1. (22.2) (a) Assume \(p : X \to Y \) is continuous, and \(f : Y \to X \) is a continuous map such that \(p \circ f = \text{id}_Y \). Then \(p \) is surjective (since for any \(y \in Y \), \(y = p(f(y)) \in p(X) \)), and continuous so if \(U \subset Y \) is open then \(p^{-1}(U) \subset X \) is open. To show the converse implication (if \(p^{-1}(U) \subset X \) is open then \(U \subset Y \) is open), we note that \(U = (p \circ f)^{-1}(U) = f^{-1}(p^{-1}(U)) \), and \(f \) is continuous, so if \(p^{-1}(U) \subset X \) is open then \(f^{-1}(p^{-1}(U)) = U \subset Y \) is open.

(b) Assume \(A \subset X \) and \(r : X \to A \) is a retraction. Let \(i : A \to X \) be the inclusion map. Then \(i \) and \(r \) are continuous, and \(r \circ i = \text{id}_A \). By the result of (a), it follows that \(r \) is a quotient map.

2. The quotient \(X/ \sim \) “looks like” \(\mathbb{R} \), except there are two different points living at the origin: for \(x \in \mathbb{R} - \{0\} \) we have a single equivalence class \([x \times 1] = [x \times 2] \), while \([0 \times 1]\) and \([0 \times 2]\) are two different equivalence classes. Write \(p : X \to X/ \sim \) for the quotient map. Let \(U_1 \) be a neighborhood of \([0 \times 1]\) and \(U_2 \) a neighborhood of \([0 \times 2]\) in the quotient topology. By definition, \(U_1 \) being open in the quotient topology means that \(p^{-1}(U_1) \) is open in \(X = \mathbb{R} \times \{1, 2\} \). Since \([0 \times 1] \in U_1 \), \(0 \times 1 \in p^{-1}(U_1) \), and hence there exists \(\epsilon_1 > 0 \) such that \((-\epsilon_1, \epsilon_1) \times \{1\} \subset p^{-1}(U_1)\). Similarly, there exists \(\epsilon_2 > 0 \) such that \((-\epsilon_2, \epsilon_2) \times \{2\} \subset p^{-1}(U_2)\). Now, take \(x \in \mathbb{R} \) such that \(0 < x < \min(\epsilon_1, \epsilon_2) \). Then \(x \times 1 \in p^{-1}(U_1) \) so \(p(x \times 1) = [x \times 1] \in U_1 \), and \(x \times 2 \in p^{-1}(U_2) \) so \(p(x \times 2) = [x \times 2] \in U_2 \). However the latter two elements of \(X/ \sim \) are equal to each other since \(x \neq 0 \), so we find that \(U_1 \cap U_2 \supseteq [0 \times 1] = [x \times 2] \) is non-empty. So \([0 \times 1]\) and \([0 \times 2]\) do not have disjoint neighborhoods, hence \(X/ \sim \) is not Hausdorff.

3. (a) **Solution 1** (comparing the quotient topologies “by hand”)

Every line through the origin in \(\mathbb{R}^{n+1} \) contains exactly two points on the unit sphere \(S^n \), which are antipodal to each other. Namely, the two points of \(S^n \) in the equivalence class of \(x \in X \) are \(\pm \frac{x}{|x|} \), and they form an equivalence class for the equivalence relation on \(S^n \). Thus, the sets of equivalence classes for the equivalence relations on \(X \) and on \(S^n \) are naturally identified with each other (by mapping the equivalence class of \(x \in X \) to that of \(\frac{x}{|x|} \in S^n \)).

We denote by \(p : X \to \mathbb{RP}^n \) and \(q : S^n \to \mathbb{RP}^n \) the two quotient maps, and note that \(q = p_{|S^n} = p \circ i \) where \(i : S^n \to \mathbb{RP}^{n+1} - \{0\} \) is the inclusion. Moreover, denote by \(r : X \to S^n \) the projection \(r(x) = x/|x| \), which is a retraction. Since \(r \) preserves each equivalence class, we also have \(p = q \circ r \).

