mathbb{H} \times \mathbb{H} & \hspace{1cm} \text{foliated by complex geodesics} \\
\downarrow & \\
H_D \subset \mathcal{M}_2 & \\
\end{align*}

each leaf is the graph of a holomorphic function \(F: \mathbb{H} \rightarrow \mathbb{H} \)

W_\mathcal{D} for \(g=3,4 \): Lanneau--Nguyen but still quadratic fields

Pentagon-to-star map

\(\tilde{W}_5 = \text{graph of } F \)
Action on slices of H_D

Slice $\{\tau_1\} \times \mathbb{H}$

$\rho = \int_a^b \omega = $ relative period

$q = (d\rho)^2$ quadratic differential

$SL(\mathbb{H}, q) = SL_2(\mathbb{D})$

acts on slice

\[\{\tau_1\} \times \mathbb{H}\]

gives picture of action of $SL_2(R)$ on Ω_{M_2}

Slice of H_D

Points of W_D

Points of P_D

Golden table

Slice of Hilbert modular surface

$D=5$

$q = Q | \{\tau_1\} \times \mathbb{H}$

Exotic leaves

Möller-Zagier formula

\[Q = \left(\prod_{m \text{ odd}} \frac{d \vartheta_m(\tau, 0)}{dz} \right) \left/ \prod_{m \text{ even}} \vartheta_m(\tau, 0) \right. d\tau_1^{-1} d\tau_2^2. \]

-products taken over spin strs \(m \)
- (6 odd, 10 even)

\((Q) = W_D - P_D \) on the Hilbert modular surface \(X_D = \mathbb{H} \times \mathbb{H} / \text{SL}_2(\mathcal{O}_D) \)