Math 137 - Problem Set 2
Due Wednesday, Feb 12

All rings are commutative, and \(k \) is an algebraically closed field.

1. Let \(I \) be an ideal in a ring \(R \). Show that there is a one-to-one correspondence between radical ideals in \(R \) containing \(I \) and radical ideals in \(R/I \). (Convince yourself that the same holds for prime ideals. You don’t need to write up that part.)

2. (a) Let \(I \subset k[x_1, \ldots, x_n] \) be an ideal. Show that \(I \) is radical if and only if it is equal to the intersection of all the maximal ideals containing it.

 (b) Show that the radical of the ideal \(I = (x^2 - 2xy^4 + y^6, y^3 - y) \subset \mathbb{C}[x, y] \) is the intersection of three maximal ideals.

3. Let \(X = V(x^2 - yz, xz - x) \subset \mathbb{A}^3_{\mathbb{C}} \). Find the irreducible components of \(X \) and their corresponding prime ideals. Make sure you justify your solution.

4. Let \(a_1, a_2, \ldots, a_n \in k \). Show that \((x_1 - a_1, \ldots, x_n - a_n) \subset k[x_1, \ldots, x_n] \) is a maximal ideal. (Hint: reduce to the case where the \(a_i \) are all 0.)

5. Let \(X \subset \mathbb{A}^n \) be a set (not necessarily algebraic). The Zariski closure of \(X \), denoted \(\overline{X} \), is the intersection of all Zariski closed sets containing \(X \). Show that \(V(I(X)) = \overline{X} \).

6. A subset of affine space \(U \subset \mathbb{A}^n \) is called compact (in the Zariski topology) if for every collection \(\{U_i\}_{i \in J} \) (where \(J \) is some indexing set) of Zariski open sets such that

 \[
 U \subset \bigcup_{i \in J} U_i,
 \]

 then \(U \) is also contained in some finite union of the \(U_i \). That is, there is some finite set \(L \subset J \) such that

 \[
 U \subset \bigcup_{i \in L} U_i.
 \]

 More concisely, \(U \) is compact if every open cover has a finite subcover. Show that if \(X \subset \mathbb{A}^n_k \) is an algebraic set, \(X \) is compact in the Zariski topology.

Bonus topology questions (Extra credit)

7. Identify \(\mathbb{A}^1 \times \mathbb{A}^1 \) with \(\mathbb{A}^2 \) in the natural way. Show that the Zariski topology on \(\mathbb{A}^2 \) is not the product topology induced by the Zariski topology on \(\mathbb{A}^1 \).

8. For each \(f \in k[x_1, \ldots, x_n] \) define \(U_f \) to be the set of points \(P \in \mathbb{A}^n \) such that \(f(P) \neq 0 \). Prove that the collection of all such sets \(U_f \) forms a basis for the Zariski topology on \(\mathbb{A}^n \).