To show that the two quotient topologies coincide, we then need to show that for any subset \(U \subset \mathbb{RP}^n \), \(q^{-1}(U) \) is open in \(S^n \) if and only if \(p^{-1}(U) \) is open in \(X \). (By definition of the quotient topology, this says: \(U \) is open in \(S^n/ \sim \) if and only if \(U \) is open in \(X/ \sim \)). For this, note that \(q^{-1}(U) = i^{-1}(p^{-1}(U)) = p^{-1}(U) \cap S^n \). So if \(p^{-1}(U) \) is open in \(X \), then \(q^{-1}(U) \) is open in \(S^n \) (by continuity of \(i \), or by definition of the subspace topology). Conversely, \(p = q \circ r \), so \(p^{-1}(U) = r^{-1}(q^{-1}(U)) \), and the continuity of \(r \) implies that if \(q^{-1}(U) \) is open in \(S^n \) then \(p^{-1}(U) \) is open in \(X \).

Solution 2 (using the characterization of continuous maps from quotient spaces)

Denote by \(p : X \to X/ \sim = \mathbb{RP}^n \) and \(q : S^n \to S^n/ \sim \) the two quotient maps; by \(i : S^n \to X \) the inclusion, and \(r : X \to S^n \) the projection \(r(x) = x/|x| \) (which is a retraction).

The map \(p \circ i : S^n \to X/ \sim \) is continuous, and compatible with the equivalence relation on \(S^n \), since \(p \circ i(x) = p \circ i(-x) \), so by Theorem 22.2 (see also Thm. on p.3 of lecture notes for Nov. 4), it induces a continuous map \(i : S^n/ \sim \to X/ \sim \), defined by \(i([x]) = [i(x)] \). Conversely, the map \(q \circ r : X \to S^n/ \sim \) is continuous, and compatible with the equivalence relation on \(X \); indeed,
\(r(\alpha x) = \pm r(x) \), so \(q \circ r(\alpha x) = q \circ r(x) \). Hence by Theorem 22.2 it induces a continuous map \(\tilde{r} : X/\sim \to S^n/\sim \), defined by \(\tilde{r}(x) = [r(x)] \). Summarizing, we have a diagram

\[
\begin{array}{ccc}
X & \xrightarrow{r} & S^n \\
\downarrow \ i \ & & \downarrow \ q \\
X/\sim & \xrightarrow{\tilde{r}} & S^n/\sim
\end{array}
\]

where all the maps are continuous. We claim that \(\tilde{r} \) and \(\tilde{i} \) are inverse maps. Indeed, for \(x \in S^n \), \(\tilde{r} \circ \tilde{i}(x) = \tilde{r}(i(x)) = [r(i(x))] = [x] \), and for \(x \in \mathbb{R}^{n+1} - \{0\} \), \(\tilde{i} \circ \tilde{r}(x) = \tilde{i}(\tilde{r}(x)) = [i(r(x))] = [x/|x|] = [x] \). So \(\tilde{r} \) and \(\tilde{i} \) are continuous bijections with continuous inverses, hence homeomorphisms.

(b) Let \([x_0] \in \mathbb{RP}^n \) be the equivalence class of a pair of antipodal points \(\pm x_0 \in S^n \). Let \(V_+ \) be a small neighborhood of \(x_0 \) in \(S^n \), for example, the intersection of \(S^n \) with the ball \(B(x_0, \frac{1}{2}) \subset \mathbb{R}^{n+1} \), and let \(V_- \) be the corresponding neighborhood of \(-x_0 \), \(V_- = -V_+ = \{ -x \ | \ x \in V_+ \} \). Then \(q(V_+) = q(V_-) = U \) is a neighborhood of \([x_0] \) in \(\mathbb{RP}^n \), with \(q^{-1}(U) = V_+ \cup V_- \). Having chosen \(V_+ \) small enough as above ensures that \(V_+ \) and \(V_- \) are disjoint (since the balls of radius \(\frac{1}{2} \) centered at \(\pm x_0 \) are disjoint). Moreover, we claim that the restriction of \(q(V_+) : V_+ \to U \) is a homeomorphism. Indeed, a subset \(W \subset U \) is open if and only if \(q^{-1}(W) \) is open in \(q^{-1}(U) = V_+ \cup V_- \), which is equivalent to \(q^{-1}(W) \cap V_\pm \) both being open. Therefore, the neighborhood \(U \) of \([x_0] \) is evenly covered by \(q \) (with the two slices being \(V_\pm \)). This is true for every point of \(\mathbb{RP}^n \), and hence \(q : S^n \to \mathbb{RP}^n \) is a (two-sheeted) covering map.

