Algebraic sets

Let \(k \) be a field. For our purposes, we only want to consider fields that are algebraically closed. (We will see why soon.)

Def: A field \(k \) is algebraically closed if every polynomial with coefficients in \(k \) has a root in \(k \). That is, if \(f \in \mathbb{k}[x] \), there is some \(a \in k \) s.t. \(f(a) = 0 \).

Note: By induction, this implies that every polynomial in \(\mathbb{k}[x] \) is the product of linear factors. i.e \(f = \beta(x-a_1)...(x-a_n) \) for some \(\beta, a_1, ..., a_n \in k \).

Ex: \(\mathbb{C} \) is algebraically closed (see Math 123), but \(x^2 + 1 \) has no roots in \(\mathbb{IR} \) so \(\mathbb{IR} \) is not algebraically closed.

Def: Affine \(n \)-space, denoted \(\mathbb{A}_k^n \), or just \(\mathbb{A}^n \), is the set of \(n \)-tuples of elements of \(k \) (to distinguish it from the vector space \(k^n \)).

Let \(f \in \mathbb{k}[x_1, ..., x_n] \). Then \((a_1, ..., a_n) \in \mathbb{A}^n_k \) is a zero of \(f \) if \(f(a_1, ..., a_n) = 0 \).

Ex: Conics in \(\mathbb{A}^2_k \).
A conic is the set of zeros of a quadratic equation:

\[g(x,y) = ax^2 + bxy + cy^2 + dx + ey + f \]

If we just consider the real locus, we get the following familiar conics:

- ellipse
- parabola
- hyperbola
- two lines (e.g. \(xy \))

If \(g \) is reducible over \(\mathbb{R} \)

But the \(\mathbb{R} \) locus doesn't always give a very complete picture:

In \(\mathbb{R}^2 \): \(x^2 + y^2 \) defines a single point, and \(x^2 + y^2 + 1 \) defines the empty set, whereas they have infinitely many solutions over \(\mathbb{C} \).

Note: It usually makes sense to require \(a, b, \) or \(c \) to be nonzero to avoid lines (e.g. \(x \)) and the whole plane (0).

More generally, we can describe zero loci using more than
Def: Let \(S \subseteq k[x_1, \ldots, x_n] \) be a set of polynomials. Define

\[
V(S) := \{ P \in \mathbb{A}^n \mid f(P) = 0 \text{ for all } f \in S \}
\]

\(X \subseteq \mathbb{A}^n \) is an algebraic set if \(X = V(S) \) for some \(S \).

IOM

Let \(S \subseteq k[x_1, \ldots, x_n] \), and let \(I \) be the ideal generated by \(S \).

Claim: \(V(S) = V(I) \).

Pf: If \(P \in V(I) \), then \(f(P) = 0 \) \(\forall f \in S \) since \(S \subseteq I \). Thus, \(P \in V(S) \).

If \(P \in V(S) \), then if \(g \in I \), \(g = a_1 f_1 + \ldots + a_m f_m \) for some \(a_i \in k[x_1, \ldots, x_n] \), \(f_i \in S \). Thus \(g(P) = 0 + \ldots + 0 = 0 \), so \(P \in V(I) \). \(\square \)

Cor: Every algebraic set is equal to \(V(I) \) for some ideal \(I \).

Ex: If \(f \in k[x_1, \ldots, x_n] \), and \(I = (f) \), then \(V(f) = V(I) \). In this case, \(V(I) \) is called a hypersurface.
If \(f = y \in k[x,y], \) \(V(f) = \) The \(x\)-axis.

We can now deduce several basic properties of \(V(S) \):

1.) It's inclusion-reversing: If \(I \subseteq J \) then \(V(I) \supseteq V(J) \).

 \[\text{Ex: } (x) \subseteq (x,y) \]

 \[V(x) \subseteq V(x,y) \]

2.) If \(\{I_x\} \) is a collection of ideals,

 \[\bigcap V(I_x) = V(\bigcup I_x) = V(\text{ideal gen. by } I_x) \]

 (i.e. intersections of algebraic sets are alg. sets.)

3.) \(f, g \in k[x_1, \ldots, x_n] \Rightarrow V(f) \cup V(g) = V(fg) \).

 More generally, \(V(I) \cup V(J) = V(IJ) \)

 (i.e. finite unions of alg. sets are alg. sets).

[Note: Infinite (even countable!) unions are not always alg. sets: If \(X = V(I) \subseteq \mathbb{A}^n \), then \(f \in I \) is 0 or has finitely many roots, so \(X \) is finite or all of \(\mathbb{A}^n \).]
4.) $V(0) = \mathbb{A}^n$, $V(1) = \emptyset$, and $V(x_1 - a_1, \ldots, x_n - a_n) = \{(a_1, \ldots, a_n)\}$
so any finite set is algebraic.

Properties 2.) - 4.) show that algebraic sets behave like closed sets. In fact...

Def: $X \subseteq \mathbb{A}^n$ is a Zariski closed set if X is an algebraic set. Y is Zariski open if $\mathbb{A}^n \setminus Y$ is Zariski closed.

The collection of Zariski open sets in \mathbb{A}^n is called the Zariski topology.

Ex: The Zariski open sets on \mathbb{A}^1 are the empty set and the cofinite sets.

Note: If you know any topology, the Zariski topology is strictly coarser than the standard Euclidean topology. i.e. algebraic sets are all closed in the standard topology as well.