Affine varieties and coordinate rings

Def: An affine variety is an irreducible affine algebraic set.

So \(\{ \text{affine varieties} \} \rightarrow \{ \text{prime ideals} \} \) in \(\mathbb{A}^n \).

Functions on varieties

Let \(V \subseteq \mathbb{A}^n \) be a variety. Let \(\mathcal{F}(V, k) \) be the set of all functions \(V \rightarrow k \). \(\mathcal{F}(V, k) \) has a natural ring structure.

Def: \(f \in \mathcal{F}(V, k) \) is a polynomial function or regular function on \(V \) if there is some \(F \in k[x_1, \ldots, x_n] \) s.t. \(f = F|_V \).

i.e. \(\forall (a_1, \ldots, a_n) \in V, \ F(a_1, \ldots, a_n) = f(a_1, \ldots, a_n) \).

Easy exercise: The set of regular functions on \(V \) is a subring of \(\mathcal{F}(V, k) \).

Def: The ring of regular functions on \(V \) is called the coordinate ring of \(V \). It's denoted \(\Gamma(V) \).

Ex: 1.) \(\Gamma(\mathbb{A}^n) = k[x_1, \ldots, x_n] \).

2.) Let \(V = V(y - x^2) = \{(t, t^2) \mid t \in k\} \).
The function \(y \) outputs the \(y \)-coordinate, i.e. it is projection onto the \(y \)-axis. The function \(x^2 \) is the same function on \(V \).

3.) Consider \(V(xy - 1) \subseteq \mathbb{A}^2 \). Is \(\frac{1}{y} \) regular?

\[
xy = 1 \Rightarrow x = \frac{1}{y} \quad \text{so} \quad x \text{ and } \frac{1}{y} \text{ are the same function on } V(xy - 1), \text{ so } \frac{1}{y} \text{ is regular.}
\]

In general, if \(V \subseteq \mathbb{A}^n \) is a variety, we have a restriction map

\[
k[\mathbb{A}^n] \rightarrow \Gamma(V)
\]

whose kernel is precisely the functions that vanish on \(V \), i.e. \(I(V) \). So we have...

Prop/Def: \(\Gamma(V) \cong k[\mathbb{A}^n]/I(V) \)

Remark: \(\Gamma(V) \) is ring-finite over \(k \), and if \(V \) is a variety, since \(I(V) \) is prime, \(\Gamma(V) \) is an integral domain.

Def: A subvariety of \(V \) is a variety \(W \subseteq \mathbb{A}^k \) s.t. \(W \subseteq V \).
Thus, \[\{ \text{subvarieties of } V \} \leftrightarrow \{ \text{prime ideals} \} \text{ in } \Gamma(V) \]
\[\{ \text{points of } V \} \leftrightarrow \{ \text{maximal ideals} \} \text{ in } \Gamma(V) \]

We can define the function \(\Gamma(V) \rightarrow \Gamma(W) \) to be the restriction map \(\bar{f} \mapsto f|_W \), where \(f \in k[x_1, \ldots, x_n]/I(V) \), \(f \cdot k[x_1, \ldots, x_n] = R \)

\(\bar{f} \) is in the kernel \(\iff \bar{f} \) vanishes on \(W \iff \bar{f} \in I_V(W) \)

So \[\Gamma(W) \cong \frac{\Gamma(V)}{I_V(W)} \cong \frac{(R/I(V))}{I(V)} \]

\textbf{Ex.:} Going back to \(V = V(xy - 1) \subseteq \mathbb{A}^2 \)

\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
\end{center}

As we saw, \(y = \frac{1}{x} \) in \(\Gamma(V) \), so
\[\Gamma(V) = \frac{k[x,y]}{(xy - 1)} \cong k[x, \frac{1}{x}] \], i.e.

\textit{Laurent polynomials.}