4. (55.1) Let \(A \subset B^2 \) be a retract, with \(r : B^2 \to A \) the retraction, and \(i : A \to B^2 \) the inclusion. Given a continuous map \(f : A \to A \), the composition \(F = i \circ f \circ r \) is a continuous map from \(B^2 \) to itself, with \(F(B^2) \subset A \), and \(F|_A = f \). By the Brouwer fixed point theorem, \(F \) has a fixed point, i.e. there exists \(x \in B^2 \) such that \(F(x) = x \). However, since \(F \) takes values in \(A \), this implies that in fact \(x \in A \), and then \(f(x) = F(x) = x \). So \(x \) is a fixed point of \(f \).

5. (55.2) If \(h : S^1 \to S^1 \) is null-homotopic, then by Lemma 55.3 it extends to a continuous map \(h : B^2 \to S^1 \). The composition of \(h \) with the inclusion \(i \) of \(S^1 \) into \(B^2 \) is a continuous map from \(B^2 \) to itself, so by the Brouwer fixed point theorem, there exists \(x \in B^2 \) such that \(i(h(x)) = x \). However, this equality implies that \(x \in S^1 \), so in fact there exists \(x \in S^1 \) such that \(k(x) = h(x) = x \), and we conclude that \(h \) has a fixed point.

Denote by \(\alpha : S^1 \to S^1 \) the antipodal map \(\alpha(x) = -x \). If \(h : S^1 \to S^1 \) is nullhomotopic, then so is \(\alpha \circ h \) (namely, if \(H \) is a homotopy from \(h \) to a constant map then \(\alpha \circ H \) is a homotopy from \(\alpha \circ h \) to a constant map). By the previous result, \(\alpha \circ h \) has a fixed point, so there exists \(x \in S^1 \) such that \(\alpha(h(x)) = x \), i.e. \(h(x) = -x \).

Remark: one can in fact show that every continuous map from \(S^1 \) to itself with no fixed point is homotopic to the identity map, and so is every continuous map such that \(h(x) \neq -x \) for all \(x \in S^1 \). So the desired conclusion holds more generally whenever \(h \) is not homotopic to the identity map. To prove the claim: assume \(h(x) \neq -x \) for all \(x \), then the straight line segment from \(h(x) \) to \(x \) does not pass through the origin, and we can define \(H : S^1 \times I \to S^1 \) by \(H(x,t) = r((1-t)h(x)+tx) \), where \(r : \mathbb{R}^2 - \{0\} \to S^1 \) is the retraction \(r(y) = y/|y| \). This gives a homotopy from \(h \) to the identity map. Similarly, assume \(h(x) \neq x \) for all \(x \), then by the same argument \(h \) is homotopic to the antipodal map \(\alpha(x) = -x \), which is in turn homotopic to the identity map (via rotations of angles varying continuously from 0 to \(\pi \)).
6. (57.2) As per the hint, we note that the complement of a point in the 2-sphere, $S^2 - \{p\}$, is homeomorphic to \mathbb{R}^2. For example, such a homeomorphism can be obtained by stereographic projection, mapping $S^2 - \{p\}$ onto the tangent plane P to S^2 at $-p$, by mapping each point $x \in S^2 - \{p\}$ to the point where the line through p and x intersects the plane P; the inverse homeomorphism mapping each point $y \in P$ to the point of $S^2 - \{p\}$ where the line through p and y intersects S^2 (other than p). (Draw a picture!) (Optional: write formulas for the stereographic projection of $S^2 - \{(0,0,1)\}$ onto the tangent plane at $(0,0,-1)$, namely $P = \{(x,y,-1)\}$, and its inverse, to convince yourself that these maps are continuous).

Now, assume $g : S^2 \rightarrow S^2$ is continuous and not surjective, so $g(S^2) \subset S^2 - \{p\}$ for some point p. Denoting by $h : S^2 - \{p\} \rightarrow \mathbb{R}^2$ a homeomorphism, the composition $h \circ g$ is a continuous map from S^2 to \mathbb{R}^2, so by the Borsuk-Ulam theorem there exists $x \in S^2$ such that $h(g(-x)) = h(g(x))$. Applying the inverse homeomorphism h^{-1} to both sides, this implies that $g(-x) = g(x)$. Conversely, if $g(-x) \neq g(x)$ for all $x \in S^2$ then g must be surjective.

7. (a) Recall the Borsuk-Ulam theorem for S^3: if $f : S^1 \rightarrow \mathbb{R}$ is a continuous function, then there exists $x \in S^1$ such that $f(-x) = f(x)$. (The proof is elementary, see HW4 Problem 4 = 24.2).

Now, assume $S^1 = A \cup B$ where A is closed (we don’t in fact need B to be closed). The function $f : S^1 \rightarrow \mathbb{R}$, $f(x) = d(x, A)$ is continuous, so there exists $x \in S^1$ such that $f(x) = f(-x)$. If $f(x) = f(-x) = 0$, then so A contains a pair of antipodal points. Otherwise, if $f(x) = f(-x) > 0$, then we conclude that neither x nor $-x$ belong to A, hence they both lie in B.

(b) Assume $S^1 = A \cup B \cup C$, where A and B are closed. Define a continuous function $f : S^2 \rightarrow \mathbb{R}^2$ by $f(x) = (d(x, A), d(x, B))$. By the Borsuk-Ulam theorem, there exists a pair of antipodal points $\pm x$ such that $f(x) = f(-x)$, so $d(x, A) = d(-x, A)$ and $d(x, B) = d(-x, B)$. If $d(x, A) = d(-x, A) = 0$ then we conclude that x and $-x$ both belong to $A = A$. Likewise, if $d(x, B) = d(-x, B) = 0$ then $\pm x \in B$. Finally, if those distances are both positive, then x and $-x$ are neither in A nor in B, hence they are both in C.

(c) If we don’t assume the sets to be closed: in S^1 we can take $A = \{(\cos t, \sin t) | t \in [0, \pi)\}$ and $B = \{(\cos t, \sin t) | t \in [\pi, 2\pi)\}$, which cover S^1 and don’t contain antipodal points (in fact the antipodal map exchanges the disjoint half-circles A and B). Similarly, in S^2, we can take $A = \{(x,y,z) | z > 0 \text{ or } (z = 0 \text{ and } (y > 0 \text{ or } (y = 0 \text{ and } x > 0)))\}$, which is “exactly one half” of the sphere, $B = S^2 - A$ which is the image of A under the antipodal map, and $C = \emptyset$.

With more closed subsets: in S^1, take $A = \{(\cos t, \sin t) | t \in [-\pi/3, \pi/3]\}$, $B = \{(\cos t, \sin t) | t \in [\pi/3, \pi]\}$, $C = \{(\cos t, \sin t) | t \in [-\pi, -\pi/3]\}$ (each of them is a closed arc covering one third of the circle; these arcs are centered at the vertices of an equilateral triangle). (Or one could in fact take closed arcs that overlap more – any angle in $[2\pi/3, \pi)$ works). In S^2, similarly, take four spherical caps centered at the vertices of a regular tetrahedron, each of which is slightly less than a full hemisphere. One can check that these still cover S^2.